
Interfaces

Why Use Methods?

Write and test code once,
use it multiple times: avoid duplication

Eg. Library.addBook()

Why Use Methods?

Use it without understanding how it works:
encapsulation / information hiding

Eg. How does System.out.println() work?

Why Use Objects?

Objects combine a related set of variables
and methods

Provide a simple interface

(encapsulation again)

Implementation / Interface

Library

Book[] books;
int numBooks;
String address;

void addBook(Book b) {
books[numBooks] = b;
numBooks++;

}

Library

void addBook(Book b);

Java Interfaces

Manipulate objects, without knowing how
they work

Useful when you have similar but not
identical objects

Useful when you want to use code written
by others

Interface Example
public interface RemoteControl {

public void turnOn();

public void turnOff();

public void printInfo();
}

Implementing Interface
public class Television implements RemoteControl {

public boolean onOff = false;

public void turnOn() {
onOff = true;

}
public void turnOff() {

onOff = false;
}
public void printInfo() {

System.out.println(onOff);
}

}

Testing Interface
public class RemoteControlTest {

public static void main(String[] args) {
RemoteControl rc = new Television();
rc.turnOn();
rc.printInfo();

}

}

Interfaces

Set of classes that share methods

Declare an interface with the common
methods

Can use the interface, without knowing an
objectʼs specific type

Interface Notes

Only have methods (mostly true)

Do not provide code, only the definition
(called signatures)

A class can implement any number of
interface

Using Interfaces

Can only access stuff in the interface.

Drawable d = new BouncingBox(…);
d.setMovementVector(1, 1);

The method setMovementVector(int, int)
is undefined for the type Drawable

Down-casting

If you know that a variable holds a
specific type, you can use a cast:

Drawable d = new BouncingBox(…);
BouncingBox box = (BouncingBox) d;
box.setMovementVector(1, 1);

Interfaces? Interfaces!

• It’s	a contract!
• If	you	must	implement	ALL	the methods
• All	fields	are	final (cannot	be	changed)

public interface ICar {

boolean isCar = true;

int getNumWheels();
}

BigRig

class BigRig implements ICar {
int getNumWheels() {

return 18;

}
}

Lab#6-1: Creating Interfaces

Let's create the Refrigerator class

Let’s Make it inherits from RemoteControl

Let's use it as like the Television class in
RemoteControlTest.

Abstract class

Controlling Inheritance – Enforcing

Inheritance can be forced by using the
abstract keyword

A class with at least one abstract method
must be declared abstract

public abstract class SomeOtherClass {
public int aMethod() { … }
public abstract void otherMethod();

}

The abstract keyword applies to
both methods and classes

public abstract class ElectricProduct {
public boolean onOff = false;

public abstract void turnOn();

public abstract void turnOff();

public void printInfo() {
System.out.println(onOff);

}
}

An abstract method must be
overrided by a sub-class

public class Television extends ElectricProduct {

public void turnOn() {
onOff = true;

}
public void turnOff() {

onOff = false;
}

}

An abstract class must be extended,
cannot be used to create objects

public class RemoteControlTest {
public static void main(String[] args) {

ElectricProduct ep = new ElectricProduct ();
ep.turnOn();
ep.printInfo();

}
}

This	is	impossible!

An abstract class must be extended,
cannot be used to create objects

public class RemoteControlTest {
public static void main(String[] args) {

ElectricProduct ep = new Television();
ep.turnOn();

ep.printInfo();
}

}

Possible Inheritance

A interface can inherit from B interface

A class can inherit from B and C
interfaces

Lab#6-2: Creating the following
inheritance
1. Phone interface has the sendCall() method
2. MobilePhone interface inherits from PhoneInterface
3. MobilePhone interface has the sendSMS() method
4. Camera interface has the takePicture() method
5. PDA abstract class has playMusic() method
6. SmartPhone class inherits from PDA, MobilePhone,

and Camara

(Each method is just a test, printing its own name)

