
Open Group Standard

FACE™ Technical Standard, Edition 3.0

You have a choice: you can either create your own future, or you can become the victim of a future
that someone else creates for you. By seizing the transformation opportunities, you are seizing the
opportunity to create your own future.

Vice Admiral (ret.) Arthur K. Cebrowski

NAVAIR Public Release 2017-814

Distribution Statement A –“Approved for public release; distribution is unlimited”

ii Open Group Standard (2017)

© 2017 The Open Group LLC for the benefit of the FACE Consortium Members. All rights reserved.

The Open Group hereby authorizes you to use this document for any purpose, PROVIDED THAT any copy of this document, or any

part thereof, which you make shall retain all copyright and other proprietary notices contained herein.

This document may contain other proprietary notices and copyright information.

Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any patent

or trademark of The Open Group or any third party. Except as expressly provided above, nothing contained herein shall be construed
as conferring any license or right under any copyright of The Open Group.

Note that any product, process, or technology in this document may be the subject of other intellectual property rights reserved by The

Open Group, and may not be licensed hereunder.

This document is provided “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

Any publication of The Open Group may include technical inaccuracies or typographical errors. Changes may be periodically made to

these publications; these changes will be incorporated in new editions of these publications. The Open Group may make
improvements and/or changes in the products and/or the programs described in these publications at any time without notice.

Should any viewer of this document respond with information including feedback data, such as questions, comments, suggestions, or

the like regarding the content of this document, such information shall be deemed to be non-confidential and The Open Group shall

have no obligation of any kind with respect to such information and shall be free to reproduce, use, disclose, and distribute the

information to others without limitation. Further, The Open Group shall be free to use any ideas, concepts, know-how, or techniques

contained in such information for any purpose whatsoever including but not limited to developing, manufacturing, and marketing
products incorporating such information.

If you did not obtain this copy through The Open Group, it may not be the latest version. For your convenience, the latest version of

this publication may be downloaded at www.opengroup.org/bookstore.

Open Group Standard

FACE™ (Future Airborne Capability Environment) Technical Standard, Edition 3.0

ISBN: 1-947754-04-1

Document Number: C17C

Published by The Open Group, November 2017.

Comments relating to the material contained in this document may be submitted to:

The Open Group, 8 New England Executive Park, Burlington, MA 01803, United States

or by electronic mail to:

ogface-admin@opengroup.org

http://www.opengroup.org/bookstore
mailto:ogface-admin@opengroup.org

FACE™ Technical Standard, Edition 3.0 iii

Contents

1 Introduction ... 1

1.1 Objectives ... 1
1.2 Overview ... 1
1.3 Background ... 1
1.4 Technical Approach .. 2
1.5 Conformance ... 2
1.6 Requirements Terminology .. 3

2 Architectural Overview ... 4

2.1 FACE Architectural Segments .. 4
2.1.1 Operating System Segment .. 5
2.1.2 Input/Output Services Segment ... 5
2.1.3 Platform-Specific Services Segment .. 6
2.1.4 Transport Services Segment ... 6
2.1.5 Portable Components Segment .. 6

2.2 FACE Standardized Interfaces .. 6
2.2.1 Operating System Segment Interface 6
2.2.2 Input/Output Services Interface ... 7
2.2.3 Transport Services Interface .. 7
2.2.4 Component-Oriented Support Interfaces 7

2.3 FACE Data Architecture ... 7
2.3.1 FACE Data Architecture Overview ... 7
2.3.2 FACE Data Model Language ... 8
2.3.3 Data Architecture Governance ... 8

2.4 Reference Architecture Segment Example ... 8
2.5 Programming Language Run-Times ... 10
2.6 Component Frameworks ... 10
2.7 Operating System Segment Profiles ... 11
2.8 Unit of Conformance and Unit of Portability 12

2.8.1 Unit of Conformance Applicable Requirements Map 12

3 FACE Reference Architecture Requirements ... 15

3.1 Operating System Segment ... 16
3.1.1 Operating System Segment Requirements 16
3.1.2 OSS UoC Life Cycle Management Services Interface

Requirements ... 21
3.1.3 OSS Health Monitoring and Fault Management 21

3.2 Operating System Segment Interface.. 23
3.2.1 Operating System Interface .. 25
3.2.2 Operating System HMFM Interface Requirements 30
3.2.3 Programming Language Run-Time 31
3.2.4 Component Framework Interfaces ... 43

iv Open Group Standard (2017)

3.2.5 Configuration Services ... 44
3.3 Device Drivers .. 45
3.4 I/O Services Segment .. 45

3.4.1 I/O Services Segment Requirements 46
3.4.2 I/O Service Management Capability Requirements 47
3.4.3 I/O Data Movement Capability Requirements 47
3.4.4 I/O Service Requirements .. 47

3.5 I/O Services Interface ... 48
3.5.1 I/O Services Interface Requirements 48

3.6 Platform-Specific Services Segment... 49
3.6.1 Platform-Specific Services Segment Requirements 50
3.6.2 Platform-Specific Device Services .. 53
3.6.3 Platform-Specific Common Services 54
3.6.4 Platform-Specific Graphics Services 57

3.7 Transport Services Segment ... 57
3.7.1 Introduction .. 57
3.7.2 Transport Services Segment Requirements 61
3.7.3 Transport Service Capability ... 62
3.7.4 Transport Services Segment Distribution Capability

Requirements ... 62
3.7.5 Transport Services Segment Configuration Capability

Requirements ... 63
3.7.6 Type Abstraction Capability Requirements 66
3.7.7 QoS Management Capability Requirements 68
3.7.8 Message Association Capability Requirements 68
3.7.9 Data Transformation Capability Requirements 69
3.7.10 Messaging Pattern Capability Requirements 70
3.7.11 Transport Protocol Module Capabilities Requirements 71
3.7.12 Data Store Support Capability Requirements 72
3.7.13 Component State Persistence Capability Requirements 73
3.7.14 Framework Support Capability Requirements 73

3.8 Transport Services Interfaces .. 76
3.8.1 Introduction .. 76
3.8.2 TS Interface Description .. 77
3.8.3 The Component State Persistence Interface Description 78
3.8.4 Transport Services Segment Inter-Segment Interface

Requirements ... 78
3.8.5 Transport Services Segment Inter-Segment Message

Parameter Data Requirements .. 79
3.8.6 Transport Services Segment FACE Data Architecture

Requirements ... 81
3.9 Data Architecture .. 82

3.9.1 Data Model Language Overview ... 82
3.9.2 Data Model Language Bindings .. 84
3.9.3 Definitions .. 85
3.9.4 Data Architecture Requirements .. 86

3.10 Portable Components Segment ... 87
3.10.1 Portable Components Segment Requirements 88

3.11 Unit of Conformance .. 91

FACE™ Technical Standard, Edition 3.0 v

3.11.1 Unit of Conformance Instantiation .. 91
3.11.2 Unit of Conformance Communications 91
3.11.3 Injectable Interface ... 92
3.11.4 Unit of Conformance Requirements 94

3.12 Graphics Services ... 95
3.12.1 Graphics Portability Considerations 95
3.12.2 Relationship to FACE Reference Architecture 96
3.12.3 PSSS Graphics ... 96
3.12.4 Graphics Services ... 96
3.12.5 Graphics Rendering Services ... 103
3.12.6 Graphics Display Management Services 103
3.12.7 OSS Requirements for Graphics Services............................ 105
3.12.8 PCS Requirements for Graphics Services 105
3.12.9 PSSS Requirements for Graphics Services 107

3.13 Life Cycle Management Services ... 109
3.13.1 Introduction .. 109
3.13.2 Initializable Capability Requirements 110
3.13.3 Configurable Capability Requirements 111
3.13.4 Connectable Capability Requirements 111
3.13.5 Stateful Capability Requirements .. 111

3.14 IDL to Programming Language Mappings 112
3.14.1 Exceptions .. 112
3.14.2 Template Modules ... 112
3.14.3 Constants .. 112
3.14.4 Constant Expressions ... 113
3.14.5 Preprocessor Directives.. 113
3.14.6 Wide Characters and Wide Strings 113
3.14.7 IDL to C Mapping .. 113
3.14.8 IDL to C++ Mapping ... 128
3.14.9 IDL to Ada Mapping .. 140
3.14.10 IDL to Java Mapping ... 150

4 Security ... 161

4.1 Scope ... 161
4.2 Guiding Concepts ... 161

4.2.1 Isolation of Security Functions .. 162
4.2.2 Security Transformations ... 162
4.2.3 Security Guidance and Design Constraints 162

5 Safety Considerations ... 164

A OSS Profile Details ... 165

A.1 OSS Profiles for the POSIX Interface .. 165
A.2 POSIX API Rules ... 206
A.3 POSIX Enumeration Rules ... 207
A.4 Internet Networking Standards ... 214
A.5 Obsolete or Deprecated POSIX APIs ... 215
A.6 ARINC 653 Inter-Partition Capabilities ... 215

vi Open Group Standard (2017)

B FACE API Common Elements ... 216

B.1 Introduction ... 216
B.2 FACE API Common Elements Type Definitions 216

C I/O Services Interface .. 218

C.1 Introduction ... 218
C.2 Common Declarations .. 218

C.2.1 Initialize(I/O) Function .. 222
C.2.2 Open_Connection(I/O) Function ... 223
C.2.3 Close_Connection(I/O) Function ... 224
C.2.4 Read(I/O) Function .. 225
C.2.5 Write(I/O) Function ... 226
C.2.6 Configure_Connection_Parameters(I/O) Function 227
C.2.7 Get_Connection_Configuration(I/O) Function 228
C.2.8 Configure_Bus_Parameters(I/O) Function 229
C.2.9 Get_Bus_Configuration(I/O) Function 230
C.2.10 Get_Connection_Status(I/O) Function 231
C.2.11 Get_Bus_Status(I/O) Function ... 232
C.2.12 Register_Notification_Event(I/O) Function......................... 233
C.2.13 Unregister_Notification_Event(I/O) Function 234

C.3 Supported I/O Bus Architecture Declarations 234
C.3.1 Generic I/O Service Declarations .. 234
C.3.2 Analog I/O Service Declarations ... 235
C.3.3 ARINC 429 I/O Service Declarations 236
C.3.4 Discrete I/O Service Declarations .. 237
C.3.5 High Precision Synchro I/O Service Declarations 238
C.3.6 I2C I/O Service Declarations ... 239
C.3.7 Perform_Combined_Commands(I2C) Function 240
C.3.8 MIL-STD-1553 I/O Service Declarations 241
C.3.9 Serial I/O Service Declarations .. 243
C.3.10 Synchro I/O Service Declarations .. 244

C.4 Extending I/O Bus Architecture Declarations 245

D Life Cycle Management Services Interface .. 246

D.1 Introduction ... 246
D.2 Initializable Capability Interface... 246

D.2.1 Initialize(LCM:: Initializable) .. 246
D.2.2 Finalize(LCM:: Initializable) ... 247

D.3 Configurable Capability Interface... 248
D.3.1 Configure(LCM::Configurable) ... 248

D.4 Connectable Capability Interface .. 249
D.4.1 Framework_Connect(LCM::Connectable) 249
D.4.2 Framework_Disconnect(LCM::Connectable) 250

D.5 Stateful Capability Interface ... 251
D.5.1 Query_State(LCM::Stateful) .. 251
D.5.2 Request_State_Transition(LCM::Stateful) 251

D.6 Complete Declarations .. 252

FACE™ Technical Standard, Edition 3.0 vii

E Transport Services Interfaces .. 254

E.1 Introduction ... 254
E.2 Data Types .. 254

E.2.1 TSS Common Data Types.. 254
E.3 TSS Inter-Segment Interfaces ... 255

E.3.1 Type-Specific Base Interface Specification 255
E.3.2 Type-SpecificTyped Interface Specification........................ 259
E.3.3 Serialization Interface Specification 263
E.3.4 Type-Specific Extended Typed Interface Specification 266
E.3.5 Component State Persistence Interface Specification 270

E.4 TSS Intra-Segment Interfaces ... 276
E.4.1 Type Abstraction Interface Specification............................. 276
E.4.2 Transport Protocol Module (TPM) Interface

Specification .. 277

F FACE OSS HMFM Interfaces .. 293

F.1 Introduction ... 293
F.2 HMFM Services API and Message Definitions 293

F.2.1 Initialize(HMFM) Function ... 294
F.2.2 Report_Application_Message(HMFM) Function 295
F.2.3 Create_Fault_Handler(HMFM) Function 295
F.2.4 Get_Fault_Status(HMFM) Function 296
F.2.5 Raise_Application_Fault(HMFM) Function 297

G FACE Configuration Interface .. 298

G.1 Introduction ... 298
G.2 Configuration Services API .. 298

G.2.1 Initialize(CONFIG) Function ... 301
G.2.2 Open(CONFIG) Function .. 301
G.2.3 Get_Size(CONFIG) Function .. 302
G.2.4 Read(CONFIG) Function ... 303
G.2.5 Seek(CONFIG) Function ... 304
G.2.6 Close(CONFIG) Function .. 305

H Graphics .. 307

H.1 Introduction ... 307
H.2 Graphics – A661_Conformance.xsd ... 307
H.3 Graphics – DisplayManagement.xsd .. 310

H.3.1 UserApplication ... 312
H.3.2 Window .. 312
H.3.3 Screen ... 312
H.3.4 pixelSize ... 313
H.3.5 physicalDimensions ... 313
H.3.6 Layout .. 313
H.3.7 ExternalSource ... 313
H.3.8 Properties ... 313

I Injectable Interface .. 314

viii Open Group Standard (2017)

I.1 Introduction ... 314
I.2 FACE_Injectable Interface Specification ... 314

J Data Model Language ... 316

J.1 Introduction ... 316
J.2 Language Description ... 316

J.2.1 Meta-Package: face .. 316
J.2.2 Meta-Package: face.datamodel .. 317
J.2.3 Meta-Package: face.datamodel.conceptual 319
J.2.4 Meta-Package: face.datamodel.logical................................. 327
J.2.5 Meta-Package: face.datamodel.platform 350
J.2.6 Meta-Package: face.uop ... 367
J.2.7 Meta-Package: face.integration .. 379
J.2.8 Meta-Package: face.traceability ... 385

J.3 Query Specification Grammar .. 388
J.3.1 Data Architecture Query Grammar Definition 388

J.4 Data Architecture Template Specification Grammar........................ 396
J.4.1 Data Architecture Template Grammar Definition 396

J.5 EMOF Metamodel .. 401
J.6 Object Constraint Language Constraints .. 420

J.6.1 OCL Constraint Helper Methods ... 420
J.6.2 OCL Constraints for face Package 421
J.6.3 OCL Constraints for face::datamodel Package 422
J.6.4 OCL Constraints for face::datamodel::conceptual

Package .. 422
J.6.5 OCL Constraints for face::datamodel::logical Package 431
J.6.6 OCL Constraints for face::datamodel::platform Package 440
J.6.7 OCL Constraints for face::uop Package 450
J.6.8 OCL Constraints for face::integration Package 452
J.6.9 OCL Constraints for face::traceability Package 456

J.7 Conditional OCL Constraints ... 456
J.7.1 Single Observable Constraint ... 456
J.7.2 Entity Uniqueness Constraint ... 457

J.8 Platform Data Model to IDL Bindings ... 457

K Supporting Constructs for IDL to Programming Language Mappings 492

K.1 C Programming Language .. 492
K.1.1 Basic Type Mapping .. 492
K.1.2 FACE_interface_return Specification 492
K.1.3 FACE_sequence Specification ... 492
K.1.4 FACE_string Specification .. 497
K.1.5 FACE_fixed Specification ... 503

K.2 C++ Programming Language.. 510
K.2.1 Basic Type Mapping .. 510
K.2.2 FACE::Sequence Specification .. 510
K.2.3 FACE::String Specification ... 514
K.2.4 FACE::Fixed Specification .. 517

K.3 Ada Programming Language .. 521

FACE™ Technical Standard, Edition 3.0 ix

K.3.1 Sequence Packages .. 521
K.4 Java Programming Language .. 526

K.4.1 us.opengroup.FACE.Holder<T> Specification 526
K.4.2 us.opengroup.FACE.BAD_PARAM Specification 526
K.4.3 us.opengroup.FACE.DATA_CONVERSION

Specification .. 527

L Glossary .. 528

M Acronyms .. 535

x Open Group Standard (2017)

Table of Figures

Figure 1: FACE Architectural Segments .. 5
Figure 2: Architectural Segments Example .. 9
Figure 3: FACE OSS Profile Diagram ... 12
Figure 4: FACE Reference Architecture .. 15
Figure 5: Fault Management Cycle State Machine .. 22
Figure 6: Operating System Segment Interfaces .. 24
Figure 7: Portability Distinctions ... 32
Figure 8: I/O Services Related to PSSS and IOSS UoCs ... 45
Figure 9: I/O Connections Between PSSS UoCs and I/O Devices .. 46
Figure 10: Notional Platform-Specific Services Segment .. 50
Figure 11: DPM Example ... 55
Figure 12: Streaming Media Services Notional Example .. 56
Figure 13: Transport Services Segment Capabilities ... 58
Figure 14: TSS Configuration Data Element Relationships ... 65
Figure 15: Type Abstraction and Interfaces Examples .. 67
Figure 16: PCS UoC as a Framework Component ... 74
Figure 17: PSSS UoC as a Framework Component ... 75
Figure 18: TSS Inter-Segment Interface Data Parameters ... 80
Figure 19: Data Model Language ... 83
Figure 20: Data Model Language Bindings ... 84
Figure 21: Data Model Language Binding Specification ... 85
Figure 22: Example PCS Inter-UoC and Intra-UoC Communications .. 92
Figure 23: Valid UoC Packaging ... 95
Figure 24: Graphics Services UoCs in the FACE Reference Architecture Context 96
Figure 25: ARINC 661 Graphics Services Relationships .. 98
Figure 26: OpenGL Graphics Services UoC .. 102
Figure 27: Graphics Services Software Component Relationships .. 104
Figure 28: FACE Metamodel “face” Package .. 316
Figure 29: FACE Metamodel “face.datamodel” Package .. 317
Figure 30: FACE Metamodel “face.datamodel.conceptual” Package .. 319
Figure 31: FACE Metamodel “face.datamodel.conceptual” Package: Participant Path 320
Figure 32: FACE Metamodel “face.datamodel.conceptual” Package: Views 320
Figure 33: FACE Metamodel “face.datamodel.logical” Package .. 327
Figure 34: FACE Metamodel “face.datamodel.logical” Package: Logical Basis 328
Figure 35: FACE Metamodel “face.datamodel.logical” Package: Logical Value Types 328
Figure 36: FACE Metamodel “face.datamodel.logical” Package: Measurement Constraints ... 329
Figure 37: FACE Metamodel “face.datamodel.logical” Package: Measurement Conversion ... 329
Figure 38: FACE Metamodel “face.datamodel.logical” Package: Participant Path 330
Figure 39: FACE Metamodel “face.datamodel.logical” Package: Views 330
Figure 40: FACE Metamodel “face.datamodel.platform” Package ... 350
Figure 41: FACE Metamodel “face.datamodel.platform” Package: Platform Value Types 350
Figure 42: FACE Metamodel “face.datamodel.platform” Package: Participant Path 351

FACE™ Technical Standard, Edition 3.0 xi

Figure 43: FACE Metamodel “face.datamodel.platform” Package: Views 351
Figure 44: FACE Metamodel “face.uop” Package ... 367
Figure 45: FACE Metamodel “face.uop” Package: UoP Connections....................................... 368
Figure 46: FACE Metamodel “face.uop” Package: UoP Characterization 368
Figure 47: FACE Metamodel “face.uop” Package: Abstract UoP ... 369
Figure 48: FACE Metamodel “face.uop” Package: Aliases ... 369
Figure 49: FACE Metamodel “face.integration” Package ... 379
Figure 50: FACE Metamodel “face.integration” Package: Transport .. 379
Figure 51: FACE Metamodel “face.traceability” Package ... 385
Figure 52: FACE Metamodel “face.traceability” Package: Traceable Elements 386

xii Open Group Standard (2017)

Table of Tables

Table 1: Sections Applicable to PCS UoCs ... 12
Table 2: Sections Applicable to TSS UoCs .. 13
Table 3: Sections Applicable to PSSS UoCs .. 13
Table 4: Sections Applicable to IOSS UoCs .. 14
Table 5: Sections Applicable to OSS UoCs ... 14
Table 6: I/O Connection Analogies .. 48
Table 7: Sets of TSS Capabilities that Form a TSS UoC ... 60
Table 8: FACE Interfaces Requiring UoC to Provide Injectable Interface 93
Table 9: Graphics Services ... 97
Table 10: ARINC 661-5 Widget Subset ... 98
Table 11: ARINC 739A Functional Behavior Specifications .. 102
Table 12: IDL Basic Type C Mapping ... 117
Table 13: IDL Operation Parameter C Mapping .. 124
Table 14: IDL Basic Type C++ Mapping... 131
Table 15: Identifier Mapping Example .. 141
Table 16: IDL Scope Ada Mapping ... 141
Table 17: IDL Basic Type Ada Mapping ... 143
Table 18: Summary of IDL to Java Mapping ... 150
Table 19: IDL Basic Type Java Mapping ... 153
Table 20: FACE OSS Profile APIs .. 165
Table 21: POSIX Thread Detach State Values ... 207
Table 22: POSIX Thread Inherit Scheduler Values ... 208
Table 23: POSIX Thread Scheduler Policy Values .. 208
Table 24: POSIX Thread Scope Values ... 208
Table 25: POSIX Mutex Scope Values .. 208
Table 26: POSIX Mutex Type Attribute Values .. 209
Table 27: POSIX Mutex Protocol Values .. 209
Table 28: POSIX Mutex Robustness Values .. 209
Table 29: POSIX Clock and Timer Source Values and FACE Profiles 210
Table 30: POSIX Set Socket (Socket-Level) Option Values ... 210
Table 31: POSIX Set Socket (Use over Internet Protocols) Option Values 211
Table 32: POSIX Set Socket (Use over IPv6 Internet Protocols) Option Values 211
Table 33: POSIX sigaction() Flags .. 212
Table 34: POSIX Spawn Attribute Flags ... 212
Table 35: POSIX Trace Attribute Flags ... 213
Table 36: Basic Internetwork Capabilities ... 214
Table 37: TCP Capabilities .. 215
Table 38: IPv6 Capabilities .. 215
Table 39: IPv4/IPv6 Transition Mechanisms ... 215
Table 40: face.ArchitectureModel Relationships ... 317
Table 41: face.Element Attributes .. 317
Table 42: face.datamodel.DataModel Relationships .. 318
Table 43: face.datamodel.Element Relationships... 318

FACE™ Technical Standard, Edition 3.0 xiii

Table 44: face.datamodel.ConceptualDataModel Relationships .. 318
Table 45: face.datamodel.LogicalDataModel Relationships .. 318
Table 46: face.datamodel.PlatformDataModel Relationships .. 319
Table 47: face.datamodel.conceptual.Element Relationships .. 320
Table 48: face.datamodel.conceptual.ComposableElement Relationships 321
Table 49: face.datamodel.conceptual.BasisElement Relationships .. 321
Table 50: face.datamodel.conceptual.BasisEntity Relationships ... 321
Table 51: face.datamodel.conceptual.Domain Relationships ... 322
Table 52: face.datamodel.conceptual.Observable Relationships ... 322
Table 53: face.datamodel.conceptual.Characteristic Attributes ... 322
Table 54: face.datamodel.conceptual.Characteristic Relationships ... 322
Table 55: face.datamodel.conceptual.Entity Relationships .. 323
Table 56: face.datamodel.conceptual.Composition Relationships ... 323
Table 57: face.datamodel.conceptual.Association Relationships ... 323
Table 58: face.datamodel.conceptual.Participant Attributes .. 324
Table 59: face.datamodel.conceptual.Participant Relationships .. 324
Table 60: face.datamodel.conceptual.PathNode Relationships .. 324
Table 61: face.datamodel.conceptual.ParticipantPathNode Relationships................................. 325
Table 62: face.datamodel.conceptual.CharacteristicPathNode Relationships 325
Table 63: face.datamodel.conceptual.View Relationships ... 325
Table 64: face.datamodel.conceptual.Query Attributes ... 325
Table 65: face.datamodel.conceptual.Query Relationships .. 326
Table 66: face.datamodel.conceptual.CompositeQuery Attributes .. 326
Table 67: face.datamodel.conceptual.CompositeQuery Relationships 326
Table 68: face.datamodel.conceptual.QueryComposition Attributes ... 326
Table 69: face.datamodel.conceptual.QueryComposition Relationships 326
Table 70: face.datamodel.logical.Element Relationships ... 330
Table 71: face.datamodel.logical.ConvertibleElement Relationships .. 331
Table 72: face.datamodel.logical.Unit Relationships ... 331
Table 73: face.datamodel.logical.Conversion Relationships .. 331
Table 74: face.datamodel.logical.AffineConversion Attributes ... 332
Table 75: face.datamodel.logical.AffineConversion Relationships ... 332
Table 76: face.datamodel.logical.ValueType Relationships .. 332
Table 77: face.datamodel.logical.String Relationships .. 332
Table 78: face.datamodel.logical.Character Relationships .. 332
Table 79: face.datamodel.logical.Boolean Relationships ... 333
Table 80: face.datamodel.logical.Numeric Relationships .. 333
Table 81: face.datamodel.logical.Integer Relationships ... 333
Table 82: face.datamodel.logical.Natural Relationships .. 333
Table 83: face.datamodel.logical.Real Relationships ... 334
Table 84: face.datamodel.logical.NonNegativeReal Relationships ... 334
Table 85: face.datamodel.logical.Enumerated Attributes .. 334
Table 86: face.datamodel.logical.Enumerated Relationships ... 334
Table 87: face.datamodel.logical.EnumerationLabel Relationships .. 335
Table 88: face.datamodel.logical.CoordinateSystem Attributes .. 335
Table 89: face.datamodel.logical.CoordinateSystem Relationships... 335
Table 90: face.datamodel.logical.CoordinateSystemAxis Relationships 335
Table 91: face.datamodel.logical.AbstractMeasurementSystem Relationships 336
Table 92: face.datamodel.logical.StandardMeasurementSystem Attributes 336

xiv Open Group Standard (2017)

Table 93: face.datamodel.logical.StandardMeasurementSystem Relationships 336
Table 94: face.datamodel.logical.Landmark Relationships .. 336
Table 95: face.datamodel.logical.MeasurementSystem Attributes .. 337
Table 96: face.datamodel.logical.MeasurementSystem Relationships....................................... 337
Table 97: face.datamodel.logical.MeasurementSystemAxis Relationships 337
Table 98: face.datamodel.logical.ReferencePoint Relationships ... 337
Table 99: face.datamodel.logical.ReferencePointPart Attributes ... 338
Table 100: face.datamodel.logical.ReferencePointPart Relationships 338
Table 101: face.datamodel.logical.ValueTypeUnit Relationships ... 338
Table 102: face.datamodel.logical.Constraint Relationships ... 339
Table 103: face.datamodel.logical.IntegerConstraint Relationships .. 339
Table 104: face.datamodel.logical.IntegerRangeConstraint Attributes 339
Table 105: face.datamodel.logical.IntegerRangeConstraint Relationships 339
Table 106: face.datamodel.logical.RealConstraint Relationships .. 339
Table 107: face.datamodel.logical.RealRangeConstraint Attributes .. 340
Table 108: face.datamodel.logical.RealRangeConstraint Relationships 340
Table 109: face.datamodel.logical.StringConstraint Relationships .. 340
Table 110: face.datamodel.logical.RegularExpressionConstraint Attributes 340
Table 111: face.datamodel.logical.RegularExpressionConstraint Relationships 341
Table 112: face.datamodel.logical.FixedLengthStringConstraint Attributes 341
Table 113: face.datamodel.logical.FixedLengthStringConstraint Relationships 341
Table 114: face.datamodel.logical.EnumerationConstraint Relationships 341
Table 115: face.datamodel.logical.MeasurementConstraint Attributes 342
Table 116: face.datamodel.logical.MeasurementSystemConversion Attributes 342
Table 117: face.datamodel.logical.MeasurementSystemConversion Relationships 342
Table 118: face.datamodel.logical.Measurement Relationships .. 343
Table 119: face.datamodel.logical.MeasurementAxis Relationships ... 343
Table 120: face.datamodel.logical.MeasurementAttribute Attributes .. 343
Table 121: face.datamodel.logical.MeasurementAttribute Relationships 344
Table 122: face.datamodel.logical.MeasurementConversion Attributes 344
Table 123: face.datamodel.logical.MeasurementConversion Relationships 344
Table 124: face.datamodel.logical.ComposableElement Relationships 344
Table 125: face.datamodel.logical.Characteristic Attributes .. 345
Table 126: face.datamodel.logical.Characteristic Relationships .. 345
Table 127: face.datamodel.logical.Entity Relationships .. 345
Table 128: face.datamodel.logical.Composition Relationships ... 346
Table 129: face.datamodel.logical.Association Relationships ... 346
Table 130: face.datamodel.logical.Participant Attributes .. 347
Table 131: face.datamodel.logical.Participant Relationships ... 347
Table 132: face.datamodel.logical.PathNode Relationships .. 347
Table 133: face.datamodel.logical.ParticipantPathNode Relationships 347
Table 134: face.datamodel.logical.CharacteristicPathNode Relationships 348
Table 135: face.datamodel.logical.View Relationships ... 348
Table 136: face.datamodel.logical.Query Attributes .. 348
Table 137: face.datamodel.logical.Query Relationships .. 348
Table 138: face.datamodel.logical.CompositeQuery Attributes .. 349
Table 139: face.datamodel.logical.CompositeQuery Relationships ... 349
Table 140: face.datamodel.logical.QueryComposition Attributes ... 349
Table 141: face.datamodel.logical.QueryComposition Relationships 349

FACE™ Technical Standard, Edition 3.0 xv

Table 142: face.datamodel.platform.Element Relationships .. 351
Table 143: face.datamodel.platform.ComposableElement Relationships 352
Table 144: face.datamodel.platform.PhysicalDataType Relationships 352
Table 145: face.datamodel.platform.IDLType Relationships .. 352
Table 146: face.datamodel.platform.IDLPrimitive Relationships .. 353
Table 147: face.datamodel.platform.Boolean Relationships .. 353
Table 148: face.datamodel.platform.Octet Relationships .. 353
Table 149: face.datamodel.platform.CharType Relationships ... 353
Table 150: face.datamodel.platform.Char Relationships ... 354
Table 151: face.datamodel.platform.StringType Relationships ... 354
Table 152: face.datamodel.platform.IDLUnboundedString Relationships 354
Table 153: face.datamodel.platform.String Relationships ... 354
Table 154: face.datamodel.platform.IDLBoundedString Attributes .. 355
Table 155: face.datamodel.platform.IDLBoundedString Relationships 355
Table 156: face.datamodel.platform.BoundedString Relationships ... 355
Table 157: face.datamodel.platform.IDLCharacterArray Attributes ... 355
Table 158: face.datamodel.platform.IDLCharacterArray Relationships 355
Table 159: face.datamodel.platform.CharArray Relationships .. 356
Table 160: face.datamodel.platform.Enumeration Relationships .. 356
Table 161: face.datamodel.platform.IDLNumber Relationships ... 356
Table 162: face.datamodel.platform.IDLInteger Relationships ... 356
Table 163: face.datamodel.platform.Short Relationships .. 357
Table 164: face.datamodel.platform.Long Relationships ... 357
Table 165: face.datamodel.platform.LongLong Relationships .. 357
Table 166: face.datamodel.platform.IDLReal Relationships ... 357
Table 167: face.datamodel.platform.Double Relationships ... 358
Table 168: face.datamodel.platform.LongDouble Relationships ... 358
Table 169: face.datamodel.platform.Float Relationships ... 358
Table 170: face.datamodel.platform.Fixed Attributes .. 359
Table 171: face.datamodel.platform.Fixed Relationships .. 359
Table 172: face.datamodel.platform.IDLUnsignedInteger Relationships 359
Table 173: face.datamodel.platform.UShort Relationships .. 359
Table 174: face.datamodel.platform.ULong Relationships .. 359
Table 175: face.datamodel.platform.ULongLong Relationships ... 360
Table 176: face.datamodel.platform.IDLSequence Attributes ... 360
Table 177: face.datamodel.platform.IDLSequence Relationships ... 360
Table 178: face.datamodel.platform.IDLArray Attributes ... 360
Table 179: face.datamodel.platform.IDLArray Relationships ... 360
Table 180: face.datamodel.platform.IDLStruct Relationships ... 361
Table 181: face.datamodel.platform.IDLComposition Attributes .. 361
Table 182: face.datamodel.platform.IDLComposition Relationships .. 361
Table 183: face.datamodel.platform.Characteristic Attributes ... 362
Table 184: face.datamodel.platform.Characteristic Relationships ... 362
Table 185: face.datamodel.platform.Entity Relationships ... 362
Table 186: face.datamodel.platform.Composition Attributes .. 363
Table 187: face.datamodel.platform.Composition Relationships .. 363
Table 188: face.datamodel.platform.Association Relationships .. 363
Table 189: face.datamodel.platform.Participant Attributes .. 363
Table 190: face.datamodel.platform.Participant Relationships .. 364

xvi Open Group Standard (2017)

Table 191: face.datamodel.platform.PathNode Relationships ... 364
Table 192: face.datamodel.platform.ParticipantPathNode Relationships 364
Table 193: face.datamodel.platform.CharacteristicPathNode Relationships 364
Table 194: face.datamodel.platform.View Relationships .. 365
Table 195: face.datamodel.platform.Query Attributes ... 365
Table 196: face.datamodel.platform.Query Relationships ... 365
Table 197: face.datamodel.platform.CompositeTemplate Attributes .. 366
Table 198: face.datamodel.platform.CompositeTemplate Relationships 366
Table 199: face.datamodel.platform.TemplateComposition Attributes 366
Table 200: face.datamodel.platform.TemplateComposition Relationships 366
Table 201: face.datamodel.platform.Template Attributes .. 367
Table 202: face.datamodel.platform.Template Relationships .. 367
Table 203: face.uop.ClientServerRole Literals .. 369
Table 204: face.uop.FaceProfile Literals .. 370
Table 205: face.uop.DesignAssuranceLevel Literals ... 370
Table 206: face.uop.DesignAssuranceStandard Literals .. 370
Table 207: face.uop.MessageExchangeType Literals .. 371
Table 208: face.uop.PartitionType Literals .. 371
Table 209: face.uop.ProgrammingLanguage Literals .. 371
Table 210: face.uop.SynchronizationStyle Literals .. 372
Table 211: face.uop.ThreadType Literals .. 372
Table 212: face.uop.UoPModel Relationships ... 372
Table 213: face.uop.Element Relationships ... 373
Table 214: face.uop.SupportingComponent Attributes .. 373
Table 215: face.uop.SupportingComponent Relationships .. 373
Table 216: face.uop.LanguageRunTime Relationships .. 373
Table 217: face.uop.ComponentFramework Relationships ... 373
Table 218: face.uop.AbstractUoP Relationships .. 374
Table 219: face.uop.AbstractConnection Relationships... 374
Table 220: face.uop.UnitOfPortability Attributes .. 374
Table 221: face.uop.UnitOfPortability Relationships .. 375
Table 222: face.uop.PortableComponent Relationships... 375
Table 223: face.uop.PlatformSpecificComponent Relationships ... 375
Table 224: face.uop.Thread Attributes ... 376
Table 225: face.uop.RAMMemoryRequirements Attributes ... 376
Table 226: face.uop.Connection Attributes .. 376
Table 227: face.uop.Connection Relationships .. 377
Table 228: face.uop.ClientServerConnection Attributes .. 377
Table 229: face.uop.ClientServerConnection Relationships .. 377
Table 230: face.uop.PubSubConnection Attributes ... 377
Table 231: face.uop.PubSubConnection Relationships .. 377
Table 232: face.uop.QueuingConnection Attributes .. 378
Table 233: face.uop.QueuingConnection Relationships .. 378
Table 234: face.uop.SingleInstanceMessageConnection Relationships 378
Table 235: face.uop.LifeCycleManagementPort Attributes ... 378
Table 236: face.uop.LifeCycleManagementPort Relationships ... 379
Table 237: face.integration.IntegrationModel Relationships ... 380
Table 238: face.integration.Element Relationships .. 380
Table 239: face.integration.IntegrationContext Relationships ... 380

FACE™ Technical Standard, Edition 3.0 xvii

Table 240: face.integration.TSNodeConnection Relationships ... 381
Table 241: face.integration.UoPInstance Attributes... 381
Table 242: face.integration.UoPInstance Relationships ... 381
Table 243: face.integration.UoPEndPoint Relationships ... 382
Table 244: face.integration.UoPInputEndPoint Relationships ... 382
Table 245: face.integration.UoPOutputEndPoint Relationships .. 382
Table 246: face.integration.TransportNode Relationships ... 382
Table 247: face.integration.TSNodePort Relationships ... 383
Table 248: face.integration.TSNodeInputPort Relationships ... 383
Table 249: face.integration.TSNodeOutputPort Relationships .. 383
Table 250: face.integration.ViewAggregation Relationships ... 384
Table 251: face.integration.ViewFilter Relationships .. 384
Table 252: face.integration.ViewSource Relationships ... 384
Table 253: face.integration.ViewSink Relationships ... 384
Table 254: face.integration.ViewTransformation Relationships .. 385
Table 255: face.integration.ViewTransporter Relationships .. 385
Table 256: face.integration.TransportChannel Relationships .. 385
Table 257: face.traceability.TraceabilityModel Relationships ... 386
Table 258: face.traceability.Element Relationships ... 387
Table 259: face.traceability.TraceableElement Relationships.. 387
Table 260: face.traceability.TraceabilityPoint Attributes ... 387
Table 261: face.traceability.UoPTraceabilitySet Relationships ... 387
Table 262: face.traceability.ConnectionTraceabilitySet Relationships 388

xviii Open Group Standard (2017)

Preface

Introduction

This document is the FACE™ (Future Airborne Capability Environment) Technical Standard,

Edition 3.0. This Standard is developed and maintained by The Open Group FACE™

Consortium.

Background

Today’s military aviation airborne systems typically entail a unique set of requirements and a

single vendor. This form of development has served the military aviation community well;

however, this stovepipe development process has had some undesired side-effects including long

lead times, cumbersome improvement processes, lack of hardware and software reuse between

various aircraft platforms resulting in platform-unique designs.

The advent of complex mission equipment and electronics systems has caused an increase in the

cost and schedule to integrate new hardware and software into aircraft systems. This – combined

with the extensive testing and airworthiness qualification requirements – has begun to affect the

ability of the military aviation community to deploy new capabilities across the military aviation

fleet.

The current military aviation community procurement system does not promote the processes of

hardware and software reuse across different programs. In addition, the current aviation

development community has not created sufficient standards to facilitate the reuse of software

components across the military aviation fleet. Part of the reason for this is the small military

aviation market. Another part is the difficulty in developing qualified software for aviation. An

additional problem is the inability to adopt current commercial software Common Operating

Environment (COE) standards because they do not adhere to the stringent safety requirements

developed to reduce risk and likelihood of loss of aircraft, reduced mission capability, and

ultimately loss of life.

To counter these trends, the Naval Aviation Air Combat Electronics program office (PMA-209),

Army Program Executive Office (PEO) Aviation (AVN), the Army’s Aviation and Missile

Research, Development, and Engineering Center (AMRDEC), and Air Force Research

Laboratory (AFRL), enabled by the expertise and experience of the military aviation

community’s industrial base, are adopting a new approach.

Approach

The FACE approach addresses the affordability initiatives of today’s military aviation domain.

The FACE approach is to develop a Technical Standard for a software COE designed to promote

portability and create software product lines across the military aviation domain.Several

components comprise the FACE approach to software portability and reuse:

 Business processes to adjust procurement and incentivize industry

FACE™ Technical Standard, Edition 3.0 xix

 Technical practices to promote development of reusable software components

 A software standard to promote the development of portable components between

differing avionics architectures

The FACE approach allows software-based “capabilities” to be developed as software

components that are exposed to other software components through defined interfaces. It also

provides for the reuse of software across different hardware configurations.

Ultimately, the FACE key objectives are to reduce development costs, integration costs, and

time-to-field for avionics capabilities.

FACE Artifacts

The following documents provide definition and support of the FACE technical and business

practices:

 FACE Business Guide

 FACE Technical Standard

 FACE Conformance Policy

 FACE Reference Implementation Guide

 FACE Library Policy

 FACE Contract Guide

 FACE Problem Report (PR)/Change Request (CR) Process

Additional information can be found at www.opengroup.org/face/information.

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives

through IT standards. With more than 500 member organizations, The Open Group has a diverse

membership that spans all sectors of the IT community – customers, systems and solutions

suppliers, tool vendors, integrators, and consultants, as well as academics and researchers – to:

 Capture, understand, and address current and emerging requirements, and establish

policies and share best practices

 Facilitate interoperability, develop consensus, and evolve and integrate specifications and

open source technologies

 Operate the industry’s premier certification service

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused

on development of Open Group Standards and Guides, but which also includes white papers,

technical studies, certification and testing documentation, and business titles. Full details and a

catalog are available at www.opengroup.org/bookstore.

http://www.opengroup.org/face/information
http://www.opengroup.org/
http://www.opengroup.org/bookstore

xx Open Group Standard (2017)

Readers should note that updates – in the form of Corrigenda – may apply to any publication.

This information is published at www.opengroup.org/corrigenda.

http://www.opengroup.org/corrigenda

FACE™ Technical Standard, Edition 3.0 xxi

Trademarks

ArchiMate
®
, DirecNet

®
, Making Standards Work

®
, OpenPegasus

®
, The Open Group

®
,

TOGAF
®
, UNIX

®
, UNIXWARE

®
, X/Open

®
, and the Open Brand X

®
 logo are registered

trademarks and Boundaryless Information Flow™, Build with Integrity Buy with Confidence™,

Dependability Through Assuredness™, EMMM™, FACE™, the FACE™ logo, IT4IT™, the

IT4IT™ logo, O-DEF™, O-PAS™, Open FAIR™, Open Platform 3.0™, Open Process

Automation™, Open Trusted Technology Provider™, Platform 3.0™, SOSA™, the Open O™

logo, and The Open Group Certification logo (Open O and check™) are trademarks of The Open

Group.

CORBA
®
 and OMG

®
are registered trademarks and Data-Distribution Service for Real-Time

Systems™ and DDS™ are trademarks of Object Management Group Inc. in the United States

and/or other countries.

Java
®
 is a registered trademark of Oracle and/or its affiliates.

OpenGL
®
 is a registered trademark of Silicon Graphics Inc. in the United States and/or other

countries worldwide.

POSIX
®
 is a registered trademark of the IEEE.

All other brands, company, and product names are used for identification purposes only and may

be trademarks that are the sole property of their respective owners.

xxii Open Group Standard (2017)

Acknowledgements

The Open Group gratefully acknowledges the contribution of the following people in the

development of this document:

Principal Authors

 Don Akers, Boeing

 William Antypas, NAVAIR

 Kirk Avery, Lockheed Martin, Technical Working Group (TWG) Chair

 David Bowes, NAVAIR

 Edward Burke, MITRE Corporation

 Stephanie Burns, Rockwell Collins

 Spencer Crosswy, NAVAIR

 James “Bubba” Davis, U.S. Army AMRDEC

 Joe Dusio, Rockwell Collins

 Matthew Eby, NAVAIR

 Christopher J. Edwards, U.S. Army AMRDEC

 Stuart Frerking, NAVAIR

 Stephen Fulmer, U.S. Army AMRDEC

 Jeff Hegedus, Raytheon

 Daniel Herring, CoreAVI

 Patrick Huyck, Green Hills Software

 Paul Jennings, Presagis USA, Inc.

 William Kimmel, NAVAIR, TWG Vice-Chair

 Bill Kinahan, Sikorsky Aircraft

 Marc Moody, Boeing

 Sean Mulholland, TES-SAVi

 Joseph Neal, Harris Corporation

 Marcell Padilla, NAVAIR

FACE™ Technical Standard, Edition 3.0 xxiii

 Allan Reynolds, NAVAIR

 Joel Sherrill, U.S. Army AMRDEC

 Robert Sweeney, NAVAIR

 Levi Van Oort, Rockwell Collins

 Scott Wigginton, U.S. Army AMRDEC

Additional Contributors

 Joshua Anderson, NAVAIR

 Scott Bessler, CMC Electronics

 David Bockenfeld, CMC Electronics

 Mathias Boddicker, NAVAIR

 Kevin Buesing, Objective Interface Systems

 Rafael J. Cajigas, NAVAIR

 H. Glenn Carter, U.S. Army AMRDEC

 Judy Cerenzia, The Open Group

 Paul Chen, Wind River

 Robert Daniels, NAVAIR

 Gary Gilliland, DDC-I

 Charles Stephen Kuehl, Raytheon

 Leanne May, Rockwell Collins

 Steve Mills, GoAhead

 Marbert Moore, III, NAVAIR

 Pramod Patel, Honeywell Aerospace

 Bruce Pulliam, Raytheon

 Charlie Rush, Objective Interface Systems

 Joe Schlesselman, Real Time Innovations

 Stephen Smith, NAVAIR

 Jonathan Strootman, TES-SAVi

 John Tencate, GE Aviation

 Terence Thomason, General Dynamics Mission Systems

xxiv Open Group Standard (2017)

 Scott Tompkins, U.S. Army AMRDEC

 Jason York, U.S. Army AMRDEC

With special thanks to W. Mark Vanfleet, NSA.

This Edition of the FACE Technical Standard is dedicated to Don Akers for his technical

contributions, cheerful countenance, and dedication in the face of personal adversity. He will

always be remembered by FACE Technical Working Group members.

Funding for the FACE Consortium and its work products comes from the following

organizations, which at the time of publication include:

Sponsors: Air Force Research Laboratory, Boeing, Lockheed Martin, Rockwell Collins, U.S.

Army PEO Aviation

Principals: AeroVironment Inc., BAE Systems, BELCAN, Booz Allen Hamilton, DRS Training

& Control Systems, Elbit Systems of America, GE Aviation Systems, General Dynamics, Green

Hills Software, Harris Corp., Honeywell Aerospace, IBM, Northrop Grumman, Raytheon, Sierra

Nevada Corporation, Sikorsky Aircraft, Textron Systems, U.S. Army AMRDEC, Wind River

Associates: Abaco Systems, AdaCore, Arizona State Univ., ARTEMIS Inc., Astronautics,

Avalex Technologies, Brockwell Technologies, Carnegie Mellon University-SEI, CERTON,

CMC Electronics, Cobham Aerospace Communications, CoreAVI, CS Communication &

Systems Inc., Crossfield Technology, CTSi, Curtiss-Wright Defense Solutions, DDC-I,

DornerWorks, Draper Lab, Elma Electronic Inc., Enea Software & Services Inc., ENSCO

Avionics, Esterel Technologies, Esterline AVISTA, EuroAvionics USA, Garmin International

Inc, GECO Inc., General Atomics ASI, IEE, Infinite Dimensions Integration, Inter-Coastal

Electronics, Johns Hopkins University Applied Physics Lab, Joint Tactical Networking Center,

Kaman Precision Products, KEYW Corporation, KIHOMAC, L-3 Communications, LDRA

Technology, Leidos, Lynx Software, Mercury Systems, North Atlantic Industries, OAR

Corporation, Performance Software, Physical Optics Corp., Presagis USA Inc., PrismTech,

Pyrrhus Software, Rapid Imaging Software, Real-Time Innovations, Riverside Research,

Rogerson Kratos, SAIC, Selex Galileo Inc., SimVentions, Skayl, Southwest Research Institute,

StackFrame, Technology Service Corporation, Terma North America, TES-SAVI, Thales USA

Inc., Thomas Production Company, Trideum, TTTech N.A., Univ. of Dayton Research Institute,

Vector Software Inc., Verocel, VTS Inc., Zodiac Data Systems

And Naval Air Systems Command (NAVAIR) under NAVAIR Cooperative Agreement No.

N00421-12-2-0004. The U.S. not withstanding any copyright notation thereon. The views and

conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the Naval Air Warfare Center

Aircraft Division or the U.S. Government.

FACE™ Technical Standard, Edition 3.0 xxv

Referenced Documents

Normative References

The following standards contain provisions that, through references in this FACE Technical

Standard, also constitute provisions of the FACE Technical Standard Profiles. At the time of

publication, the editions indicated were valid. All standards are subject to revision, and parties to

contracts and agreements that include FACE requirements are encouraged to investigate the

possibility of applying the most recent editions of the standards listed below.

 ANSI/ISO/IEC 8652:1995: Ada 95 Reference Manual, Language and Standard Libraries

 ANSI/TIA-232-F: Interface Between Data Terminal Equipment and Data Circuit-

Terminating Equipment Employing Serial Binary Data Interchange, October 2002

 ANSI/TIA-422-B: Electrical Characteristics of Balanced Voltage Digital Interface

Circuits, September 2005

 ARG Ravenscar Profile for High-Integrity Systems, Technical Report,

ISO/IEC/JTC1/SC22/WG9, AI-00249, 2003

 ARINC Characteristic 739-1: Multi-purpose Control and Display Unit (MCDU), June

1990

 ARINC Characteristic 739A-1: Multi-purpose Control and Display Unit (MCDU),

December 1998

 ARINC Report 661-5: Cockpit Display System Interfaces to User System, July 2013

 ARINC Report 664: Aircraft Data Network, September 2009

 ARINC Specification 429: Mark 33 Digital Information Transfer System (DITS), May

2004

 ARINC Specification 653P1-3, Avionics Application Software Standard Interface, Part 1:

Required Services, November 2010

 ARINC Specification 653P1-4, Avionics Application Software Standard Interface, Part 1:

Required Services, August 2015

 ARINC Specification 653P2-3, Avionics Application Software Standard Interface, Part 2:

Extended Services, August 2015

 Department of Defense: IPv6 Standard Profiles for IPv6-Capable Products, Version 5.0,

July 2010

 Department of Defense: Joint Technical Architecture, Volume I, Version 6, October 2003

 EIA/TIA-485-A: Electrical Characteristics of Generators and Receivers for Use in

Balanced Digital Multipoint Systems, March 2003

xxvi Open Group Standard (2017)

 Extensible Markup Language (XML), Version 1.0 (Fifth Edition), November 26, 2008,

W3C (www.w3.org/XML)

 Extensible Markup Language (XML) Schema Definition (XSD), Version 1.0, 2004, W3C

(www.w3.org/XML)

 Future Airborne Capability Environment Shared Data Model (SDM) Governance Plan,

Edition 2.1, October 2015

 IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic, August 2008

 IEEE Std 1003.1-2008: IEEE Standard for Information Technology – Portable Operating

System Interface (POSIX
®
) – Base Specifications, Issue 7, December 1, 2008

 IEEE Std 1003.13-2003: IEEE Standard for Information Technology – Standardized

Application Environment Profile (AEP) – POSIX Realtime and Embedded Application

Support, Issue 10, September 2004

 IETF RFC 0768: User Datagram Protocol, August 1980 (http://tools.ietf.org/html/rfc768)

 IETF RFC 0791: Internet Protocol (IP), September 1981 (http://tools.ietf.org/html/rfc791)

 IETF RFC 0793: Transmission Control Protocol, September 1981

(http://tools.ietf.org/html/rfc793)

 IETF RFC 1112: Host Extensions for IP Multicasting, August 1989

(http://tools.ietf.org/html/rfc1112)

 IETF RFC 2460: IPv6 Specification, December 1998 (http://tools.ietf.org/html/rfc2460)

 IETF RFC 3390: Increasing TCP’s Initial Window, October 2002

(http://tools.ietf.org/html/rfc3390)

 IETF RFC 4213: Basic Transition Mechanisms for IPv6 Hosts and Routers, October 2005

(http://tools.ietf.org/html/rfc4213)

 IETF RFC 5424: The Syslog Protocol, March 2009 (http://tools.ietf.org/html/rfc5424)

 ISO/IEC 8652:2012(E): Ada 2012 – Reference Manual, Language, and Standard Libraries

 ISO/IEC 9899:1999: Programming Languages – C

 ISO/IEC 14882:2003: Programming Languages – C++

 ISO/IEC TR 15942:2000: Information Technology – Programming Languages – Guide

for the Use of the Ada Programming Language in High Integrity Systems

 Java Platform, Enterprise Edition 7 (Java EE 7), May 2013

 Java Platform, Standard Edition 8 (Java SE 8), February 2013

 Khronos Native Platform Graphics Interface, EGL Version 1.4, December 2013

(www.khronos.org/registry/EGL/specs/eglspec.1.4.pdf)

http://www.w3.org/XML/
http://www.w3.org/XML/
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc1112
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc3390
http://tools.ietf.org/html/rfc4213
https://www.khronos.org/registry/EGL/specs/eglspec.1.4.pdf

FACE™ Technical Standard, Edition 3.0 xxvii

 MIL-STD-1553B: Aircraft Internal Time Division Command/Response Multiplex Data

Bus, United States Department of Defense, September 1978

 MIL-STD-1553B Notice 2: Digital Time Division Command/Response Multiplex Data

Bus, United States Department of Defense, September 1986

 OMG: Ada Language Mapping, Version 1.3, June 2010 (www.omg.org/spec/ADA/1.3)

 OMG: C Language Mapping Specification, Version 1.0, June 1999

(www.omg.org/spec/C/1.0)

 OMG: C++ Language Mapping for, Version 1.3, July 2012 (www.omg.org/spec/CPP/1.3)

 OMG: C++11 Language Mapping, Version 1.2, August 2015

(www.omg.org/spec/CPP11/1.2/PDF)

 OMG: IDL to Java Language Mapping, Version 1.3, January 2008

(www.omg.org/spec/I2JAV/1.3)

 OMG: Interface Definition Language, Version 4.1, May 2017

(www.omg.org/spec/IDL/4.1)

 OMG (n.d.) Meta-Object Facility, Version 2.0, January 2006

(www.omg.org/spec/MOF/2.0)

 OMG (n.d.) Object Constraint Language, Version 2.4, February 2014

(www.omg.org/spec/OCL/2.4)

 OpenGL ES Common Profile Specification, Version 2.0.25, November 2010

 OpenGL SC Safety-Critical Profile Specification, Version 1.0.1, March 2009

 OpenGL SC Safety-Critical Profile Specification, Version 2.0, April 2016

 OSGi (Open Services Gateway initiative) Service Platform, Release 6, June 2014

(www.osgi.org/developer/specifications)

Informative References

The following documents are referenced in the FACE Technical Standard:

 Department of Defense Instruction 8510.01, Risk Management Framework (RMF) for

DoD Information Technology (IT) (DIARMF), March 12, 2014

 Department of Defense Reference Architecture Description, prepared by the Office of the

DoD CIO, June 2010

 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne

Systems and Equipment, ARP 4761, 1996

 Guidelines for Development of Civil Aircraft and Systems, ARP 4754A, 2010

 Guidelines for the Use of the C Language in Critical Systems, Motor Industry Software

Reliability Association (MISRA), October 2004

http://www.omg.org/spec/ADA/1.3/
http://www.omg.org/spec/C/1.0/
http://www.omg.org/spec/CPP/1.3/
http://www.omg.org/spec/CPP11/1.2/PDF
http://www.omg.org/spec/I2JAV/1.3/
http://www.omg.org/spec/IDL/4.1/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/OCL/2.4
http://www.osgi.org/developer/specifications/

xxviii Open Group Standard (2017)

 Guidelines for the Use of the C++ language in Critical Systems, Motor Industry Software

Reliability Association (MISRA), June 2008

 ISO/IEC 12207:2008: Systems and Software Engineering – Software Lifecycle Processes

 ISO/IEC 24765:2010: Systems and Software Engineering Vocabulary

 Object Oriented Technology and Related Techniques Supplement to DO-178C and DO-

278A, DO-332, December 2011

 OMG CORBA, Version 3.1, January 2008 (www.omg.org/spec/CORBA)

 OMG: Data Distribution Service (DDS) for Real-Time Systems Specification, Version

1.2, January 2007 (www.omg.org/spec/DDS/1.2)

 Open Systems Management Plan (OSMP) Data Item Description (DID) DI-MGMT-

82099, U.S. Army AMC Aviation & Missile Command, January 11, 2017

 Software Considerations in Airborne Systems and Equipment Certification, ED-12B/DO-

178B, December 1992

 Software Considerations in Airborne Systems and Equipment Certification, ED-12C/DO-

178C, January 2012

 Software Integrity Assurance Considerations for Communication, Navigation,

Surveillance, and Air Traffic Management (CNS/ATM) Systems, DO-278A, December

2011

http://www.omg.org/spec/CORBA
http://www.omg.org/spec/DDS/1.2/

FACE™ Technical Standard, Edition 3.0 1

1 Introduction

1.1 Objectives

The FACE Technical Standard defines a Reference Architecture intended for the development of

portable software components targeted for general purpose, safety, and/or security purposes. A

more detailed explanation of the FACE Reference Architecture is found in Chapter 2.

The objectives are to:

 Define the FACE Reference Architecture for developing and verifying software

components

 Define the FACE Reference Architecture for defining interfaces allowing communication

between software components

 Enable affordability, interoperability, and time-to-field across military systems based upon

fundamental software engineering principles and practical experience

1.2 Overview

This document embodies a set of requirements and descriptions referred to as the FACE

Technical Standard. The FACE Technical Standard uses industry standards for distributed

communications, programming languages, graphics, operating systems, and other areas as

appropriate.

The FACE Technical Standard begins with an architectural overview introducing the Reference

Architecture, followed by a detailed description of each architectural segment and interface. This

document then outlines requirements of each software component of the Reference Architecture.

Finally, the appendices list the specific Application Programming Interfaces (APIs) required by

the FACE Technical Standard, the FACE Data Architecture required by the FACE Technical

Standard, as well as other applicable standards. Specific FACE terms are defined in the

Glossary.

1.3 Background

The aviation development community has a unique subset of constraints pertaining to the

development of military systems, often adhering to varying degrees of flight-safety and security

requirements. Many of these systems have advanced the state-of-the-art in software design and

implementation practices. Despite the technical advances, many software systems today result in

the tightly-coupled integration of software components without regards to portability. This lack

of focus on portability results in software components that require a specific software

architecture in order to function correctly and an inability to reuse a software capability from one

platform to another without significant software modification. A side-effect of this is vendor-

lock as only the original implementer can efficiently make software modifications.

2 Open Group Standard (2017)

1.4 Technical Approach

The FACE technical approach tackles barriers to modularity, portability, and interoperability by

defining a Reference Architecture and employing design principles to enhance software

portability. To meet the objectives of the FACE Technical Standard, several software

engineering practices have been employed focusing on the following principals:

 Use published industry standards to provide normative references, allowing the use of

existing software libraries and tools whenever possible

 Use profiles to define subsets of those standards when support of the entire standard

would lead to safety or security certification issues, or when supporting only a defined

subset would lead to a more cost effective solution; a profile can also reference a specific

version of a standard in its entirety

 Use a standardized architecture describing a conceptual breakdown of functionality and

the FACE Reference Architecture to promote the reuse of software components to share

common functionality across military systems

 Define standardized interfaces to allow software components to be moved between

systems developed by different vendors

 Use a data architecture to ensure the data communicated between the software

components is fully described to facilitate the integration on new systems

 Require that hardware abstraction be used to decouple software components from specific

hardware implementations, and device driver normalization be used to allow interfaces to

external devices to be developed independently of the computing platform device drivers

 Use a display window management strategy to incorporate common avionics user

interface standards to aid in the integration of components needing to share display areas

and input devices

This technical approach enables software components to be redeployed on other platforms to

achieve greater portability and interoperability when standardized FACE Interfaces are used.

1.5 Conformance

The FACE Consortium has established a FACE Conformance Program and defined an

associated Conformance Policy for the FACE Technical Standard. The FACE Conformance

Program provides the associated conformance criteria and processes necessary to assure Units of

Conformance (UoCs) are developed according to the FACE Technical Standard. The FACE

Conformance Program consists of Verification, Certification, and Registration.

FACE Verification is the process of determining the conformance of a UoC implementation to

the applicable FACE Technical Standard requirements. Verification is performed using the

Conformance Verification Matrix and running the Conformance Test Suite. Verification is

handled through a Verification Authority (VA).

FACE Certification is the process of applying for FACE Conformance Certification once

verification has been completed. Certification is processed through the FACE Certification

Authority (CA).

FACE™ Technical Standard, Edition 3.0 3

FACE Registration is the process of listing FACE Certified UoCs in a public listing of FACE

Certified UoCs known as the FACE Registry. The FACE Registry is accessed from the FACE

Landing Page.

Successful completion of the FACE Conformance Program leads to a FACE Conformance

Certificate and the right to use the FACE Conformance Certification Trademark.

1.6 Requirements Terminology

For the purposes of the FACE Technical Standard, the following terminology definitions apply:

can Describes a feature or behavior that is optional. The presence of this feature should

not be relied upon.

may Describes a feature or behavior that is optional. The presence of this feature should

not be relied upon.

must Describes a feature or behavior that is strongly recommended for an

implementation that conforms to this document. A software component cannot rely

on the existence of the feature or behavior.

shall Describes a feature or behavior that is mandatory for an implementation that

conforms to this document. A software component relies on the existence of the

feature or behavior.

should Describes a feature or behavior that is strongly recommended for an

implementation that conforms to this document. A software component cannot rely

on the existence of the feature or behavior.

4 Open Group Standard (2017)

2 Architectural Overview

2.1 FACE Architectural Segments

The FACE Reference Architecture is comprised of logical segments where variance occurs. The

structure created by connecting these segments together is the foundation of the FACE

Reference Architecture.

The five (5) segments of the FACE Reference Architecture are listed below and introduced in

the following subsections:

 Operating System Segment (OSS)

 Input/Output Services Segment (IOSS)

 Platform-Specific Services Segment (PSSS)

 Transport Services Segment (TSS)

 Portable Components Segment (PCS)

Figure 1 depicts a representation of the FACE Reference Architecture illustrating the OSS as the

foundation upon which the other FACE segments are built. The segments introduced in Figure 1

are defined and described in Section 2.1.1 through Section 2.1.5. This architecture is constrained

to promote separation of concerns and establish a product line approach for reusable software

capabilities.

FACE™ Technical Standard, Edition 3.0 5

FACE

Interface Hardware

(i.e., MIL-STD-1553, Ethernet)

Platform

Devices

Platform

Sensors

Platform

Displays

User Input

Devices

Platform

Radios

Other

Transports

IO

Operating System Segment

Platform-Specific Services Segment

Standardized UoP-level data products and indirect

hardware access are provided by this segment

I/O Services Segment

Standardized, but indirect hardware

 access is provided by this segment

FACE defined

interface set

FACE defined

interface set

FACE defined

interface set

Hardware

Device Drivers

Transport Services Segment

All communication, including inter-UoP communication,

is achieved through message-based transport

middleware which resides in this segment

TS

TS

Portable Components Segment

Common Services and Portable

Components reside here

Figure 1: FACE Architectural Segments

2.1.1 Operating System Segment

The OSS is where foundational system services and vendor-supplied software reside. An OSS

UoC provides and controls access to the computing platform. An OSS UoC supports the

execution of all FACE UoCs and hosts various operating system, integration, and low-level

health monitoring interfaces. An OSS UoC can also optionally provide external networking

capabilities, Programming Language Run-Times, Component Framework, Life Cycle

Management, and Configuration Services capabilities.

2.1.2 Input/Output Services Segment

The IOSS is where normalization of vendor-supplied interface hardware device drivers occurs.

IOSS UoCs provide the abstraction of the interface hardware and drivers from the PSSS UoCs.

This allows the PSSS UoCs to focus on the interface data and not the hardware and driver

specifics.

6 Open Group Standard (2017)

2.1.3 Platform-Specific Services Segment

The PSSS is comprised of sub-segments including Platform-Specific Device Services, Platform-

Specific Common Services, and Platform-Specific Graphics Services.

2.1.3.1 Platform-Specific Device Services

Platform-Specific Device Services (PSDS) are where management of data and translation

between platform-unique Interface Control Documents (ICDs) and the FACE Data Model

occurs.

2.1.3.2 Platform-Specific Common Services

Platform-Specific Common Services (PSCS) are comprised of higher-level services including

Logging Services, Device Protocol Mediation (DPM) Services, Streaming Media, Health

Monitoring and Fault Management (HMFM), and Configuration Services.

2.1.3.3 Platform-Specific Graphics Services

Platform-Specific Graphics Services (PSGS) is where presentation management occurs. PSGS

abstracts the interface specifics of Graphics Processing Units (GPU) and other graphics devices

from software components within the FACE Reference Architecture.

2.1.4 Transport Services Segment

The TSS is comprised of communication services. The TSS abstracts transport mechanisms and

data access from software components facilitating integration into disparate architectures and

platforms using different transports. TSS UoCs are responsible for data distribution between

PCS and/or PSSS UoCs. TSS capabilities include, but are not limited to, distribution and routing,

prioritization, addressability, association, abstraction, transformation, and component state

persistence of software component interface information.

2.1.5 Portable Components Segment

The PCS is comprised of software components providing capabilities and/or business logic. PCS

components are intended to remain agnostic from hardware and sensors. Additionally, these

components are not tied to any data transport or operating system implementations to meet

objectives of portability and interoperability.

2.2 FACE Standardized Interfaces

The FACE Reference Architecture defines a set of standardized interfaces providing connections

between the FACE architectural segments. The standardized interfaces within the FACE

Reference Architecture are the Operating System Segment Interface (OSS Interface), the

Input/Output Services Interface (IOS Interface), the Transport Services Interfaces, and

Component-Oriented Support Interfaces. Software references to these standardized interfaces

may be established at states such as initialization, startup, run-time, etc.

2.2.1 Operating System Segment Interface

The OSS Interface provides a standardized means for software to use the services within the

operating system and other capabilities related to the OSS. The OSS Interface is provided by an

FACE™ Technical Standard, Edition 3.0 7

OSS UoC to UoCs in other segments. This interface includes ARINC 653, POSIX, and HMFM

APIs. The OSS Interface optionally includes one or more of the following networking

capabilities: Programming Language Run-Times, Component Frameworks, Life Cycle

Management, and the Configuration Services interface.

2.2.2 Input/Output Services Interface

The IOS Interface provides a standardized means for software components to communicate with

device drivers. This interface supports several common I/O bus architectures.

2.2.3 Transport Services Interface

The Transport Services Interface provides a standardized means for software to use

communication services provided by the TSS. The Type-Specific (TS) Interface is provided by

software components within the TSS to/from software components within the PSSS and PCS.

The FACE Data Architecture governs the representation of the data traversing the Transport

Services Interface.

2.2.4 Component-Oriented Support Interfaces

Component-Oriented Support Interfaces include the Injectable Interface and the Life Cycle

Management Services Interface. These interfaces are FACE Standardized Interfaces addressing

cross-cutting concerns for component support, and thus are not depicted in the FACE Reference

Architecture.

2.2.4.1 Injectable Interface

The Injectable Interface provides a standardized means for integration software to resolve the

inherent using/providing interface dependency between software components. In order for a

software component to use an interface, it must be integrated in the same address space with at

least one software component that provides that interface. The Injectable Interface implements

the dependency injection idiom of software development.

2.2.4.2 Life Cycle Management Services Interfaces

The Life Cycle Management (LCM) Services Interfaces provide a standardized means for

software components to support behaviors that are consistent with Component Frameworks:

initialization, configuration, framework startup/teardown, and operational state transitions. The

LCM Services Interfaces are optionally provided by a software component in any of the FACE

Reference Architecture segments, and are optionally used by the system integration

implementation or by a software component in any of the FACE Reference Architecture

segments.

2.3 FACE Data Architecture

2.3.1 FACE Data Architecture Overview

The FACE Data Architecture:

 Defines the FACE Data Model Language, specified by an Essential Meta-Object Facility

(EMOF) metamodel and a set of Object Constraint Language (OCL) constraints

8 Open Group Standard (2017)

 Defines a Query and Template language to specify selection of data elements and their

presentation across key FACE Interfaces

 Defines the FACE Data Model Language binding specification describing how elements

specified in the FACE Data Model Language are mapped to data types and/or structures

for each of the supported programming languages

 Provides the FACE Shared Data Model (SDM) which allows standardized definitions to

be used across all FACE conformant data models

 Defines the rules of construction of the Unit of Portability (UoP) Supplied Model (USM)

Each PCS UoC, PSSS UoC, or TSS UoC using TS Interfaces is accompanied by a USM

consistent with the FACE SDM and defines its interfaces in terms of the FACE Data

Model Language. A Domain-Specific Data Model (DSDM) captures content relevant to a

domain of interest and can be used as a basis for USMs. DSDMs must be consistent with

the FACE SDM. For a more detailed definition of the DSDM, see Section 3.9.3.3.

2.3.2 FACE Data Model Language

The FACE Data Model Language enforces a multi-level approach to modeling entities and their

associations at the conceptual, logical, and platform levels, enabling gradual and varying degrees

of abstraction. Entities, their characteristics, and associations provide context for the

specification of views defining the data exchanges between UoPs.

The FACE Data Model Language supports the modeling of abstract UoPs to provide a

specification mechanism for procurement, or for defining elements based on the FACE

Technical Standard and used in other reference architectures. To address integration between

UoPs, the FACE Data Model Language provides elements for describing the high-level

connectivity, routing, and transformations to be embodied in an instance of transport services.

The FACE Technical Standard contains different representations of the FACE Data Model

Language: a textual listing generated from the metamodel defined in Section 3.9; and an

Extensible Markup Language (XML) Metadata Interchange (XMI) listing from an export of the

metamodel that conforms to EMOF shown in Section J.5.

2.3.3 Data Architecture Governance

The FACE SDM Governance Plan establishes the authority and operating parameters of the

FACE SDM Configuration Control Board (CCB). The FACE SDM Governance Plan manages

growth through extensions and ensures the necessary conformance of new SDM elements. The

SDM consists of basis elements and any extension(s) in the Conceptual Data Model (CDM),

Logical Data Model (LDM), and Platform Data Model (PDM). The FACE SDM Governance

Plan details a complete process, a set of rules and roles and responsibilities for the FACE SDM

CCB, suppliers, and system integrators.

2.4 Reference Architecture Segment Example

Figure 2 shows an example of the software components that could reside in each of the FACE

Architectural Segments. This is a diagram intended to clarify the purpose of the segments and

does not represent a prescriptive description of elements required for FACE alignment, nor is it

FACE™ Technical Standard, Edition 3.0 9

all-inclusive as to the potential functions that could reside in each segment. The rules for and

descriptions of the software components that belong in each segment are defined in Section 2.8.

FACE Boundary

Operating

System

Segment

I/O Services Segment

Platform-Specific Services Segment

OS

OS

Service
MIL-STD-1553

Service

Device Driver Device Driver

IO

TS

TS

OS

OS

Language

Run-time
Component

Framework

Interface Hardware

(e.g., MIL-STD-1553, Ethernet)

OFP

Device
EGI

KEY

FACE Defined Interface

Operating

System

Health

Monitoring
Graphics Driver

External Interface

Portable Components Segment

Fusion
Fuel

Service

FACE

Component

Own Ship

Position

Transport

Services

Segment

GPS
Platform

Displays

Sockets

Transport

Distribution

Capability

Configuration

Capability

Transport

Service

Capability

Type

Abstraction

Capability

GPU

API

Platform-Specific Device Services

GPS EGI
OFP

Device

Platform-Specific Common

Services
System-Level Health

Monitoring

Platform-Specific Graphics

Services
Graphics

Service

Figure 2: Architectural Segments Example

The following narrative describes a simple example implementation. In this scenario we have a

simple system that uses navigation data from a Global Positioning System (GPS) device via a

MIL-STD-1553 interface hardware to provide Own Ship Position symbology to a display. The

software is implemented as several components designed for reuse and portability.

Within the “FACE Boundary”, the OSS provides a well-known set of Application Programming

Interfaces (APIs) and services provided by any FACE conformant OS. This allows software

written for one conformant OS to run on systems utilizing another FACE conformant OS.

At the bottom of the example diagram, a GPS device collects sensor data and passes navigation

data in a device-specific format onto a MIL-STD-1553-compliant bus. The device driver is

written to the specific MIL-STD-1553 hardware, and the format of the data is specific to the

GPS device.

The data from the device driver is accessed, using the common OS APIs, by a service in the

IOSS to convert the unique implementation to a standardized format to abstract the uniqueness

of the MIL-STD-1553 device. This abstraction allows software using the same external devices

to be deployed on systems using different I/O devices.

The I/O Service then passes this data through a normalized interface defined by the FACE

Technical Standard to the PSSS, in this example a GPS Platform Device Service. This device

service provides an abstraction of the specific GPS communications typically described in that

10 Open Group Standard (2017)

device’s ICD, and transforms this data into a standard structure and semantics according to the

FACE Data Architecture.

This data is then transported by the Transport Service Capability and Distribution Capability

based on configuration to the software component that needs this data for processing, in this case

an Own Ship Position PCS component. In this example, the Transport Service utilizes an OSS

provided transport mechanism, specifically POSIX Sockets. All data to and from the PCS is

routed through the TSS.

This Own Ship Position component calculates the graphical symbology and sends it back

through the Transport Services using a well-defined graphics language. In this example, the TSS

is configured to distribute these graphics messages to a Platform-Specific Graphics Service in

the PSSS. The Platform-Specific Graphics Service then draws to the display though a Graphics

Driver.

This scenario highlights how the FACE Reference Architecture can be used to isolate changes to

a system. For example, if the GPS device is replaced with a different GPS, the associated

Platform Device Service would be replaced or modified. If the MIL-STD-1553 bus is changed,

then the I/O Service would be replaced or modified. If a transport mechanism is changed then

the Transport Service would be replaced or modified. In all of these cases the Portable

Component is isolated from these changes.

2.5 Programming Language Run-Times

The FACE Technical Standard places restrictions on programming languages. The use of

standardized programming languages is fundamental to portability. The FACE Technical

Standard includes requirements on the use of C, C++, Ada, and Java for the creation of

conformant software.

The interface between an operating system and a software component can be substituted or

enhanced by a Programming Language Run-Time. The POSIX API set is often provided in

terms of a Programming Language Run-Time. For the purposes of the FACE Reference

Architecture, a Programming Language Run-Time is an optional feature and can be supplied as

part of the OSS, or included in a software component residing in another segment.

2.6 Component Frameworks

The FACE Technical Standard supports the use of Component Frameworks. Component

Frameworks provide supporting functionality for a software component. There are three

approaches to using Component Frameworks within the FACE Reference Architecture:

 Operating System Segment (OSS) Provided

The Component Framework is provided as part of an OSS. A Component Framework

provided by the OSS extends the OSS Interface to include the Component Framework’s

own API. Component Frameworks provided by the OSS are limited to those specified

within the OSS Interface requirements and discussed further in Section 3.2.4.

FACE™ Technical Standard, Edition 3.0 11

 Internal to PCS or PSSS UoC

The full Component Framework is an integral part of the PCS or PSSS UoC and adheres

to the allowed PCS and PSSS interfaces. This approach leverages the ease of development

of Component Frameworks and allows FACE alignment, but may have performance,

integration, and/or resource impacts. This approach is discussed in Section 3.6 and Section

3.10.

 Component Framework implements FACE Reference Architecture

A Component Framework used across multiple FACE segments implements the

Framework Support Capability (FSC). The FSC is an abstraction that translates

Component Framework interfaces to FACE aligned interfaces and is described in Section

3.7.14.

The OSS and TSS support common frameworks, allowing software to be developed to both a

Component Framework and the FACE Technical Standard.

2.7 Operating System Segment Profiles

The FACE Reference Architecture defines three FACE OSS Profiles tailoring the Operating

System (OS) APIs, programming languages, programming language features, run-times,

frameworks, and graphics capabilities to meet the requirements of software components for

differing levels of criticality. The three FACE OSS Profiles are:

 Security

 Safety

— Base

— Extended

 General Purpose

The Security Profile constrains the OS APIs to a minimal useful set allowing assessment for

high-assurance security functions executing as a single process.

The Safety Profile is less restrictive than the Security Profile and constrains the OS APIs to those

that have a safety certification pedigree. The Safety Profile is made up of two sub-profiles. The

Safety Base Sub-profile supports single-process applications with a broader OS API set than the

Security Profile. The Safety Extended Sub-profile includes all of the Safety Base Sub-profile OS

APIs along with support for multiple processes and additional OS APIs.

Although the Security and Safety Profiles are named to reflect their primary design focus, their

use is not restricted to services with those requirements (i.e., a software component without a

safety or security design focus can be constrained to only use the OS APIs of one of these

profiles).

The General Purpose Profile is the least constrained profile and supports OS APIs meeting real-

time deterministic or non-real-time non-deterministic requirements depending on the system or

subsystem implementation.

Figure 3 shows a representation of OS APIs and restrictions per profile.

12 Open Group Standard (2017)

SecurityOSSProfile

Safety,

Security
, &

Determ
inism

SafetyOSS Profile(Base)

SafetyOSS Profile
(Extended)

Safety &

Determinism

General Purpose

OSS Profile
Determinism

Not G
uaranteed

Safety Assurance & Determinism

Safety OSS Profile:

 Uses FACE Safety Interfaces

 Time/Space Partitioning Recommended

Safety, Security Assurance, & Determinism

Security OSS Profile:

 Uses FACE Security Interfaces

 Time/Space Partitioning Required

Assurance as Required

General Purpose OSS Profile:

 Uses FACE General Purpose Interfaces

 Time/Space Partitioning Optional

Profile Pyramid

Oct 27, 2015

Figure 3: FACE OSS Profile Diagram

2.8 Unit of Conformance and Unit of Portability

A Unit of Conformance (UoC) is a software component developed to meet the conformance

requirements of the identified FACE OSS Profile(s) and a single FACE segment. The FACE

Technical Standard contains individual requirements for UoCs in each FACE segment and for

each FACE OSS Profile.

A Unit of Portability (UoP) is another term for a UoC. Use of the term UoP highlights the

portable and reusable attributes of software developed to the FACE Technical Standard.

A UoC Package can be used to include capabilities made up of multiple UoCs. UoC Packages

can be developed for conformance to the FACE Technical Standard by following the

requirements in Section 3.11.4.2.

2.8.1 Unit of Conformance Applicable Requirements Map

The sections defined in Table 1 are applicable when developing a PCS UoC.

Table 1: Sections Applicable to PCS UoCs

Section Applicability

3.2.1 Operating System Interface For operating system usage requirements

3.2.3 Programming Language Run-Time For programming language usage requirements

3.2.5 Configuration Services When using configuration services

FACE™ Technical Standard, Edition 3.0 13

Section Applicability

3.8 Transport Services Interfaces For communication with PSSS, TSS, and other PCS

UoCs

3.9 Data Architecture For defining data sent through the TS Interface

3.10 Portable Components Segment Always

3.11 Unit of Conformance Always

3.12 Graphics Services When using graphic services

3.13 Life Cycle Management Services When providing or using life-cycle support

The sections defined in Table 2 are applicable when developing a TSS UoC.

Table 2: Sections Applicable to TSS UoCs

Section Applicability

3.2.1 Operating System Interface For operating system usage requirements

3.2.3 Programming Language Run-Time For programming language usage requirements

3.2.5 Configuration Services When using configuration services

3.7 Transport Services Segment Always

3.8 Transport Services Interfaces For communication with PCS, PSSS, and TSS UoCs

3.9 Data Architecture For defining data sent through the TS Interface

3.11 Unit of Conformance Always

3.13 Life Cycle Management Services When providing or using life-cycle support

The sections defined in Table 3 are applicable when developing a PSSS UoC.

Table 3: Sections Applicable to PSSS UoCs

Section Applicability

3.2.1 Operating System Interface For operating system usage requirements

3.2.3 Programming Language Run-Time For programming language usage requirements

3.2.5 Configuration Services When using configuration services

3.5 I/O Services Interface For communication with IOSS UoCs

3.6 Platform-Specific Services Segment Always

14 Open Group Standard (2017)

Section Applicability

3.8 Transport Services Interfaces For communication with PCS, TSS, and other PSSS

UoCs

3.9 Data Architecture For defining data sent through the TS Interface

3.11 Unit of Conformance Always

3.12 Graphics Services When using or providing graphic services

3.13 Life Cycle Management Services When providing or using life-cycle support

The sections defined in Table 4 are applicable when developing an IOSS UoC.

Table 4: Sections Applicable to IOSS UoCs

Section Applicability

3.2.1 Operating System Interface For operating system usage requirements

3.2.3 Programming Language Run-Time For programming language usage requirements

3.2.5 Configuration Services When using configuration services

3.4 I/O Services Segment Always

3.5 I/O Services Interface For communication to PSSS UoCs

3.13 Life Cycle Management Services When providing or using life-cycle support

The sections defined in Table 5 are applicable when developing an OSS UoC.

Table 5: Sections Applicable to OSS UoCs

Section Applicability

3.1 Operating System Segment Always

3.2.1 Operating System Interface For operating system calls

3.2.2 Operating System HMFM Interface

Requirements

When implementing HMFM

3.2.3 Programming Language Run-Time Programming Language and Run-Time Requirements

3.2.4 Component Framework Interfaces When using Component Frameworks

3.2.5 Configuration Services When using configuration services

3.13 Life Cycle Management Services When providing or using life-cycle support

FACE™ Technical Standard, Edition 3.0 15

3 FACE Reference Architecture Requirements

The FACE Reference Architecture, as depicted in Figure 4, shows the segmented approach

establishing the separation of concerns necessary to accomplish the overarching FACE goals of

affordability, interoperability, and time-to-field. Each segment and interface and their respective

requirements are defined in further detail in the following sections.

FACE

Interface Hardware

(i.e., MIL-STD-1553, Ethernet)

Platform

Devices

Platform

Sensors

Platform

Displays

User Input

Devices

Platform

Radios

Other

Transports

IO

Operating System Segment

Portable Components Segment

Common Services and Portable

Components reside here

Platform-Specific Services Segment

Standardized UoP-level data products and indirect

hardware access are provided by this segment

I/O Services Segment

Standardized, but indirect hardware

 access is provided by this segment

FACE defined

interface set

FACE defined

interface set

FACE defined

interface set

Hardware

Device Drivers

Transport Services Segment

All communication, including inter-UoP communication

is achieved through message based transport

middleware which resides in this segment

TS

TS

Figure 4: FACE Reference Architecture

16 Open Group Standard (2017)

3.1 Operating System Segment

The OSS provides and controls access to the computing platform and software environment for

the other FACE segments. Access to these capabilities is provided to the other FACE segments

through implementations of the OS APIs and through OSS managed configuration data. The

OSS uses, as appropriate, processor control mechanisms, such as memory management units and

register access controls (e.g., user versus kernel privileges) to restrict FACE segments to their

required computing platform resources and operational capabilities. These processor control

mechanisms permit various levels of independence between FACE segments, permitting greater

portability across FACE aligned computing platforms. Whether an OSS capability executes with

kernel or user privileges, the capability is still considered part of the OSS.

The OSS requirements are defined in Section 3.1.1. The OS API standards are defined in Section

3.2.1.

The OSS includes networking and file system capabilities adhering to published, standards-

based operating system interfaces to meet basic platform requirements (Section 3.1.1). The OSS

can also provide Life Cycle Management and HMFM capabilities as described in Section 3.2.1

and Section 3.1.3, respectively.

Other capabilities the OSS provides are:

 An environment where conformant software capabilities may execute

 A set of software services accessed by managed OS API sets

3.1.1 Operating System Segment Requirements

1. An OSS UoC provides support for partition, process, thread, and memory management

functionalities.

a. OSS interfaces for the Security OSS Profile shall support POSIX and ARINC 653

in accordance with Section 3.2.1.3.

b. OSS interfaces for the Safety OSS Profile shall support POSIX and ARINC 653

in accordance with Section 3.2.1.4.

c. OSS interfaces for the General Purpose OSS Profile shall support POSIX and

ARINC 653 in accordance with Section 3.2.1.5.

2. An OSS UoC shall provide an operating system.

3. An OSS UoC provides support for partitioning.

a. A General Purpose Profile OSS UoC shall provide space partitioning.

Note: A General Purpose Profile OSS UoC may provide time partitioning.

b. A Safety Profile OSS UoC shall provide space partitioning.

Note: Space partitioning must be used for a UoC running in the Safety Profile.

When per-partition access control is used, an OSS UoC uses configuration data to

enable access control.

c. A Safety Profile OSS UoC shall provide time partitioning.

FACE™ Technical Standard, Edition 3.0 17

Note: Time partitioning must be used when running Safety Profile-based software

components that are dependent upon an ARINC 653 operational environment.

d. A Security Profile OSS UoC shall provide space partitioning.

e. A Security Profile OSS UoC shall provide time partitioning.

4. An OSS UoC shall use a priority preemptive scheduling algorithm across the set of

threads/processes associated with software components whose partitions have been

assigned the same partition time window.

Note: It is intended that when partitions are assigned to the same partition time window

they are scheduled using priority preemptive scheduling.

Note: The threads/processes in these partitions may not be considered sufficiently

segregated to allow qualification at different levels of criticality when allocated identical

time windows.

Note: In multicore environments, this requirement is not intended to require support for

partitions concurrently executing on different cores.

5. When an OSS UoC provides LCM Services support, the UoC shall do so in accordance

with Section 3.1.2.

6. When an OSS UoC provides HMFM support, the UoC shall do so in accordance with

Section 3.1.3.

7. When a Programming Language Run-Time is provided by an OSS UoC, the Run-Time

shall be in accordance with Section 3.2.3.

8. When a Component Framework is provided by an OSS UoC, the Framework shall be in

accordance with Section 3.2.4.

9. When Configuration Services are provided by an OSS UoC, the Services shall be in

accordance with Section 3.2.5.

10. When the Injectable Interface is provided by an OSS UoC, the Interface shall be in

accordance with Section 3.11.4.1.

3.1.1.1 OSS Configuration Requirements

An OSS UoC provides support for configuration of OS characteristics.

1. An OSS UoC provides support for ARINC 653-defined configuration data types (XML-

based schema) for allocating computing platform resources:

a. When a General Purpose Profile OSS UoC supports ARINC 653, the UoC shall

support ARINC 653-defined configuration data types (XML-based schema) for

allocating computing platform resources.

Note: POSIX does not define types or methods for specifying configuration.

b. A Safety Profile OSS UoC shall support ARINC 653-defined configuration data

types (XML-based schema) for allocating computing platform resources.

c. A Security Profile OSS UoC shall support ARINC 653 -defined configuration

data types (XML-based schema) for allocating computing platform resources.

18 Open Group Standard (2017)

2. An OSS UoC provides support for configuration of OS-level HMFM.

a. When a General Purpose Profile OSS UoC supports ARINC 653, the UoC shall

support configuration of OS-level HMFM.

Note: POSIX does not define methods for specifying configuration.

b. A Safety Profile OSS UoC shall support configuration of OS-level HMFM.

c. A Security Profile OSS UoC shall support configuration of OS-level HMFM.

3. An OSS UoC shall support configuration of memory regions and access to those regions.

4. An OSS UoC shall support configuration of device driver access.

5. An OSS UoC shall support configuration of POSIX named semaphore access.

6. An OSS UoC shall support configuration of partitions in accordance with the defined

FACE OSS Profiles.

Note: Support for ARINC 653-defined configuration data types related to multicore is not

required.

7. An OSS UoC shall support configuration of partition time windows in accordance with

the defined FACE OSS Profiles.

8. An OSS UoC shall support configuration of inter-partition communications (i.e., between

partitions) in accordance with the defined FACE OSS Profiles.

9. An OSS UoC shall support configuration of permission to set calendar time visible to all

partitions.

Note: POSIX does not define methods for specifying configuration.

10. An OSS UoC provides support for network communications configuration.

a. An OSS UoC shall support the control over which partitions are authorized to

bind/connect to a network communication endpoint.

b. An OSS UoC shall support the control over which partitions are authorized to

receive from a network communication endpoint.

c. An OSS UoC shall support the control over which partitions are authorized to

transmit to a network communication endpoint.

3.1.1.2 OSS File System Requirements

An OSS UoC may provide file system support.

1. When an OSS UoC provides file system support, then:

a. A General Purpose Profile OSS UoC shall support configuration of a file system.

b. A General Purpose Profile OSS UoC shall support data storing of buffered data.

c. A General Purpose Profile OSS UoC shall support data flushing of buffered data.

d. A Safety Profile OSS UoC shall support configuration of a file system.

e. A Safety Profile OSS UoC shall support data storing of buffered data.

FACE™ Technical Standard, Edition 3.0 19

f. A Safety Profile OSS UoC shall support data flushing of buffered data.

Note: File systems are not supported by the Security Profile.

2. When an OSS UoC provides support for multiple file system storage elements, then:

a. A General Purpose Profile OSS UoC shall support files storage.

b. A General Purpose Profile OSS UoC shall support directories storage.

c. A General Purpose Profile OSS UoC shall support volumes storage.

d. A Safety Profile OSS UoC shall support files storage.

e. A Safety Profile OSS UoC shall support directories storage.

f. A Safety Profile OSS UoC shall support volumes storage.

Note: There may be multiple file system types available in the implementation to

different hardware devices with different attributes for access rights, support for

time and space partitioning, authentication, and integrity.

Note: File systems are not supported by the Security Profile.

3. An OSS UoC supports the ability to allocate read and write access permissions of volumes

to specific partitions (i.e., no default access permissions) when an OSS UoC provides file

system support.

a. A General Purpose Profile OSS UoC shall support individual configuration of

read, write, and execute access permission settings for each partition to each

volume.

b. A Safety Profile OSS UoC shall support configuration of read-access permission

settings for each partition to each volume.

c. A Safety Profile OSS UoC shall support configuration of permission settings such

that at most one partition has write access to each volume.

Note: Restriction to at most one partition is per ARINC 653 Part 2.

d. A Safety Extended Sub-profile OSS UoC shall support configuration of execute

access permission settings for each partition to each volume.

Note: Execute permissions are in support of the creation of multiple processes

which is not required in the Safety Base Sub-profile.

Note: File systems are not supported by the Security Profile.

4. When an OSS UoC provides support for portable data media, then:

a. A General Purpose Profile OSS UoC shall support mounting data media and/or

insertion/mounting of portable data media.

b. A Safety Profile OSS UoC shall support mounting data media and/or

insertion/mounting of portable data media.

Note: File systems are not supported by the Security Profile.

20 Open Group Standard (2017)

5. When an OSS UoC provides support for atomic file updates, then:

a. A General Purpose Profile OSS UoC shall support atomically updated data blocks

(i.e., the data block is ensured to be completely saved in non-volatile storage or, if

interrupted, none of the data block is saved).

b. A Safety Profile OSS UoC shall support atomically updated data blocks (i.e., the

data block is ensured to be completely saved in non-volatile storage or, if

interrupted, none of the data block is saved).

Note: This capability ensures consistency of the stored blocks of data.

Note: File systems are not supported by the Security Profile.

3.1.1.3 OSS POSIX Clock Requirements

An OSS UoC provides support for POSIX clocks.

1. An OSS UoC shall support the POSIX Monotonic Clock option

(CLOCK_MONOTONIC), including setting absolute and relative alarms on this clock.

2. An OSS UoC shall support clock read-access based POSIX CLOCK_REALTIME clock

(calendar-based clock time).

3. An OSS UoC shall support setting a relative alarm-based POSIX CLOCK_REALTIME

clock (calendar-based clock time).

4. An OSS UoC shall support clock time write access for POSIX CLOCK_REALTIME

clock value under the constraint that configuration data specifies the partition is

authorized to set the clock time (using the clock_settime() API).

Note: The time value set by one partition becomes visible to all other partitions. The

timezone value set by one process using the tzset() or setenv() APIs is local to that

process.

5. An OSS UoC shall return an error when a software component attempts to set an absolute

time alarm on the POSIX CLOCK_REALTIME clock.

Note: The behavior is necessary (e.g., to prevent backwards and forwards shifts in alarm

times) due to the setting of POSIX_CLOCK_REALTIME clock impacting all partitions.

3.1.1.4 OSS Networking Requirements

An OSS UoC may provide support for an IP-based network stack.

1. When an OSS UoC provides an IP-based network stack, then:

a. A General Purpose Profile OSS UoC shall provide support for an IP-based

network stack as defined by the IETF Requests for Comments (RFCs) listed in

Table 36 and Table 37 shown in Section A.5.

b. A Safety Extended Sub-profile OSS UoC shall provide support for an IP-based

network stack as defined by the RFCs listed in Table 36 and Table 37 shown in

Section A.5.

c. A Safety Base Sub-profile OSS UoC shall provide support for an IP-based

network stack as defined by the RFCs listed in Table 36 shown in Section A.5.

FACE™ Technical Standard, Edition 3.0 21

d. A Security Profile OSS UoC shall provide support for an IP-based network stack

as defined by the RFCs listed in Table 36 shown in Section A.5.

Note: There are RFCs applicable to security. Requirements for those RFCs are

outside the scope of this standard.

2. When providing IPv6 networking capabilities, an OSS UoC shall provide the networking

capabilities per the RFCs referenced in Table 38 shown in Section A.5.

3. When providing an integrated IPv4/IPv6 network transition mechanism, an OSS UoC

shall provide the network transition mechanism per the RFCs referenced in Table 39

shown in Section A.5.

3.1.2 OSS UoC Life Cycle Management Services Interface Requirements

1. When providing a LCM Services Interface, an OSS UoC shall do so in accordance with

the requirements of Section 3.13.

2. When using a LCM Services Interface, an OSS UoC shall do so in accordance with the

requirements of Section 3.13.

3.1.3 OSS Health Monitoring and Fault Management

The purpose of the FACE OSS Health Monitoring and Fault Management (HMFM) software

component is to provide standardized methods for detecting, reporting, and handling faults and

failures within the scope of a single system or platform. The basic goals of OSS HMFM include:

 Detecting and handling faults and errors that occur during run-time

 Detecting and handling faults and errors at the process (i.e., thread), partition, and module

(i.e., platform) levels

 Providing the flexibility to enable system designers to control the appropriate level of

HMFM capabilities given the desired design objectives

Faults and errors can arise from any software component, including the OSS and the OSS

HMFM.

3.1.3.1 HMFM Introduction

Figure 5 depicts a fault management cycle state machine that provides a framework for an

overall HMFM capability.

22 Open Group Standard (2017)

Fault

Detection

Isolation

RecoveryRepair

Health

Figure 5: Fault Management Cycle State Machine

The overall HMFM goal is to eliminate service outages through an HMFM system that is aware

of the occurrence of faults and errors that occur during run-time. Upon detection of a fault or

error, the HMFM cycle is engaged to direct the system back to a healthy state or to some fail-

safe state. This direction is controlled by pre-configured Fault Management (FM) policies. Given

a start state of a healthy system, management of a real fault (i.e., not a false alarm) can cycle

through the FM state machine diagram as follows:

 Fault detection state – a fault or error is detected and declared by HMFM when some

defined fault criteria have been met and thus promoted to “fault” status; such faults and

errors can originate from any segment within the scope of a system

 Fault isolation state – HMFM determines the scope of a fault or error given the particular

source of the fault or error

 Fault recovery state – HMFM enforces a fault recovery policy; this policy can result in:

— Full re-establishment of system health resulting in continued service availability

— Partial re-establishment of system health (e.g., shutdown a partition but permit other

partitions to continue to execute)

— Transition to a fail-safe state

— Attempt a repair action (when supported)

 Fault repair state – when supported and configured, HMFM restores (e.g., performs a hot-

swap) a capability that was impacted by a fault back to a healthy state and then re-

integrates the capability back into the system

 Health – the operational state of a system with functional HMFM

Parts or all of the HMFM fault management cycle capabilities may be relevant to a particular

design.

3.1.3.2 OSS HMFM Requirements

An OSS UoC supports HMFM capability requirements that include scope, functional

capabilities, and configuration properties.

FACE™ Technical Standard, Edition 3.0 23

1. An OSS UoC supports HMFM capabilities based on the OSS Profiles.

a. A Security Profile OSS UoC shall provide the HMFM capability in accordance

with requirements in Section 3.2.1.3.

b. A Safety Profile OSS UoC shall provide the HMFM capability in accordance with

requirements in Section 3.2.1.4.

c. When a General Purpose Profile OSS UoC provides HMFM capabilities, the UoC

shall provide the HMFM capability according to the requirements in Section

3.2.1.5.

2. An OSS UoC includes Health Monitor (HM) capabilities at the module level (i.e.,

computing platform level), partition-level, and thread-level.

a. Module-level HM capabilities shall include the ability to idle the module.

b. Module-level HM capabilities shall include the ability to restart the module.

c. Partition-level HM capabilities shall include the ability to idle the partition.

d. Partition-level HM capabilities shall include the ability to restart the partition.

Note: These capabilities are controlled using configuration data managed directly

by an OSS UoC.

Note: Thread-level HM runs in the context of a partition-specific error handler

that is included as part of the software component. Thread-level HM can invoke

the OS APIs available in this context.

3. An OSS UoC supports HMFM types and services that can be used by other UoCs.

a. The HMFM capability shall implement ARINC 653 Part 1 Health Monitoring

Types and Health Monitoring Services capabilities for use by FACE ARINC 653-

based UoCs.

b. The HMFM capability shall implement FACE HMFM Types and APIs defined in

Section 3.2.2 and Appendix F for use by FACE POSIX based UoCs.

Note: POSIX terminology is substituted in place of ARINC 653 terminology

when dealing with threads and processes.

4. The HMFM capability shall be initialized at system start-up.

5. The HMFM capability shall provide monitoring to detect faults/errors.

6. The HMFM capability shall execute response and recovery actions for detected

faults/errors as configured.

3.2 Operating System Segment Interface

The OSS Interface provides a standardized means for software to use the services within the

operating system and other capabilities related to the OSS. This interface is provided by software

in the OSS to software in other segments.

24 Open Group Standard (2017)

Section 3.2.1 describes the POSIX and ARINC 653 make-up of the OSS Interface for each

profile. The profiles are separated into General Purpose, Safety, and Security. The Safety Profile

contains two Sub-profiles referred to as Safety Base and Safety Extended. Section 3.2.2

describes the Interface to the Health Monitoring and Fault Management (HMFM) capability for

both POSIX and ARINC 653-based implementations. Section 3.2.3 describes constraints on

programming language features and run-times that are deployed as part of an OSS UoC. Section

3.2.4 describes constraints on Component Frameworks that are deployed as part of an OSS UoC.

Section 3.2.5 describes the Configuration Services which are available for UoCs to utilize.

Programming Language Run-Times, Component Frameworks, and Configuration Services that

do not use the FACE Standardized Interfaces can be used in FACE conformant solutions only

when included as part of an OSS UoC. Figure 6 shows multiple Run-Times and Component

Frameworks that use non-standardized FACE Interfaces on the “Bottom side” while still

providing aligned FACE Interfaces.

Operating

System

Segment

F
A

C
E

 O
S

 A
P

Is

F
A

C
E

 R
u

n
-T

im
e

 A
P

Is

F
A

C
E

 F
ra

m
e

w
o

rk
 A

P
Is

Standardized

Operating

System API

Profiles

Standardized

Programming

Language

Run-Time API

Standardized

Component

Framework

APIs

Operating

System

Programming

Language

Run-Times

 Component

Frameworks

No FACE

Standardization

of “Bottom

side” interfaces

No FACE

Standardization

of “Bottom

side” interfaces

No FACE

Standardization

of “Bottom-

side” interfaces

F
A

C
E

 C
o

n
fi
g

.
A

P
Is

Standardized

Configuration

Services APIs

Configuration

Services

No FACE

Standardization

of “Bottom

side” interfaces

F
A

C
E

 H
M

F
M

 A
P

Is
Standardized

Health Monitor/

Fault

Management

API

Health

Monitor/Fault

Management

No FACE

Standardization of

“Bottom-side”

Interfaces

Figure 6: Operating System Segment Interfaces

The software resources (e.g., bottom-side interfaces) used by Operating Systems, Programming

Language Run-Times, Life Cycle, Component Frameworks, and Configuration Services are

expected to vary and are not prescribed or otherwise controlled by the FACE Technical

Standard. As an example, Operating Systems are often fielded on computing hardware with

different Board Support Packages (BSPs). Operating Systems may use device drivers to abstract

differences between hardware devices.

The number of Programming Language Run-Times and Component Frameworks is not

prescribed by the FACE Technical Standard. The use of Programming Language Run-Times

and/or Component Frameworks is optional. It may be necessary to have distinct instances of

Programming Language Run-Times and/or Component Frameworks in different partitions to

support safety and security.

Operating Systems, Programming Language Run-Times, and Component Frameworks provide

an environment for the collaborative execution of software components, as depicted in Figure 6.

FACE™ Technical Standard, Edition 3.0 25

3.2.1 Operating System Interface

OSS UoCs provide POSIX and ARINC 653-based operating environments and API subsets

based on the following profile requirements.

FACE OS APIs correspond to the General Purpose, Safety, and Security Profiles.

The POSIX and ARINC 653 standards include Ada and C language bindings for the OS APIs

included in the OSS Profiles. The C language header files for the POSIX and ARINC 653 APIs

may be compatible for direct use by C++ based software components. Bindings for Java may be

provided by other means such as by a compiler vendor or the development of a standard that

defines a binding. Appendix A details the POSIX API required for each OSS Profile.

Partitions and processes execute software components designed for one of the FACE OSS

Profiles.

Partitions and processes may use a different operational environment (POSIX or ARINC 653).

Each partition and process uses either a POSIX or an ARINC 653 operational environment.

A computing platform may simultaneously support partitions of different OSS Profiles and

operational environments. The FACE Technical Standard recognizes the APIs associated with

the General Purpose, Safety, and Security Profiles provide divergent capabilities. The divergence

of these capabilities may prevent or represent considerable safety or security risks, including

simultaneous hosting of General Purpose, Safety, and Security Profile OSS UoCs on the same

computing platform. When system requirements include software components of different OSS

Profiles, the use of multiple computing platforms may be required. Other architectural

capabilities (e.g., virtualization), if supported by the processor and OS selected by the system

integrator, may provide other means to simultaneously host on the same computing platform

software components which are using different FACE OSS Profiles.

Based on the profile and operating environment, OSS UoCs provide support for ARINC 653

sampling ports, ARINC 653 queuing ports, and POSIX sockets to be used for inter-partition

communications (i.e., the lower-layer transport mechanism that can be used by other FACE

standardized interface software libraries).

A UoC designed to the General Purpose Profile, when communicating with UoCs designed to

the Security and/or Safety Profile, uses the same restricted inter-partition communications as a

UoC designed to the Security and/or Safety Profile. A UoC designed to the General Purpose

Profile, if communicating to another UoC designed to the General Purpose Profile, may use

additional sockets services (if supported by the transport mechanism).

3.2.1.1 Operating System Segment Profiles

This section summarizes the OSS Interface characteristics for the General Purpose, Safety, and

Security Profiles. These characteristics are based on support of APIs and OS capabilities defined

in the ARINC 653 and POSIX standards.

The referenced ARINC 653 standards for all OSS Profiles include API and OS support for

utilizing multiple processor cores to concurrently schedule multiple ARINC 653 processes

within a partition based on an ARINC 653 operating environment. When a computing platform

basis includes multiple equivalent processing cores, the supported APIs provide a means to

control how ARINC 653 processes are concurrently scheduled on the processor cores allocated

to the partition.

26 Open Group Standard (2017)

The OS configuration data includes a means to control the number of cores available to each

partition. A partition allocated a single processor core of a multicore processor has the same

ARINC 653 scheduling characteristics the partition would have when running on a single-core

processor.

3.2.1.2 Operating System Interface Profile Requirements

For General Purpose, Safety, and Security Profile ARINC 653 implementations:

1. An OSS UoC implementing ARINC 653 shall provide messages to UoCs in the order they

are received.

2. An OSS UoC implementing ARINC 653 shall support delivery of available messages.

3. An OSS UoC implementing ARINC 653 shall support receipt of complete messages.

Note: No silently truncated messages.

4. An OSS UoC implementing ARINC 653 shall support sending messages on an ARINC

653 port and receiving the same messages in another partition using an ARINC 653 port.

For General Purpose, Safety, and Security Profile POSIX implementations:

1. An OSS UoC implementing POSIX shall provide messages to UoCs in the order they are

received.

2. An OSS UoC implementing POSIX shall support delivery of available messages.

3. An OSS UoC implementing POSIX shall support receipt of complete messages.

Note: No silently truncated messages.

4. An OSS UoC implementing POSIX shall support sending messages on POSIX sockets

and receiving the same messages in another partition using POSIX sockets.

5. An OSS UoC implementing POSIX shall support blocking on an empty socket (receive).

6. An OSS UoC implementing POSIX shall support blocking on a full socket (transmit).

7. An OSS UoC implementing POSIX shall support via setsockopt() the configuration of:

a. The size of the space reserved for a socket’s receive buffer (e.g., SO_RCVBUF)

b. The size of the space reserved for a socket’s transmit buffer (e.g., SO_SNDBUF)

c. The multicast characteristics for a socket

Note: Multicast characteristics that can be configured on a per socket per partition

basis are: IP_MULTICAST_IF, IP_MULTICAST_TTL,

IP_MULTICAST_LOOP, IP_ADD_MEMBERSHIP,

IP_DROP_MEMBERSHIP, SO_REUSEADDR.

Note: The ip_mreq structure is supported to provide a means to add and drop

multicast group memberships.

8. An OSS UoC shall limit based on configuration:

a. Socket maximum receive message size

FACE™ Technical Standard, Edition 3.0 27

b. Socket maximum transmit message size

9. An OSS UoC shall provide the following configuration information via getsockopt() for

the specified socket:

a. The size of the space reserved for a socket’s receive buffer (e.g., SO_RCVBUF)

b. The size of the space reserved for a socket’s transmit buffer (e.g., SO_SNDBUF)

c. The multicast characteristics for a socket

Note: A socket may have multiple multicast group memberships set for it. The

getsockopt() API does not provide a means to retrieve a socket’s multicast group

memberships. All other characteristics can be obtained.

10. An OSS UoC shall define:

a. A macro in <sys/ioctl.h> named FIONBIO to configure sockets for non-blocking

I/O

b. A macro in <devctl.h> named SOCKCLOSE to close an open socket

11. An OSS UoC shall provide:

a. The FIONBIO command in the posix_devctl() API defined in Section A.1

b. The SOCKCLOSE command in the posix_devctl() API defined in Section A.1

3.2.1.3 Security Profile API Requirements

1. A Security Profile OSS UoC shall support ARINC 653 and POSIX.

2. A Security Profile OSS UoC shall provide the following ARINC 653 APIs for use in an

ARINC 653 operational environment:

a. ARINC 653 Part 1 – all services associated with Avionics Application Software

Standard Interface Part 1 – Required Services

i. For platforms that support multicore partitions, all services from

ARINC 653 Part 1-4 (Part 1, Supplement 4, August 2015)

ii. For platforms that support only single core partitions, all services

from ARINC 653 Part 1-3 (Part 1, Supplement 3, November 2010) or

ARINC 653 Part 1-4 (Part 1, Supplement 4, August 2015)

b. Services associated with the following categories of Avionics Application

Software Standard Interface Part 2 – Extended Services:

i. Memory Blocks

Note: All other Part 2 services are intentionally excluded from the Security

Profile.

Note: OSS UoCs are permitted to include additional ARINC 653 APIs outside of

the profile. Software components are restricted to using only the APIs defined as

being part of the profile.

3. A Security Profile OSS UoC shall provide the POSIX APIs defined in Section A.2 for the

Security Profile for use in a POSIX operational environment.

28 Open Group Standard (2017)

4. A Security Profile OSS UoC for a POSIX operational environment shall support mutex

operations (e.g., pthread_mutexattr_setprotocol() API) with priority protect protocol

(_POSIX_THREAD_PRIO_PROTECT).

5. A Security Profile OSS UoC for a POSIX operational environment shall support memory

mapping operations (e.g., mmap() API) with shared memory objects

(_POSIX_SHARED_MEMORY_OBJECTS).

6. A Security Profile OSS UoC for a POSIX operational environment shall include support

for use of ARINC 653 sampling and queueing ports for inter-partition communications.

7. A Security Profile OSS UoC for a POSIX operational environment shall include support

for the Health Monitoring APIs defined in ARINC 653 Chapter 4 to communicate with an

ARINC 653 Health Monitor.

3.2.1.4 Safety Profile API Requirements

1. A Safety Profile OSS UoC shall support ARINC 653 and POSIX.

2. A Safety Profile OSS UoC shall provide the following ARINC 653 APIs for use in an

ARINC 653 operational environment:

a. ARINC 653 Part 1 – all services associated with Avionics Application Software

Standard Interface Part 1 – Required Services:

i. For platforms that support multicore partitions, all services from

ARINC 653 Part 1-4 (Part 1, Supplement 4, August 2015)

ii. For platforms that support only single core partitions, all services

from ARINC 653 Part 1-3 (Part 1, Supplement 3, November 2010) or

ARINC 653 Part 1-4 (Part 1, Supplement 4, August 2015)

b. Services associated with the following categories of Avionics Application

Software Standard Interface Part 2 – Extended Services:

i. File System

ii. Sampling Port Extensions

iii. Memory Blocks

iv. Multiple Module Schedules

Note: All other Part 2 services, including Logbooks and Multiple Processor Core

Extensions, are intentionally excluded. File system services can be used instead of

Logbooks.

Note: FACE OSS UoCs are permitted to include additional ARINC 653 APIs

outside of the profile. Software components are restricted to using only the APIs

defined as being part of the profile.

3. A Safety Profile OSS UoC for a POSIX operational environment shall support mutex

operations (e.g., pthread_mutexattr_setprotocol() API) with priority protect protocol

(_POSIX_THREAD_PRIO_PROTECT).

FACE™ Technical Standard, Edition 3.0 29

4. A Safety Profile OSS UoC for a POSIX operational environment shall support memory

mapping operations (e.g., mmap() API) with shared memory objects

(_POSIX_SHARED_MEMORY_OBJECTS).

5. A Safety Profile OSS UoC for a POSIX operational environment shall include support for

use of ARINC 653 sampling and queueing ports for inter-partition communications.

6. A Safety Profile OSS UoC for a POSIX operational environment shall include support for

the Health Monitoring APIs defined in ARINC 653 Chapter 4 to communicate with an

ARINC 653 Health Monitor.

3.2.1.4.1 Safety Base Sub-Profile API Requirements

1. A Safety Base Sub-profile OSS UoC shall provide the POSIX APIs defined in Section A.2

for the Safety Base Sub-profile.

2. A Safety Base Sub-profile OSS UoC shall provide the FD_CLR(), FD_ISSET(),

FD_SET(), FD_ZERO(), and select() APIs for use with sockets.

3. A Safety Base Sub-profile OSS UoC shall provide message queue support within a

partition only (i.e., if not an inter-partition communications mechanism).

3.2.1.4.2 Safety Extended Sub-Profile API Requirements

1. A Safety Extended OSS UoC implementation shall provide the POSIX APIs defined in

Appendix A for the Safety Extended Sub-profile.

Note: The Safety Extended Sub-profile includes all of the Safety Base Sub-profile OS

POSIX APIs.

2. A Safety Extended Sub-profile OSS UoC shall provide FD_CLR(), FD_ISSET(),

FD_SET(), FD_ZERO(), and select() for use with sockets.

3.2.1.5 General Purpose Profile API Requirements

1. A General Purpose Profile OSS UoC shall provide the POSIX APIs defined in Section

A.2 for the General Purpose Profile.

2. A General Purpose Profile OSS UoC shall provide FD_CLR(), FD_ISSET(), FD_SET(),

FD_ZERO(), and select() for use with sockets.

3. When providing ARINC 653, a General Purpose Profile OSS UoC shall provide the

following ARINC 653 APIs:

a. All services associated with Avionics Application Software Standard Interface

Part 1 – Required Services:

i. For platforms that support multicore partitions, all services from

ARINC 653 Part 1-4 (Part 1, Supplement 4, August 2015)

ii. For platforms that support only single core partitions, all services

from ARINC 653 Part 1-3 (Part 1, Supplement 3, November 2010) or

ARINC 653 Part 1-4 (Part 1, Supplement 4, August 2015)

b. Services associated with Avionics Application Software Standard Interface Part 2

– Extended Services:

i. File System

30 Open Group Standard (2017)

ii. Sampling Port Extensions

iii. Memory Blocks

iv. Multiple Module Schedules

Note: All other Part 2 services, including Logbooks and Multiple Processor Core

Extensions, are intentionally excluded. File system services can be used instead of

Logbooks.

4. When supporting ARINC 653, a General Purpose Profile OSS UoC shall include support

for use of ARINC 653 sampling and queueing ports for inter-partition communication.

5. When an ARINC 653 Health Monitor is used, a General Purpose Profile OSS UoC for a

POSIX operational environment shall include support for the Health Monitoring APIs

defined in ARINC 653 Chapter 4 to communicate with an ARINC 653 Health Monitor.

3.2.2 Operating System HMFM Interface Requirements

This section contains the interface requirements for an OSS UoC HMFM functions used to

support POSIX operational environments.

ARINC 653 operational environments include services for OSS UoC HMFM as part of the

required API and operational support. As such, the requirements in the following subsections are

applicable only to POSIX operational environments.

For the General Purpose Profile, support for HMFM interfaces is optional. Support for POSIX

HMFM can depend upon support for ARINC 653 operational environments.

The scope of the POSIX HMFM interfaces is the partition (i.e., POSIX process) boundary.

3.2.2.1 Initialize(HMFM) Function Requirements

1. The Initialize(HMFM) function shall initialize the HMFM POSIX implementation for the

current POSIX process.

2. The Initialize(HMFM) function shall return one of the return codes as specified in Section

F.2.1.

3.2.2.2 Report_Application_Message(HMFM) Function Requirements

1. The Report_Application_Message(HMFM) function shall send a message to the HM

function.

Note: Means to retrieve messages sent to the HM function are OS-specific.

2. The Report_Application_Message(HMFM) function shall return one of the return codes

specified in Section F.2.2.

3.2.2.3 Create_Fault_Handler(HMFM) Function Requirements

1. The Create_Fault_Handler(HMFM) function shall register a partition-specific fault

handler invoked in the event of thread-level faults detected by the OS.

2. The Create_Fault_Handler(HMFM) function shall register a partition-specific fault

handler invoked in the event of thread-level faults raised by the software component.

FACE™ Technical Standard, Edition 3.0 31

3. The Create_Fault_Handler(HMFM) function shall return one of the return codes as

specified in Section F.2.3.

4. The Create_Fault_Handler(HMFM) function shall activate partition-specific fault

handling when the function call is successful.

Note: POSIX operational environments do not include a concept of initialization and

operational phases present in an ARINC 653 operational environment. As such, process-

level fault handling becomes active (i.e., available to be scheduled) as part of a successful

function call to create it.

3.2.2.4 Get_Fault_Status(HMFM) Function Requirements

1. The Get_Fault_Status(HMFM) function shall return status information related to a

detected fault that has been configured to be handled as a thread-level fault.

2. The Get_Fault_Status(HMFM) function shall return one of the return codes specified in

Section F.2.4.

3. The fault status referenced by the fault parameter shall contain information regarding the

fault when the function call is successful.

4. The POSIX thread ID shall be reported for ARINC 653 Part 1 FAILED_PROCESS_ID.

3.2.2.5 Raise_Application_Fault(HMFM) Function Requirements

1. The Raise_Application_Fault(HMFM) function shall raise the reported application fault to

the thread-level fault handler when a thread-level error handler has been defined and the

interface was not invoked by the thread-level error handler.

2. The Raise_Application_Fault(HMFM) function shall raise the reported application fault to

partition HM when a thread-level error handler has not been defined or the interface was

invoked by the thread-level error handler.

3. The Raise_Application_Fault(HMFM) function shall return one of the return codes

specified in Section F.2.5.

4. The Raise_Application_Fault(HMFM) function shall cause the thread-level fault handler

to be scheduled when the function call is successful, the thread-level error handler was

defined, and the function interface was not invoked by the thread-level error handler.

3.2.3 Programming Language Run-Time

3.2.3.1 Programming Language Run-Time Description

A UoC can use a run-time provided by the OSS following the requirements in this section. A

UoC can also use a non-standard run-time if that run-time is included in the UoC and follows all

requirements for the segment in which the UoC is implemented. This concept also applies to

frameworks, as depicted in Figure 7.

32 Open Group Standard (2017)

FACE Portable Components Segment

FACE UoP

Non-Standard

Run-time-based

Component

Mission-Level

Capability

FACE UoP

Non-Standard

Framework-based

Component

Mission-Level

Capability

OS

Interfaces

FW

Interfaces

Operating System Segment

Non-Standard

Programming

Language Run-Time

Standard

Application

Framework

Non-Standard

Application

Framework

Standard

Programming

Language Run-Time

Operating System

RT

Interfaces
OS

Interfaces
Portability between the

Language Run-Time and

the Operating System

Interface

Portability

between the

Component and

the Run-Time

Portability

between the

Component and

the Framework

FACE UoP

Standard

Run-time-based

Component

Mission-Level

Capability

FACE UoP

Standard

Framework-Based

Component

Mission-Level

Capability

OS

Interfaces

OS

Interfaces

Figure 7: Portability Distinctions

The following subsections define Programming Language capability sets that are considered part

of the OSS. The defined Programming Language capability sets include features that typically

do not require Programming Language Run-Time support and features that typically require

Programming Language Run-Time support. To account for potential differences between

compiler/Programming Language Run-Time implementations, minimal discussion is included as

to actual Programming Language Run-Time dependencies. OSS UoC support for Programming

Language capability sets is optional.

Component use of compiler-specific language extensions is prohibited unless the entire

Programming Language Run-Time utilizes only function calls defined in the corresponding

FACE OSS Profile.

Note: There are some overlaps in library functions between C++, C, and the POSIX

standards. The C++ library capabilities consist of library functions that are unique to

C++ and a set of functions that are in common with the C library (to permit

components developed in C to be ported to C++). The POSIX standard includes the

same functions as the C library specification, but does not include the additional library

functions unique to C++. The number of C library functions supported varies by FACE

OSS Profile. As such, for the library functions that are in common between C++ and C,

only the functions from the corresponding FACE OSS Profile are supported.

3.2.3.2 C Programming Language

The C Programming Language can be supported on all OSS Profiles.

FACE™ Technical Standard, Edition 3.0 33

Component developers may apply their own safety-related restrictions, such as programming

restrictions defined by the Motor Industry Software Reliability Association (MISRA C:2004

Guidelines for the Use of the C language in Critical Systems).

3.2.3.2.1 C Programming Language Definition

The language features supported in the C Programming Language adhere to ANSI/ISO/IEC

9899:1999: Programming Languages – C with the following modifications:

 The optional compiler support for the exact-width types in <stdint.h> is included

(ANSI/ISO/IEC 9899:1999, §7.18.1.1)

 Component use of the pragma directive (ANSI/ISO/IEC 9899:1999, §6.10.6) for data

structure compositions on FACE Interfaces is excluded

Note: All other uses of pragma directives are permitted.

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Component use of wide characters (ANSI/ISO/IEC 9899:1999, §3.7.3), multibyte

characters (ANSI/ISO/IEC 9899:1999, §3.7.2), wide strings (ANSI/ISO/IEC 9899:1999,

§7.1.4), and multibyte strings (ANSI/ISO/IEC 9899:1999, §7.1.1) is excluded, including

library functions that manipulate those types

The C library functions include those defined in ANSI/ISO/IEC 9899:1999, §7 supporting the

selected FACE OSS Profile.

Note: Use of compiler-specific Programming Language extensions (i.e., not defined in the

above standard) is prohibited.

3.2.3.2.2 C Programming Language and Run-Time Requirements

The requirements associated with this language include:

1. UoCs using the C Programming Language Run-Time supplied by the OS shall be

restricted to the Programming Language capability set features listed in Section 3.2.3.2.1.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

2. UoCs using the C Programming Language Run-Time supplied by the OS shall be

restricted to the Programming Language capability set library functions listed in Section

3.2.3.2.1.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

3. OSS UoCs providing a C Programming Language Run-Time shall support the capability

set defined in Section 3.2.3.2.1.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

34 Open Group Standard (2017)

3.2.3.3 C++ Programming Language

The following sections define C++ Programming Language features and library functions for the

supported capability sets. These capability sets are listed in the order of most permissive

(General Purpose) to most restrictive (Security). As with the OSS Profiles, the restrictions are

established to allow deployment of a UoC in an environment developed to any of the more

permissive capability sets. Note that the deployment of a UoC into more permissive capability

sets may not be adequate for the required design assurance of the UoC.

Additional implementation-specific restrictions may be imposed on software component

development that are outside the C++ restrictions imposed in this section (e.g., MISRA

Guidelines for the Use of the C++ language in Critical Systems).

3.2.3.3.1 C++ Programming Language Definition for General Purpose Capability Set

The General Purpose C++ Programming Language capability set includes features from the

Programming Language specification defined in ISO/IEC 14882:2003: Programming Languages

– C++ with the following modifications:

 Component use of the pragma directive (ISO/IEC 14882:2003, §16.6) for data structure

compositions on FACE Interfaces is excluded

Note: All other uses of pragma directives are permitted.

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Input/Output library standard iostream objects (ISO/IEC 14882:2003, §27.3) and all

dependencies on them (e.g., ISO/IEC 14882:2003, §27.4.2.1.6, 27.4.2.4) are excluded

Note: Some Input/Output library capabilities (e.g., file streams) may have other

implementation-dependent platform dependencies (e.g., file storage device, Input/Output

device).

 Component use of wide characters (ISO/IEC 14882:2003, §3.9.1.5), multibyte characters

(ISO/IEC 14882:2003, §1.3.8), wide strings (ISO/IEC 14882:2003, §17.3.2.1.3.3), and

multibyte strings (ISO/IEC 14882:2003, §17.3.2.1.3.2) is excluded, including library

functions that manipulate those types

For the portion of the C++ library functions that are in common with the C library functions,

only the functions defined in Appendix A for the General Purpose Profile are supported.

Exception Handling (ISO/IEC 14882:2003, §15, 18.6, 19.1) is supported except across the

FACE defined API boundaries. Exceptions may be thrown and caught within a single UoC.

3.2.3.3.2 C++ Programming Language Definition for Safety Extended Capability Set

The Safety Extended C++ Programming Language capability set includes features from the

Programming Language specification defined in ISO/IEC 14882:2003: Programming Languages

– C++ with the following modifications:

 Component use of the pragma directive (ISO/IEC 14882:2003, §16.6) for data structure

compositions on FACE Interfaces is excluded

Note: All other uses of pragma directives are permitted.

FACE™ Technical Standard, Edition 3.0 35

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Input/output library (ISO/IEC 14882:2003, §27) is excluded

Note: For input/output support (including file system), safety-related C++ components use

the input/output functional interfaces defined as part of the corresponding OSS Profile.

 Component use of wide characters (ISO/IEC 14882:2003, §3.9.1.5), multibyte characters

(ISO/IEC 14882:2003, §1.3.8), wide strings (ISO/IEC 14882:2003, §17.3.2.1.3.3), and

multibyte strings (ISO/IEC 14882:2003, §17.3.2.1.3.2) is excluded, including library

functions that manipulate those types

 C++ Standard Template Libraries (STL) (ISO/IEC 14882:2003, §19, 20, 21, 22, 23, 24,

25, 26, 27) are excluded

Note: No restrictions on software suppliers developing their own template

implementations (ISO/IEC 14882:2003, §14).

 Run-Time Type Information (RTTI) (ISO/IEC 14882:2003, §18.5) and use of

dynamic_cast (ISO/IEC 14882:2003, §5.2.7) are excluded.

Dynamic memory management via “operator new” and “operator delete” is supported. Software

components may override the default operator new and operator delete (ISO/IEC 14882:2003,

§17.4.3.4) to implement software component-specific object memory management systems.

The C++ library functions (ISO/IEC 14882:2003, §18.1, 18.2.2, 19.3, 20.4.6, 21.4, 26.5, 27.8.2)

that are supported are those that are in common with the C library functions defined in the

corresponding OSS Profile defined in Appendix A.

Exception Handling (ISO/IEC 14882:2003, §15, 18.6, 19.1) is supported except across the

FACE defined API boundaries. Exceptions may be thrown and caught within a single UoC.

3.2.3.3.3 C++ Programming Language Definition for Safety Base and Security Capability Sets

Restrictions to the C++ Programming Language features and libraries for the Safety Base and

Security capability sets are based on recommendations in DO-332 (Object-Oriented Technology

and Related Techniques Supplement to DO-178C and DO-278A) and recommendations from the

Embedded C++ Committee. The recommendations from these are used to define C++

restrictions appropriate for use in safety-critical and real-time systems.

The Safety Base and Security C++ Programming Language capability sets includes features

from the Programming Language specification defined in ISO/IEC 14882:2003: Programming

Languages – C++ with the following modifications:

 Component use of the pragma directive (ISO/IEC 14882:2003, §16.6) for data structure

compositions on FACE Interfaces are excluded

Note: All other uses of pragma directives are permitted.

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Virtual base classes (ISO/IEC 14882:2003, §10.1) are excluded

36 Open Group Standard (2017)

 Dynamic memory de-allocation via default “operator delete” (ISO/IEC 14882:2003,

§3.7.3.2, 18.4.1) is excluded

Note: Dynamic memory allocation via “operator new” is supported. Software components

can override the default operator new and delete (ISO/IEC 14882:2003, §17.4.3.4) to

implement software component-specific object memory management systems.

 Run-Time Type Information (ISO/IEC 14882:2003, §18.5) and use of dynamic_cast

(ISO/IEC 14882:2003, §5.2.7) are excluded

 Exception Handling (ISO/IEC 14882:2003, §15, 18.6, 19.1) is excluded

 C++ Standard Template Libraries (ISO/IEC 14882:2003, §19, 20, 21, 22, 23, 24, 25, 26,

27) are excluded

Note: There are no restrictions on software suppliers developing their own template

implementations (ISO/IEC 14882:2003, §14).

 Input/output library (ISO/IEC 14882:2003, §27) is excluded

Note: There are no C++ input/output library functions supported. For input/output support

(including file system), safety-related C++ components utilize the input/output functional

interfaces defined as part of the corresponding OSS Profile.

 Component use of wide characters (ISO/IEC 14882:2003, §3.9.1.5), multibyte characters

(ISO/IEC 14882:2003, §1.3.8), wide strings (ISO/IEC 14882:2003, §17.3.2.1.3.3), and

multibyte strings (ISO/IEC 14882:2003, §17.3.2.1.3.2) is excluded, including library

functions that manipulate those types

The C++ library functions (ISO/IEC 14882:2003, §18.1, 18.2.2, 19.3, 20.4.6, 21.4, 26.5, 27.8.2)

that are supported are only those that are in common with the C library functions defined in the

corresponding OSS Profile.

3.2.3.3.4 C++ Programming Language and Run-Time Requirements

The requirements associated with C++ Programming Language Run-Time include:

1. UoCs using the C++ Programming Language Run-Time supplied by the OS shall be

restricted to the Programming Language features for the selected capability set.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

2. UoCs using the C++ Programming Language Run-Time supplied by the OS shall be

restricted to the Programming Language library functions for the selected capability set.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

3. OSS UoCs providing a C++ Programming Language Run-Time shall support the

capabilities defined in the selected capability set.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

Note: The appropriate capability set sections for the preceding requirements are as

follows:

FACE™ Technical Standard, Edition 3.0 37

— General Purpose capability set – Section 3.2.3.3.1

— Safety Extended capability set – Section 3.2.3.3.2

— Safety Base capability sets – Section 3.2.3.3.3

— Security capability set – Section 3.2.3.3.3

4. UoCs using the C++ STL function calls in the Safety (Extended or Base) or Security

capability sets shall encapsulate the C++ STL functions within the UoC.

3.2.3.4 Ada Programming Language

The following sections define Ada Programming Language features and library functions for the

supported capability sets. These capability sets are listed in the order of most permissive

(General Purpose) to most restrictive (Security). As with the OSS Profiles, the restrictions are

established to allow deployment of a UoC in an environment developed to any of the more

permissive capability sets. Note that the deployment of a UoC into a more permissive capability

set may not be adequate for the required design assurance of the UoC.

Restrictions to Ada 95 Programming Language features and libraries for the Safety Extended,

Safety Base, and Security capability sets are based on the Ravenscar Ada 95 subset profile

developed at the Eighth International Real-Time Ada Workshop. This profile is advocated in the

ARG Ravenscar Profile for High-Integrity Systems, Technical Report,

ISO/IEC/JTC1/SC22/WG9, AI-00249. The Ravenscar Ada 95 subset is enforced by a compiler

using “pragma Restrictions” keywords.

3.2.3.4.1 Ada 95 Programming Language Definition for General Purpose Capability Set

The General Purpose Ada 95 Programming Language capability set includes features from the

Programming Language specification defined in ANSI/ISO/IEC 8652:1995: Ada 95 Reference

Manual, Language, and Standard Libraries with the following modifications:

 Implementation-defined pragmas (ANSI/ISO/IEC 8652:1995, §2.8 (14)) for data structure

compositions on FACE Interfaces are excluded

Note: All other uses of implementation-defined pragma directives are permitted.

Note: Use of the language-defined pragmas (e.g., pragma priority, pragma interface,

pragma export) defined throughout the Ada 95 Reference Manual is permitted.

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Asynchronous Transfer of Control (ANSI/ISO/IEC 8652:1995, §9.7.4) is excluded

 Wide characters, wide strings, and wide text are excluded

 Input/Output capabilities as defined in (ANSI/ISO/IEC 8652:1995, §13.13, A.6, A.7, A.8,

A.9, A.10, A.11, A.12, A.13) access to files requiring any external communications

interface hardware or to external hardware devices is excluded

As described in §A.10, In_File and Out_File must be defined to an internal file. This file

definition restriction applies to all of Annex A and §13.13.

38 Open Group Standard (2017)

Note: The definition of external_file and file_objects is restricted to files accessible

internally by the OSS.Distributed Systems (ANSI/ISO/IEC 8652:1995, Annex E) is

excluded.

 Information Systems (ANSI/ISO/IEC 8652:1995, Annex F) is excluded

For Ada 95-based components, the component uses the tasking/threading capabilities defined as

part of the Programming Language.

The supported Ada 95 exception handling is maintained except across the FACE defined API

boundaries. Exceptions may be thrown and caught within a single UoC.

3.2.3.4.2 Ada 2012 Programming Language Definition for General Purpose Capability Set

The General Purpose Ada 2012 Programming Language capability set includes features from the

Programming Language specification defined in ISO/IEC 8652:2012(E) Ada 2012: Reference

Manual, Language, and Standard Libraries, with the following modifications:

 Implementation-defined pragmas (ISO/IEC 8652:2012(E), §2.8 (14)) for data structure

compositions on FACE Interfaces are excluded

Note: All other uses of implementation-defined pragma directives are permitted.

Note: Use of the language-defined pragmas (e.g., pragma priority, pragma interface,

pragma export) defined throughout the Ada 2012 Reference Manual is permitted.

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Asynchronous Transfer of Control (ISO/IEC 8652:2012(E), §9.7.4) is excluded

 Dynamic Subtype Predicates (ISO/IEC 8652:2012(E) Ada 2012, §3.2.4) are excluded

Note: Static Subtype Predicates are permitted.

 Pre and Post Conditions (ISO/IEC 8652:2012(E) Ada 2012, §6.1.1) are excluded

 Wide characters, wide strings, and wide text are excluded

 Input/Output capabilities as defined in ISO/IEC 8652:2012(E), §13.13, A.6, A.7, A.8, A.9,

A.10, A.11, A.12, A.13 access to files requiring any external communications interface

hardware or to external hardware devices is excluded

As described in §A.10, In_File and Out_File must be defined to an internal file. This file

definition restriction applies to all of Annex A and §13.13.

Note: The definition of external_file and file_objects is restricted to files accessible

internally by the OSS.

 Distributed Systems (ISO/IEC 8652:2012(E), Annex E) is excluded

 Information Systems (ISO/IEC 8652:2012(E), Annex F) is excluded

For Ada 2012-based components, the component uses the tasking/threading capabilities defined

as part of the Programming Language.

FACE™ Technical Standard, Edition 3.0 39

Note: There are no Programming Language Safety Base or Security capability sets for Ada

2012.

For Ada 2012-based components, the component uses the tasking/threading capabilities defined

as part of the Programming Language. Ada 2012 exception handling is supported except across

the FACE defined API boundaries. Exceptions may be thrown and caught within a single UoC.

3.2.3.4.3 Ada 95 Programming Language Definition for Safety Extended Capability Set

The Safety Extended Programming Language capability set includes Programming Language

features based on subset definition of the ANSI/ISO/IEC 8652:1995: Ada 95 Reference Manual,

Language, and Standard Libraries, as described in the ARG Ravenscar Profile for High-Integrity

Systems, Technical Report, ISO/IEC/JTC1/SC22/WG9, AI-00249, 2003 with the following

modifications:

 Component use of implementation-defined pragmas (ANSI/ISO/IEC 8652:1995, §2.8

(14)) for data structure compositions on FACE Interfaces is excluded

Note: All other uses of implementation-defined pragma directives are permitted.

Note: Use of the language-defined pragmas (e.g., pragma priority, pragma interface,

pragma export, etc.) defined throughout the Ada 95 Reference Manual is permitted.

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Asynchronous Transfer of Control (ANSI/ISO/IEC 8652:1995, §9.7.4) and dependencies

are excluded

 Exception handling (ANSI/ISO/IEC 8652:1995, §11) the Exception_Information function

is excluded

Use of the Exception_Message function is limited to exceptions raised using the

Raise_Exception procedure; other uses return messages for which the contents are not

defined by the Ada Reference Manual and are not portable.

 De-allocate in Storage Management (ANSI/ISO/IEC 8652:1995, §13.11) (i.e., no usage of

the Deallocate procedure, Unchecked_Deallocation, or memory allocation post

startup/initialization) is excluded

 Wide characters, wide strings, and wide text are excluded

 Random Number Generation (ANSI/ISO/IEC 8652:1995, §A.5.2) is excluded

 Input/output capabilities (ANSI/ISO/IEC 8652:1995, §13.13, A.6, A.7, A.8, A.9, A.10,

A.11, A.12, A.13, A.14, A.15) are excluded

 Distributed Systems (ANSI/ISO/IEC 8652:1995, Annex E) are excluded

 Information Systems (ANSI/ISO/IEC 8652:1995, Annex F) are excluded

 Numerics (ANSI/ISO/IEC 8652:1995, Annex G) are excluded

The capability set includes defined maximum buffer size for Unbounded-Length String

Handling (ANSI/ISO/IEC 8652:1995, §A.4.5).

Note: The recommended minimum value for defined size is 120 bytes.

40 Open Group Standard (2017)

The capability set includes an Ada 95 Task’s use of secondary stack (if required) limited to a

defined size.

Note: The recommended minimum value for defined size is 4096 bytes.

The capability set includes the subset of functionality defined for the Predefined Language

Environment (ANSI/ISO/IEC 8652:1995, Annex A) based on the above and Ravenscar Ada 95

subset profile exclusions.

The capability set includes the subset of functionality defined for Interfaces to Other Languages

(ANSI/ISO/IEC 8652:1995, Annex B) as follows:

 Sections B.1 and B.2 are included

 Sections B.3.1 and B.3.2 are excluded

 The remainder of Section B.3 is included

The capability set includes the subset of functionality defined for Systems Programming

(ANSI/ISO/IEC 8652:1995, Annex C), based on ISO/IEC TR 15942:2000 including Interrupts

support (ANSI/ISO/IEC 8652:1995, §C.3) limited to constants and type definitions associated

with Ada.Interrupts with the following modification:

 Dependencies on package task attributes (ANSI/ISO/IEC 8652:1995, §C.7.2) are excluded

The capability set includes the subset of functionality defined for Real-Time Systems

(ANSI/ISO/IEC 8652:1995, Annex D), based on ISO/IEC TR 15942:2000 including support for

monotonic time (ANSI/ISO/IEC 8652:1995, §D.8) with the following modifications:

 Dependencies on package Ada.Calendar (ANSI/ISO/IEC 8652:1995, §9.6) are excluded

 Support for relative delay statements (ANSI/ISO/IEC 8652:1995, §9.6) is excluded

Accuracy information related to the elementary functions (ANSI/ISO/IEC 8652:1995, §A.5) is

provided by the run-time supplier.

Ada-based UoCs may use the Ada tasking capability defined as part of the Programming

Language or the tasking/threading from the OS environment (i.e., ARINC 653 or POSIX). The

supported Ada 95 exception handling is maintained except across the FACE defined API

boundaries. Exceptions may be thrown and caught within a single UoC.

3.2.3.4.4 Ada 95 Programming Language Definition for Safety Base and Security Capability Sets

The Safety Base and the Security Programming Language capability sets include Programming

Language features based on subset definition of the ANSI/ISO/IEC 8652:1995: Ada 95

Reference Manual, Language, and Standard Libraries, as described in the ARG Ravenscar

Profile for High-Integrity Systems, Technical Report, ISO/IEC/JTC1/SC22/WG9, AI-00249,

2003 with the following modifications:

 Component use of implementation-defined pragmas (ANSI/ISO/IEC 8652:1995, §2.8

(14)) for data structure compositions on FACE Interfaces is excluded

Note: All other uses of implementation-defined pragma directives are permitted.

Note: Use of the language-defined pragmas (e.g., pragma priority, pragma interface,

pragma export) defined throughout the Ada Reference Manual is permitted.

FACE™ Technical Standard, Edition 3.0 41

Note: Support for pragma directives is compiler implementation-dependent. A compiler

ignores pragma directives it does not recognize.

 Asynchronous Transfer of Control (ANSI/ISO/IEC 8652:1995, §9.7.4) and dependencies

are excluded

 Exception Handling (ANSI/ISO/IEC 8652:1995, Section 11) is limited to handling

predefined exceptions using a single default handler (i.e., pragma Restrictions

No_Exception_Handlers)

 Storage Management (ANSI/ISO/IEC 8652:1995, §13.11 (i.e., as excluded by pragma

Restrictions No_Allocators) and dependencies are excluded

 Wide characters, wide strings, and wide text are excluded

 String Handling (ANSI/ISO/IEC 8652:1995, §A.4) is excluded

 Random Number Generation (ANSI/ISO/IEC 8652:1995, §A.5.2) is excluded

 Input/output capabilities (ANSI/ISO/IEC 8652:1995, §13.13, A.6, A.7, A.8, A.9, A.10,

A.11, A.12, A.13, A.14, A.15) are excluded

 Distributed Systems (ANSI/ISO/IEC 8652:1995, Annex E) are excluded

 Information Systems (ANSI/ISO/IEC 8652:1995, Annex F) are excluded

 Numerics (ANSI/ISO/IEC 8652:1995, Annex G) are excluded

The capability sets include the subset of functionality defined for the Predefined Language

Environment (ANSI/ISO/IEC 8652:1995, Annex A) based on the above and Ravenscar Ada 95

subset profile exclusions.

The capability sets include the subset of functionality defined for Interfaces to Other Languages

(ANSI/ISO/IEC 8652:1995, Annex B) that is limited to constant and type definitions associated

with Interfaces.

The capability sets include the subset of functionality defined for Systems Programming

(ANSI/ISO/IEC 8652:1995, Annex C), based on ISO/IEC TR 15942:2000 including Interrupts

support (ANSI/ISO/IEC 8652:1995, §C.3) limited to constants and type definitions associated

with Ada.Interrupts with the following modification:

 Dependencies on package task attributes (ANSI/ISO/IEC 8652:1995, §C.7.2) are excluded

The capability sets include the subset of functionality defined for Real-Time Systems

(ANSI/ISO/IEC 8652:1995, Annex D), based on ISO/IEC TR 15942:2000 including support for

monotonic time (ANSI/ISO/IEC 8652:1995, §D.8) with the following modifications:

 Dependencies on package Ada.Calendar (ANSI/ISO/IEC 8652:1995, §9.6) are excluded

 Support for relative delay statements (ANSI/ISO/IEC 8652:1995, §9.6) are excluded

Accuracy information related to the elementary functions (ANSI/ISO/IEC 8652:1995, §A.5) is

provided by the run-time supplier.

Ada-based UoCs may use the Ada tasking capability defined as part of the Programming

Language or the tasking/threading from OS environment (i.e., ARINC 653 or POSIX).

42 Open Group Standard (2017)

3.2.3.5 Ada Programming Language and Run-Time Requirements

The requirements associated with the Ada Programming Language include:

1. UoCs using an Ada Run-Time supplied by the OS shall be restricted to the Programming

Language features for the selected capability set.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

2. OSS UoCs providing an Ada Run-Time shall support the capabilities defined in the

selected capability set.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

Note: The appropriate capability set sections for the preceding requirements are as

follows:

— Ada 95 General Purpose capability set – Section 3.2.3.4.1

— Ada 2012 General Purpose capability set – Section 3.2.3.4.2

— Safety Extended capability set – Section 3.2.3.4.3

— Safety Base capability set – Section 3.2.3.4.4

— Security capability set – Section 3.2.3.4.4

3. Safety (Extended or Base) and Security capability set UoCs using input/output support

(including file system) shall utilize Ada bindings for the input/output functional interfaces

defined as part of the corresponding OSS Profile.

3.2.3.6 Java Programming Language

The Java Programming Language may be available in the General Purpose and Safety Extended

capability sets. The following sections define the Java Programming Language support.

3.2.3.6.1 Java Programming Language Definition for General Purpose Capability Set

The General Purpose Java Programming Language capability set includes either of the following

Programming Language specifications:

 Programming language features described in Java Platform, Enterprise Edition 7

(Java EE 7)

 Programming language features described in Java Platform, Standard Edition 8

(Java SE 8)

For Java-based components, the component utilizes the tasking/threading capabilities defined as

part of the Programming Language. Support for communications between partitions includes use

of ARINC 653 sampling and queuing port interfaces.

Java exception handling is supported except across the FACE defined API boundaries.

Exceptions may be thrown and caught within a single UoC.

FACE™ Technical Standard, Edition 3.0 43

3.2.3.6.2 Java Programming Language Definition for Safety Extended Capability Set

The Safety Extended Java Programming Language capability set includes the following

Programming Language specification:

 Java Platform, Standard Edition 8 (Java SE 8)

For Java-based components, the component utilizes the tasking/threading capabilities defined as

part of the Programming Language or the OS environment (ARINC 653 or POSIX). Support for

communications between partitions includes use of ARINC 653 sampling and queuing port

interfaces.

Java exception handling is supported except across the FACE defined API boundaries.

Exceptions may be thrown and caught within a single UoC.

3.2.3.6.3 Java Programming Language and Run-Time Requirements

The requirements associated with this Programming Language include:

1. UoCs using the Java Run-Time supplied by the OS shall be restricted to the Programming

Language features for the selected capability set.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

2. OSS UoCs providing a Java Run-Time shall include the Programming Language features

for the selected capability set.

Note: An OSS UoC must provide the functionality as defined, but may support excluded

and/or additional features.

Note: The appropriate capability set sections for the preceding requirements are as

follows:

— General Purpose capability set – Section 3.2.3.6.1

— Safety Extended capability set – Section 3.2.3.6.2

Note: There are no Programming Language Safety Base or Security capability sets.

3.2.4 Component Framework Interfaces

3.2.4.1 Component Framework

Component Frameworks can help increase the efficiency of creating new software by allowing

developers to focus on the unique requirements of software components without having to use

resources to develop lower-level details of how to manage functionality. Component

Frameworks are not the same as portable libraries. With portable libraries, components

instantiate and invoke the functions and objects provided by the portable library. With

Component Frameworks, developers implement functions and objects specific to their own

component that are then instantiated and invoked by the Component Framework.

A Component Framework provided by the OSS is extending the OSS Interface to include the

Component Framework’s own API. An example of a Component Framework is the Java virtual

machine.

44 Open Group Standard (2017)

The following subsection defines the Component Frameworks for each OSS Profile that can be

optionally included in the OSS.

3.2.4.2 OSS OSGi Framework Support Requirements

For requirements on Component Frameworks provided as part of a UoC, see the requirements

for FSC (Section 3.7.14) and the requirements for the segment relevant to the UoC.

1. When an OSS UoC built to the General Purpose Profile supports OSGi, the OSS UoC

OSGi support shall be comprised of the OSGi API described in OSGi Service Platform

Release 6 Core for Java-based systems.

2. When an OSS UoC built to the Safety Profile supports OSGi, the OSS UoC OSGi support

shall be comprised of the OSGi API described in OSGi Service Platform Release 6 Core

for Java based systems.

Note: The requirement intent is compatibility with an OSS UoC built to the Safety Profile.

For example, a UoC not built for safety applications utilizing the OSGi API may be

deployed in a partition of an OSS UoC built to the Safety Profile.

A main characteristic of software components developed to the Security Profile is the utilization

of a security-related process for development and verification for the software component and its

execution environment. This results in significantly restricting the Component Framework

features and library functions in support of security-related software objectives.

No OSS Component Frameworks usable by a software component developed to the Security

Profile have been defined.

3.2.5 Configuration Services

3.2.5.1 Configuration Services Introduction

Portable software components are designed to be deployable onto different implementations of

the FACE Reference Architecture. Successful integration of any software component into

varying subsystems/platforms may require the ability to modify the software component’s

behavior through configuration. This section details the configuration requirements and artifacts

provided with UoCs by the software supplier to the system integrator.

Run-time configuration involves requests for, receipt of, and processing of configuration data by

an executing software component. The software component’s processing of configuration data

has the effect of changing the software component’s algorithms, behavior, or communication in

one of their predefined ways without modification of the software component itself.

3.2.5.2 Configuration Services Requirements

1. When providing the Configuration Services Interface, a UoC shall provide the

Configuration Services Interface as specified in Section G.2.

2. The configuration parameters of a UoC shall be described in XML conformant to version

1.1 of the XSD standard.

3. When the Configuration Services Interface is implemented, the IDL to Programming

Language Mappings defined in Section 3.14 shall be used.

FACE™ Technical Standard, Edition 3.0 45

3.3 Device Drivers

Device drivers provide adaptation and isolation of hardware devices so they can be used by other

entities using the computing platform. Vendor-supplied drivers may export operating system-

specific interfaces (i.e., non-standard), or may use operating system-specific interfaces to

interact with the OS.

A Software Component designed to the FACE Reference Architecture may use device drivers as

supplied by the OS, device driver, or other (e.g., system integrator) vendors. Due to differences

in driver API sets, the IOSS is responsible for providing adaptation to the supplied drivers.

3.4 I/O Services Segment

The I/O Services Segment (IOSS) abstracts interface hardware and device drivers into I/O

Services that implement communication via the IOS Interface between PSSS UoCs and I/O

devices. An I/O Service is defined for each of several common I/O bus architectures. A PSSS

UoC can use several I/O Services to access multiple I/O bus architectures, and an I/O Service

can provide communications with the same I/O bus architecture to multiple PSSS UoCs. An

IOSS UoC packages one or more I/O Services.

Figure 8 illustrates the potential relationships between PSSS UoCs and I/O Services. The figure

depicts MIL-STD-1553, Serial and Discrete bus architectures. PSSS UoC A requires the MIL-

STD-1553 and Serial I/O Services. PSSS UoC B requires the Serial and Discrete I/O Services.

The packaging of the I/O Services does not impact either PSSS UoC.

Platform-Specific Services Segment

I/O Services Interface

I/O Services Segment

PSSS UoC A PSSS UoC B

IOSS UoC 1

MIL-STD-1553

I/O Service

Serial

I/O Service

IOSS UoC 2

Discrete

 I/O Service

Figure 8: I/O Services Related to PSSS and IOSS UoCs

An I/O connection is the logical relationship between a PSSS UoC and a specific I/O device via

the I/O Services Interface. It is implemented by an I/O Service. Figure 9 depicts several potential

46 Open Group Standard (2017)

bus and device configurations that are normalized by an I/O Service. PSSS UoC A has four I/O

connections, where each connection is a line to an I/O Service. Two connections are to separate

MIL-STD-1553 devices, each on a separate bus that are accessed via a single MIL-STD-1553

I/O Service. Similarly, the other two connections are to serial devices on the same bus that are

accessed via a single Serial I/O Service. Each I/O Service encapsulates computing platform

details so PSSS UoC A is not impacted.

Platform-Specific Services Segment

I/O Services Interface

I/O Services Segment

PSSS UoC A

IOSS UoC 1

MIL-STD-1553

I/O Service

Serial

I/O Service

MIL-STD-1553

bus 1

MIL-STD-1553

bus 2

Serial

bus 1

MIL-STD-1553

Device B1.1

MIL-STD-1553

Device B2.1
Serial

Device B1.1

Serial

Device B1.2

Figure 9: I/O Connections Between PSSS UoCs and I/O Devices

An IOSS UoC is not constrained to any of the FACE OSS Profiles because it may need to call

non-standard OS or device driver interfaces of the computing platform. The IOSS exists to

encapsulate this behavior so that PSSS UoCs can be constrained to FACE Interfaces, including

the OSS Profiles and the I/O Services Interface.

The IOSS offers two capabilities to the PSSS. The I/O Service Management Capability

addresses initialization, configuration, and status queries. The I/O Data Movement Capability

encompasses communication via an I/O connection.

3.4.1 I/O Services Segment Requirements

1. An IOSS UoC shall provide at least one I/O Service.

2. When providing a LCM Services Interface, an IOSS UoC shall do so in accordance with

the requirements of Section 3.13.

FACE™ Technical Standard, Edition 3.0 47

3. When using a LCM Services Interface, an IOSS UoC shall do so in accordance with the

requirements of Section 3.13.

4. When using Programming Language Run-Times, an IOSS UoC shall do so in accordance

with Section 3.2.3.

5. When the Injectable Interface is provided by an IOSS UoC, the Injectable Interface shall

be in accordance with Section 3.11.4.1.

Note: An IOSS may use Configuration Services provided through the OS API in Section

3.2.5, or take it upon itself to manage its own configuration data.

3.4.2 I/O Service Management Capability Requirements

1. The I/O Service Management Capability shall provide for initialization of an I/O bus

architecture.

2. The I/O Service Management Capability shall provide for configuration of an I/O bus

architecture using a configuration resource in accordance with Section 3.2.5.

3. The I/O Service Management Capability shall provide for the return of the status of an I/O

bus architecture.

4. The I/O Service Management Capability shall provide for configuration of an I/O

connection using a configuration resource in accordance with Section 3.2.5.

5. The I/O Service Management Capability shall provide for the return of the status of an I/O

connection.

3.4.3 I/O Data Movement Capability Requirements

1. The I/O Data Movement Capability shall provide the capability to open an I/O connection.

2. The I/O Data Movement Capability shall provide the capability to close an I/O

connection.

3. The I/O Data Movement Capability shall move data across an open I/O connection.

4. The I/O Data Movement Capability shall provide the message payload data without

modification.

3.4.4 I/O Service Requirements

1. The I/O Service shall provide the I/O Service Management Capability for the

corresponding I/O bus architecture per the requirements in Section 3.5.

2. The I/O Service shall provide the I/O Data Movement Capability for the corresponding

I/O bus architecture per the requirements in Section 3.5.

3. The I/O Service shall support the I/O connection parameters of its corresponding I/O bus

architecture as defined in Appendix C.

4. The I/O Service shall support the I/O connection status values of its corresponding I/O bus

architecture as defined in Appendix C.

5. The I/O Service shall supply the return code value as specified in Appendix C.

48 Open Group Standard (2017)

3.5 I/O Services Interface

The IOS Interface defines a standard interface for communication between a PSSS UoC and an

I/O device. This communication is implemented by I/O Services in the IOSS. The logical

relationship between the PSSS UoC and the I/O device is called an I/O connection. Refer to

Section 3.4 for a detailed description of an I/O Service and an I/O connection.

The functions of the IOS Interface are common for each I/O Service supporting a specific I/O

bus architecture. Some functions have parameter types that are tailored for the corresponding I/O

bus architecture. Refer to Appendix C for details regarding the function signatures and data

types for each defined I/O Service.

The IOS Interface defines functions to configure and query status for both an I/O connection and

its associated bus instance. Appendix C describes the configuration and status fields for each

defined I/O Service. The I/O bus types specified in Appendix C and the bus type-specific APIs

and configuration parameters are not intended to be exhaustive. These status and configuration

parameters can be extended by the IOSS developer with previously undefined status and

configuration details as needed. These extensions, as well as any previously undefined bus types,

could be submitted for potential inclusion in the FACE Technical Standard going forward as

required during Conformance Verification. Each PSSS UoC creates connections to an IOSS

UoC that supports the corresponding bus type. The connection configuration information is

defined so that the I/O Service can correlate a connection with a specific handle. In order to

provide portability of PSSS UoCs across different platforms, the type of connection is identified

as an analogy for each I/O bus architecture as depicted in Table 6. While these analogies are not

requirements, they do represent the perspective from which the IOS Interface is defined and

serve as recommended guidance.

Table 6: I/O Connection Analogies

I/O Service Name I/O Bus Architecture I/O Connection Analogy

Serial_IO Serial Port

Analog_IO Analog Analog Signal Channel

Discrete_IO Discrete Discrete Signal Channel

M1553_IO MIL-STD-1553 Subaddress

ARINC429_IO ARINC 429 Channel

Synchro_IO Synchro Synchro Channel

PrecisionSynchro_IO Precision Synchro Synchro Channel

I2C_IO Inter-Integrated Circuit Address

Generic_IO Other architectures N/A

3.5.1 I/O Services Interface Requirements

1. An I/O Service UoC shall provide the IOS Interface as specified in Appendix C.

FACE™ Technical Standard, Edition 3.0 49

2. An I/O Service UoC shall implement the IOS Interface according to the IDL to

Programming Language Mappings defined in Section 3.14.

3.6 Platform-Specific Services Segment

The PSSS creates an infrastructure unique to the platform that provides device data to the

components located in the PCS. The components of the PSSS may be portable and may be

reused between platforms that share the corresponding platform devices. The PSSS is broken

into three sub-segments:

 Platform-Specific Device Services

 Platform-Specific Common Services

 Platform-Specific Graphics Services

Only components that meet the requirements of one of these three sub-segments reside within

the PSSS.

The PSDS sub-segment is made up of components to remove platform device-unique variability

from the PCS. The components of the PSDS act as software abstractions of platform hardware

devices to provide data and control capabilities to the PCS.

The PSCS sub-segment defines a set of service components that may be implemented to include

Logging, Device Protocol Mediation (DPM) Services, Streaming Media Services, Configuration

Services, and System Level Health Monitoring. The PSGS contain only service types defined in

Section 3.6.3 and cannot be augmented without updating the FACE Technical Standard.

The PSGS sub-segment provides a set of graphics services to the PCS. The graphics services

provided vary by platform requirements and are selected by the system integrator.

A notional FACE Reference Architecture is shown in Figure 10. The figure includes PSSS sub-

segments, UoCs, and interfaces.

50 Open Group Standard (2017)

FACE Boundary

I/O Services Segment

Platform-Specific Services Segment

Portable Components Segment Transport Services

Segment

Distribution

Capability

Operating

System

Segment

Graphics Services

Platform Device Services

Platform Common Services

OS

OS

Service Service

Device Driver Device Driver

IO

TS

Configuration Service

System-Level Health Monitoring

Display

Device Sensor

TSOS

OS

Language

Run-Time
Application

Framework

Component Component Component Component

Interface Hardware

(e.g., MIL-STD-1553, Ethernet)

Platform

Displays
Platform

Sensors

Platform

Devices

KEY

FACE Defined Interface

Operating

System

Health

Monitoring

Data Transformation

Capability

Paradigm Translation

Capability

Configuration

Capability

QoS Management

Capability

Adapter to allow

vendor-supplied

drivers to support

the abstracted

FACE interface

Encapsulated

Device

“Business Logic”

Figure 10: Notional Platform-Specific Services Segment

3.6.1 Platform-Specific Services Segment Requirements

1. A PSSS UoC shall only use the interfaces defined in Section 3.2, Section 3.5, Section 3.8,

Section 3.12, and Section 3.13.

2. A PSSS UoC, with the exception of DPM, shall communicate with PCS and PSSS

components, through the TS Interface.

Note: This restricts inter-partition/process and intra-partition/process UoC to UoC

communication.

3. All data communicated over the TS Interface shall be defined by the FACE Data

Architecture in accordance with requirements in Section 3.9.

4. A Connection element “name” property shall be a case-insensitive string.

5. The Connection name provided to TSS UoCs to create a connection shall match the

“name” property of the corresponding Connection element in the UoC Supplied Model for

the UoC.

Note: The USM may contain a default name which could be overridden by configuration

data.

6. A PSSS UoC shall use the IOS Interface defined in Section 3.5 to communicate with an

IOSS UoC.

FACE™ Technical Standard, Edition 3.0 51

7. A PSSS UoC shall exist entirely in a single PSSS sub-segment.

8. A PSSS UoC that uses a Programing Language Run-Time shall use the Programming

Language Run-Time Interfaces defined in Section 3.2.3.

Note: If a Programming Language Run-Time is implemented in the PSSS as part of the

UoC, then the Programming Language Run-Time must conform exclusively to a subset of

the following interfaces for all data exchange crossing the UoC boundary per FACE

segment requirements:

— TS Interface

— IOS Interface

9. A PSSS UoC that uses a Component Framework shall use the Component Framework

Interface defined in Section 3.2.4.

Note: If a Component Framework is implemented in the PSSS as part of the UoC, then the

Component Framework must conform exclusively to any subset of the following

interfaces for all data exchange crossing the UoC boundary per the segment requirements:

— TS Interface

— IOS Interface

10. When implementing a Component Framework, a PSSS UoC shall do so in accordance to

the requirements in Section 3.6.1.2.

11. When a PSSS UoC retrieves Configuration Information, the UoC shall use the

Configuration API as defined in Section 3.2.5.

12. When using Centralized Configuration, a PSSS UoC shall use the TSS API.

Note: Section 3.6.3.1.4 describes the Centralized Configuration Service.

13. When a PSSS UoC uses Data Stores, the PSSS UoC shall use the TS Interface to store and

retrieve data.

14. When a PSSS UoC uses the TSS Component State Persistence (CSP) Capability, it shall

be in accordance with the CSP Interface defined in Section 3.8.3.

15. When a PSSS UoC uses CSP, the PSSS UoC shall use the CSP Interface defined in

Section E.3.5 to store and retrieve its Checkpoint Data.

16. When the Injectable Interface is provided by a PSSS UoC, the Injectable Interface shall be

in accordance with Section 3.11.4.1.

Note: The Injectable Interface is used to resolve the interface dependency between UoCs.

3.6.1.1 PSSS UoC Life Cycle Management Services Requirements

1. When providing a LCM Services Interface, a PSSS UoC shall do so in accordance with

the requirements of Section 3.13.

2. When using a LCM Services Interface, a PSSS UoC shall do so in accordance with the

requirements of Section 3.13.

52 Open Group Standard (2017)

3.6.1.2 Component Frameworks Provided as Part of a PSSS UoC Requirements

FACE requirements allow the use of Component Frameworks as integral parts of PSSS UoCs as

long as the libraries are FACE aligned and the entire Component Framework is provided as part

of a conformant PSSS UoC. There are no specific requirements to use Component Frameworks

as integral parts of PSSS UoCs.

1. When exchanging data using a framework, a PSSS UoC shall use the TS Interface.

2. When accessing framework configuration interfaces, a PSSS UoC shall use the FACE

Configuration Interface.

3. When accessing framework device drivers, a PSSS UoC shall use the IOS Interface.

4. When storing private and checkpoint data, a PSSS UoC shall use the CSP Interface.

5. When accessing framework capabilities not listed in requirements 1-4 (i.e., persistent

storage, time interfaces, logging), a PSSS UoC shall use the TS Interface.

Note: A PSSS UoC must use the FACE TS Interface (Send_Message(TS)) to access

framework persistent storage create and update interfaces.

Note: A PSSS UoC must use the FACE TS Interface (Send_Message(TS)) to access

framework persistent storage request interfaces.

Note: A PSSS UoC must use the FACE TS Interface (Receive_Message(TS)) to access

framework persistent storage response interfaces.

Note: A PSSS UoC must use the FACE TS Interface (Receive_Message(TS) to access

framework time get time interfaces.

Note: A PSSS UoC must use the FACE TS Interface (Send_Message(TS)) to access

framework time set time interfaces.

Note: A PSSS UoC must use the FACE TS Interface to access framework error and

logging interfaces.

6. When a Component Framework is implemented as part of a PSSS UoC, the Component

Framework shall use the Initializable Capability of the LCM Services to initialize an

instance of a PSSS UoC.

7. When a Component Framework is implemented as part of a PSSS UoC, the Component

Framework shall use the Initializable Capability of the LCM Services to finalize an

instance of a PSSS UoC.

8. When a Component Framework is implemented as part of a PSSS UoC, the Component

Framework shall use the Configurable Capability of the LCM Services to configure an

instance of a PSSS UoC.

9. When a Component Framework is implemented as part of a PSSS UoC, the Component

Framework shall use the Connectable Capability of the LCM Services to connect an

instance of a PSSS UoC.

10. When a Component Framework is implemented as part of a PSSS UoC, the Component

Framework shall use the Connectable Capability of the LCM Services to disconnect an

instance of a PSSS UoC.

FACE™ Technical Standard, Edition 3.0 53

11. When a Component Framework is implemented as part of a PSSS UoC, the Component

Framework shall use the Stateful Capability of the LCM Services to query the state of an

instance of a PSSS UoC.

12. When a Component Framework is implemented as part of a PSSS UoC, the Component

Framework shall use the Stateful Capability of the LCM Services to change the state of an

instance of a PSSS UoC.

3.6.1.3 PSSS Security Transformation Requirements

Security Transformations perform transformations of data for security purposes as described in

Section 4.2.2. The FACE Technical Standard does not specify or constrain where

transformations are performed.

1. When a Security Transformation is implemented as part of a PSSS UoC, all data crossing

the Security Transformation boundary shall be defined in accordance with the FACE Data

Architecture in Section 3.9.

Note: Recommend the security transformation uses a TS Interface when traversing the

transform boundary internal to the PSSS.

Note: Given the sensitivity of the internal interface data model, there may be restrictions

on availability and distribution of the detailed data models levied by the platform and/or

security-relevant transform supplier.

2. When a Security Transformation is implemented as part of a PSSS UoC, the

characterization of the transformation shall include a detailed description of the

transformation.

Note: The detailed description of the security transformation should be sufficient to enable

interoperability with similar transformations.

Note: Given the sensitivity of the transformation characterization data, there may be

restrictions on availability and distribution of the detailed data models levied by the

platform and/or security-relevant transform supplier.

3.6.2 Platform-Specific Device Services

The Platform-Specific Device Services (PSDS) sub-segment is made up of UoCs to abstract

platform device-unique variability from the PCS. This sub-segment may include UoCs that

provide control for, receive data from, and send data to platform devices or external systems. It

may also contain Legacy Operational Flight Program (OFP) adapters or other Platform-Specific

software components used to provide integration support for other software components on the

platform.

3.6.2.1 Platform-Specific Device Services Requirements

PSDS UoCs communicate with platform devices using data as defined by the associated ICD

and may possess the ability to resequence the messages.

1. A PSDS UoC shall perform the translation of data between the TS Interface and IOS

Interface.

2. A PSDS UoC shall use the IOS Interface to access an I/O device.

54 Open Group Standard (2017)

Note: The functionality on either side of the IOS Interface is dependent on developer and

integrator implementation. I/O Device control can be allocated to the I/O Service, thus

making the PSDS more portable.

3. When a PSDS UoC communicates with a DPM Service, it shall use the IOS Interface

defined in Appendix C.

3.6.3 Platform-Specific Common Services

The Platform-Specific Common Services (PSCS) sub-segment provides services to other FACE

segments per system requirements. The PSCS communicate using the TS Interface to the PCS

and the IOS Interface to the IOSS. The PSCS support Logging, Device Protocol Mediation

(DPM), Streaming Media, Centralized Configuration Services, and System Level Health

Monitoring, as defined in Section 3.6.3.1.1, Section 3.6.3.1.1.2, Section 3.6.3.1.3, Section

3.6.3.1.4, and Section 3.6.3.1.5 respectively. The PSCS sub-segment defines an exhaustive list of

software components that may be implemented in a FACE Reference Architecture:

 Logging

 Device Protocol Mediation

 Streaming Media

 Centralized Configuration Services

 System Level Health Monitoring

3.6.3.1 Platform-Specific Common Services Requirements

1. A PSCS UoC shall use the IOS Interface to access an I/O device.

Note: The functionality on either side of the IOS Interface is dependent on developer and

integrator implementation. I/O Device control can be allocated to the I/O Service, thus

making the PSCS more portable.

2. Communication between a PSCS UoC and an IOSS UoC shall use the IOS Interface.

3. Communication between a PSCS UoC and software components of the PSSS, TSS, and

PCS shall use the TS Interface.

3.6.3.1.1 Logging Services Requirements

Logging services fall into one of two categories:

 Centralized

 Localized

3.6.3.1.1.1 Centralized Logging

1. When a centralized logging service is provided, it shall exchange data over the TS

Interface formatted in accordance with IETF RFC 5424: The Syslog Protocol.

2. When a centralized logging service is provided, it shall exchange data over the IOS

Interface formatted in accordance with IETF RFC 5424: The Syslog Protocol.

FACE™ Technical Standard, Edition 3.0 55

Note: Faults are logged by the Health Monitoring and Fault Manager described in Section

3.1.3.

3.6.3.1.1.2 Localized Logging

Localized logging is handled within the UoC according to the individual UoC’s implementation.

Software suppliers may choose to implement a localized logging method.

3.6.3.1.2 Device Protocol Mediation Requirements

DPM services are UoCs of the PSCS sub-segment acting as a protocol mediator for platform

devices using transport protocols (e.g., SNMP, SNMP V3, HTTP, HTTPS, FTP, and SFTP)

supported by the OSS Interface. The DPM Service is only accessible by UoCs of the PSDS sub-

segment of the PSSS. See Figure 11 for a visual depiction of DPM services.

1. The DPM Service shall communicate with UoCs of the PSDS sub-segment of the PSSS

through the IOS Interface defined in Appendix C.

2. The DPM Service shall communicate with the platform device using data as defined by

the platform device ICD.

I/O Services Segment

Operating System Segment

Platform-Specific Services Segment

Portable Components Segment

HMI
TSS

Platform-Specific Device Services Platform-Specific Common Services

MIL-STD-1553

Service

Radio

Manager

TSS

I/O

Data Loader

Manager
Device Protocol

Mediation Service

I/O

I/O

I/O Interface

(Ethernet Message Payload Format)

Protocol -> SNMP

EGI

TSS

I/O

Ethernet

Platform-Specific

Graphics Services

ARINC 661

TSS

I/O

OS

OS

OS

OS

O
S

OS
GPU

Driver

1553

Driver

Data is defined by

the device ICD.

Data is not

required to be in

the FACE

message format

Data is defined by

the device ICD.

Data is not

required to be in

the FACE

message format.

I/O Message Model

Device or Driver-Specific

Message/Protocol Model

I/O Lib I/O Lib I/O Lib I/O Lib I/O Lib

I/O Lib

TSS

Figure 11: DPM Example

3.6.3.1.3 Streaming Media Requirements

Streaming Media Services are UoCs of the PSCS sub-segment acting as a streaming media

adapter for platform imaging devices using media protocols (e.g., MPEG Formats, SMPTE-292).

See Figure 12 for a visual depiction of Streaming Media Services.

1. A Streaming Media Service UoC shall communicate with the streaming media driver.

Note: When hardware-accelerated decoding of streaming media protocols and formats is

required, the Streaming Media Service may have access to streaming media hardware

drivers.

56 Open Group Standard (2017)

Note: Recommended for low latency high bandwidth implementations.

2. A Streaming Media Service UoC shall exchange data over the TS Interface.

I/O Connection

Device or Driver-specific

Message/Protocol Model

I/O

I/O Lib

TSS

OS

OS

I/O

I/O Lib

I/O Services Segment

Operating System Segment

OS

Platform-Specific Services Segment

Portable Components Segment

HMI
TSS

Platform-Specific Device Services Platform-Specific Common Services

MIL-STD-1553

Service

Radio

Manager

TSS

I/O

Data Loader

Manager

Streaming

Media Service

I/O

EGI

TSS

I/O

Ethernet

Platform-Specific

Graphics Services

ARINC 661

TSS

OS

OS

OS

O
S

OS
GPU

Driver

1553

Driver
Media

Driver

Data is defined by

the device ICD.

Data is not

required to be in

the FACE

message format.

I/O Lib I/O Lib

I/O Lib

TSS Streaming Media

Service may have

access to the

Media Driver.

Figure 12: Streaming Media Services Notional Example

3.6.3.1.4 Centralized Configuration Service Requirements

The primary purpose of the Centralized Configuration Service is to enable sharing of

configuration information among system components and services.

1. The Centralized Configuration Service shall provide a mechanism to provide

configuration information for the following FACE segments:

a. PCS

b. TSS

c. PSSS

Note: The Centralized Configuration Service provides a mechanism for a software

component to make configuration information available to other components.

Note: The Centralized Configuration Service is intended to communicate with software

components residing in the PSSS, TSS, and PCS, using the TS Interface.

Note: The Centralized Configuration Service is intended to communicate with software

components residing in the IOSS, using the IOS Interface.

2. When a Centralized Configuration Service uses the Configuration Interface, it shall be as

defined in Appendix G.

FACE™ Technical Standard, Edition 3.0 57

3.6.3.1.5 System Level Health Monitoring Requirements

The primary purpose of the System Level Health Monitor is monitoring and reporting system

and application faults and failures. The System Level Health Monitor configuration may be

administratively viewable at run-time. The System Level Health Monitor may support one or

more redundancy models as fault recovery and avoidance mechanisms. The System Level

Health Monitor may support the “repair” option, such that HMFM attempts to resurrect failed or

faulted resources. The System Level Health Monitor may monitor/manage the instantiation and

termination of components. The System Level Health Monitor may generate alarms and

notifications to indicate internal state transitions experienced by the components.

1. The System Level Health Monitor shall use the HMFM Interface defined in Section 3.2.2.

3.6.4 Platform-Specific Graphics Services

The Platform-Specific Graphics Services (PSGS) sub-segment provides a set of graphics

services to the PCS. The graphics services provided vary by platform requirements and are

selected by the system integrator. See Section 3.12.9.

3.6.4.1 Platform-Specific Graphics Services Requirements

1. When communicating with the graphics driver, the Graphics Services UoC shall do so in

accordance with requirements in Section 3.12.9.

3.7 Transport Services Segment

3.7.1 Introduction

The Transport Services Segment (TSS) abstracts data access and access to common technical

functions and facilitates integration of PCS and PSSS software components into disparate

architectures and platforms. UoCs within the TSS provide capabilities related to data access.

They also provide standardized interfaces for UoCs located in the PCS and PSSS. Support

capabilities specified within the TSS may include distribution, routing, prioritization,

addressability, association, abstraction, and transformation of software component information.

In the FACE Technical Standard, some of the TSS support capabilities are identified, and

requirements are allocated to these capabilities. There are additional support capabilities that fit

into the TSS that are not individually identified and do not have requirements for

implementation. An example of a capability that may be allocated to TSS UoCs is specific

security concerns such as encryption of data, or enforcement of access control. The TSS

Interfaces are defined in Section 3.8 and Appendix E.

Figure 13 depicts the TSS support capabilities, and the inter-segment and intra-segment

interfaces.

58 Open Group Standard (2017)

TRANSPORT PROTOCOL MODULE

CAPABILITY

TYPE ABSTRACTION CAPABILITY

T
P

M
 A

P
I

Other TSS CAPABILITIES:

 QoS MANAGEMENT

 MESSAGE ASSOCIATION

 DATA TRANSFORMATION

 MESSAGE PATTERN TRANSLATION

 DATA STORE

 FRAMEWORK SUPPORT

Operating

System

Segment

Portable

Components

Segment

Platform-

Specific

Services

Segment

CSP API

TS API

optional

TRANSPORT SERVICE CAPABILITY

TA API

COMPONENT STATE PERSISTENCE

CAPABILITY

 T
S

S
 C

O
N

F
IG

U
R

A
T

IO
N

 C
A

P
A

B
IL

IT
Y

DISTRIBUTION

CAPABILITY

O
S

S
 A

P
I

TRANSPORT SERVICES SEGMENT

Figure 13: Transport Services Segment Capabilities

TSS UoCs support data access to a variety of common technical services. The TSS UoCs

provide these common technical services to a PSSS or PCS UoC through the TSS Inter-segment

Interfaces: Transport Service (TS) API, and the Component State Persistence (CSP) API. TSS

UoCs provide data transport between PCS/PSSS UoCs, as well as mediation between messages

with different data models. TSS UoCs support a variety of data transport protocols and

messaging patterns. Additionally, TSS UoCs provide access to persistent Data Stores and the

ability for UoCs to checkpoint their internal state. The TSS includes support for the capabilities

identified below, and shown in Figure 13:

 Transport Service Capability (Section 3.7.3)

 Distribution Capability (Section 3.7.4)

 Configuration Capability (Section 3.7.5)

 Type Abstraction Capability (Section 3.7.6)

 QoS Management Capability (Section 3.7.7)

 Message Association Capability (Section 3.7.8)

FACE™ Technical Standard, Edition 3.0 59

 Data Transformation Capability (Section 3.7.9)

 Messaging Pattern Translation Capability (Section 3.7.10)

 Transport Protocol Module (TPM) Capability (Section 3.7.11)

 Data Store Support Capability (Section 3.7.12)

 Component State Persistence Capability (Section 3.7.13)

 Framework Support Capability (Section 3.7.14)

Within a system composed from UoCs, it is not a requirement that all TSS capabilities be

supported. Different TSS UoCs may provide the whole set or a subset of TSS capabilities

including but not limited to Quality of Service (QoS) Management, Message Association, Data

Transformation, and Message Pattern Translation. The TSS capabilities help isolate PCS/PSSS

data architecture variances and messaging to the TSS. To achieve the minimum capability set

required to function as a TSS, the UoCs collectively comprising the TSS provide Transport

Service Capability (TS Capability) with the type-specific interface, the Distribution Capability,

and the TSS Configuration Capability. Providing additional TSS capabilities depends on

requirements for a given instance of the TSS UoCs.

The TSS Intra-segment Interfaces are provided and used by modules, libraries, or software

components that form TSS UoCs. Intra-segment interfaces provide points of conformance

testing that support the creation of UoCs implementing those interfaces. A TSS then can be

composed of independently created TSS UoCs which interoperate. The TSS Intra-segment

Interfaces cannot be used by PCS or PSSS UoCs.

The Intra-segment Interfaces that may be used to form a proper subset of capabilities into TSS

UoCs include:

 Type Abstraction (TA) API

 Transport Protocol Module (TPM) API

Section 3.7.1.1 provides the sets of TSS Capabilities that can be used to form a TSS UoC.

PCS and PSSS UoCs define messages within the FACE Data Architecture to derive a type-

specific interface for the TSS. The FACE Data Architecture is described in Section 3.9.

3.7.1.1 TSS UoC Conformance Options

A TSS provides TSS Inter-segment Interfaces such as the type-specific interface used by PCS or

PSSS UoCs and the Component State Persistence Interface to control PCS or PSSS UoCs. A

TSS UoC can base its implementation on providing only the Inter-segment Interfaces. However,

to enable portability of TSS libraries, TSS UoCs can also be built against subsets of TSS

segment requirements when they provide intra-segment interfaces. UoCs providing intra-

segment interfaces do not provide the complete set of TSS capabilities required for the intended

system design.

For example, a UoC can realize the Type Abstraction capability and provide the TA API. This

UoC, a Type Abstraction UoC, does not provide the type-specific interface nor realize the

Transport Service Capability. To incorporate this Type Abstraction UoC, the system design

would also include a type-specific interface to type abstraction interface adapter as its own UoC.

60 Open Group Standard (2017)

As another example, a UoC can provide the TPM API and realize the Transport Protocol Module

Capability to support interoperability between non-homogeneous TSS implementations in the

system. Table 7 summarizes the sets of TSS Capabilities used to form different TSS UoCs.

Table 7: Sets of TSS Capabilities that Form a TSS UoC

Units of Conformance

TSS Capabilities TS TA

TS-TA

Interface

Adapter TPM CSP FS

TS Capability Required Required

TSS Distribution

Capability

Required Required

TSS Configuration

Capability

Required Required Optional Optional Optional Optional

Type Abstraction

Capability

 Required

QoS Management

Capability

Optional Optional

Message Association

Capability

Optional Optional

Data Transformation

Capability

Optional Optional

Message Pattern

Translation Capability

Optional Optional

Transport Protocol

Module Capability

 Required

Data Store Support

Capability

Optional Optional

Component State

Persistence Capability

 Required

Framework Support

Capability

Optional Optional Required

Note: “Required” indicates the capability is required by the UoC. “Optional” indicates the

capability is optional for the UoC.

Note: As discussed in Section 3.11.3, TSS UoCs provide an Injectable Interface for each

FACE Interface declared by IDL that it uses.

FACE™ Technical Standard, Edition 3.0 61

3.7.2 Transport Services Segment Requirements

The TSS is a logical grouping of software components that provide access to data and other

common technical services. The following are requirements placed upon software components

intended to implement capabilities allocated to the segment:

1. A TSS UoC shall provide one or more of the following capabilities:

a. Transport Service Capability

b. TSS Distribution Capability

c. TSS Configuration Capability

d. Type Abstraction Capability

e. QoS Management Capability

f. Message Association Capability

g. Data Transformation Capability

h. Messaging Pattern Translation Capability

i. Transport Protocol Module Capability

j. Data Store Support Capability

k. Component State Persistence Capability

l. Framework Support Capability

Note: The aggregate UoCs within the TS segment must provide at least the TS Capability,

TSS Distribution, and Configuration Capabilities.

2. A TSS UoC shall use the OS Interface as specified by the applicable FACE OSS Profile

defined in Section 3.2.1.

Note: When a Programming Language Run-Time is implemented in the TSS as part of the

UoC, then the Programming Language Run-Time must conform exclusively to a subset of

the following interfaces for all data exchange crossing the UoC boundary per the segment

requirements:

— TS Interface

— OSS Interface

Note: When a Component Framework is combined with a software component as part of a

TSS UoC, then the Component Framework must conform exclusively to a subset of the

following interfaces for all data exchange crossing the TSS boundary per the segment

requirements for the following:

— TS Interface

— OSS Interface

— CSP Interface

62 Open Group Standard (2017)

3. When using OSS Health Monitoring, a TSS UoC defined to operate in a POSIX

operational environment shall use the OSS HMFM Interface described in Section 3.2.2.

4. When a TSS UoC retrieves Configuration Information locally, the UoC shall use the

Configuration API as defined in Section 3.2.5.

5. When using Centralized Configuration, a TSS UoC shall use the TSS API.

Note: Section 3.6.3.1.4 describes the Centralized Configuration Service.

6. When storing Private or Checkpoint Data, a TSS UoC shall use the CSP Interface as

defined in Section 3.8.4.2 to store the private and checkpoint data.

7. When providing a LCM Services Interface, a TSS UoC shall do so in accordance with the

requirements of Section 3.13.

8. When using a LCM Services Interface, a TSS UoC shall do so in accordance with the

requirements of Section 3.13.

9. When the Injectable Interface is provided by the TSS UoC, the Injectable Interface shall

be in accordance with Section 3.11.4.1.

3.7.3 Transport Service Capability

The Transport Service Capability provides a type-specific interface, and is responsible for

providing the functionality of the Type-Specific Interface to UoCs. The Transport Service

Capability provides the interface for data exchange.

1. A Transport Service Capability shall provide the TS Interface as defined in Section

3.8.4.1.

2. A Transport Service Capability shall supply a library for PCS and PSSS UoCs to use in all

cases.

3. When communicating with the Type Abstraction Capability, the Transport Service

Capability shall use the Type Abstraction Interface.

4. A Transport Service Capability shall be configured using the TSS Configuration

Capability.

5. Transport Service Capability configuration data shall be specified in accordance with the

Configuration Services requirements in Section 3.2.5.

3.7.4 Transport Services Segment Distribution Capability Requirements

The Distribution Capability controls or manages the distribution of data within a TSS. Since a

TSS UoC may require several capabilities in addition to the basic physical exchange of data

between endpoints, it is useful to allocate the requirements for management and control of those

additional capabilities to a single TSS capability. It provides support functionality for data

marshalling and transformations which may be used by other TSS capabilities within a TSS

UoC.

1. A Distribution Capability shall be configured using the TSS Configuration Capability.

2. A Distribution Capability configuration data shall be specified in accordance with the

Configuration Services requirements in Section 3.2.5.

FACE™ Technical Standard, Edition 3.0 63

3. A Distribution Capability shall populate the TS Header Parameter Instance from data

transmitted by a UoC Output EndPoint for received messages.

4. A Distribution Capability shall provide the data contained in the TS Header Parameter

Instance to the receiving endpoint for sent messages.

5. When multiple independent message patterns are implemented, a Distribution Capability

shall be configurable to accommodate multiple independent message patterns.

6. A Distribution Capability shall accept data from data producers and distribute it to data

consumers based on the configuration information.

7. A Distribution Capability message connection shall be a case-insensitive named entity.

8. A Distribution Capability shall use the Message Association Capability to manage

information about data messaging associations and tagging.

9. When transformations are performed, a Distribution Capability shall use one or more of

the Data Transformation Capabilities to perform the following functions:

a. Data transformations

b. Data marshalling

10. When message pattern translations are performed, a Distribution Capability shall use

Message Pattern Translation Capabilities to accommodate translations between disparate

paradigm solutions (e.g., Publish/Subscribe to Request/Reply).

11. When exchanging data between TS Domains, a Distribution Capability shall use the TPM

Interface to communicate with a TPM Capability.

12. When communicating between TS Domains, a Distribution Capability shall provide the

selection of a protocol from one or more TPMs.

3.7.5 Transport Services Segment Configuration Capability Requirements

The TSS Configuration Capability is responsible for managing the configuration of a TSS UoC.

It uses the Configuration Services (either centralized or distributed) to obtain the necessary TSS

UoC configuration data, and it then manages configuration of TSS Capabilities. TSS

Configuration Capability enables capabilities (during design, compile, link, initialization, or

execution time, either static or dynamic), that are implemented by various software modules, or

through the loading of libraries as required by different TSS UoC designs.

1. A TSS Configuration Capability shall provide configuration data as described by the

FACE Configuration Services defined in Section 3.2.5.

2. A TSS Configuration Capability shall include configuration information for the following

capabilities when the respective capability is provided:

a. Transport Service Capability

b. Distribution Capability

c. Type Abstraction Capability

d. QoS Management Capability

e. Message Association Capability

64 Open Group Standard (2017)

f. Data Transformation Capability

g. Message Pattern Translation Capability

h. Transport Protocol Module Capability

i. Data Store Support Capability

j. Component State Persistence Capability

k. Framework Support Capability

3. A TSS Configuration Capability shall use the Configuration Interface to the Configuration

Services as defined in Section 3.2.5 to access configuration data.

4. A TSS Configuration Capability shall support TPM library references being set.

5. When a TPM library reference has been set which uses serialization interfaces, a TSS

Configuration Capability shall provide the FACE::TSS::Serialization interface to allow

TPMs to access message serialization functions.

6. When a TPM library reference has been set which uses serialization interfaces, a TSS

Configuration Capability shall provide a type specific function with the

FACE::TSS::Message_Serialization interface for each message the TPM is to serialize or

deserialize.

7. When a TSS Configuration Capability provides message serialization, each message

serialization function provided shall serialize each element of the message in the order of

the structure defined by the associated Platform View as specified in Section J.2.5.

8. When a TPM provides the primitive marshalling interface, the message serialization

function provided by a TSS Configuration Capability shall use the TPM primitive

marshalling interface to serialize base types as defined in Section 3.7.11.2.

9. When a TSS Configuration Capability provides message deserialization, each message

deserialization function provided shall deserialize each element of the message in the

order of the structure defined by the associated Platform View as specified in Section

J.2.5.

10. When a TPM provides the primitive marshalling interface, the message deserialization

function provided by a TSS Configuration Capability shall use the TPM primitive

marshalling interface to deserialize base types in accordance with requirements in Section

3.7.11.2.

11. When a TPM library reference has been set which uses serialization interfaces, the

FACE::TSS::Message_Serialization interface shall meet the specification of Section

E.3.3.

12. When a TPM library reference has been set which uses serialization interfaces,

Serialization interface shall meet the specification of Section E.3.3.

13. When TPM library references have been set, a TSS Configuration Capability shall use the

TPM’s initialize() function to initialize the TPM.

14. When TPM library references have been set, a TSS Configuration Capability shall manage

the configuration states of the TPM libraries.

FACE™ Technical Standard, Edition 3.0 65

3.7.5.1 Transport Services Segment Configuration Information Requirements

Figure 14 describes the configuration data elements internal to the TSS. The data element

definition used is specific to a TSS UoC and used to configure QoS, message routing, and

message conversions. The integration model, described in Section 3.9.1.5, can provide the

source of information within implementations for many of the TSS configuration data elements.

KEY

Optional, Configuration Information

Required, Configuration Information

QOS POLICY

QOS DEFINITION

QOS ATTRIBUTES (1..N)

TRANSFORMATION TYPE

TRANSFORMATION MAP

TRANSFORMATION CONFIGURATION DATA

ROUTE DEFINITION

ROUTE CONFIGURATION DATA

SOURCE MESSAGE DEFINITION

MESSAGE ROUTING

ASSOCIATION

MESSAGE ROUTING NAME

DESTINATION MESSAGE DEFINITION

Figure 14: TSS Configuration Data Element Relationships

3.7.5.1.1 Configuration Data Elements

1. When a TSS UoC provides message routing, the TSS UoC shall contain the following

Configuration Data Elements:

a. Message Routing Association

b. Route Definition

2. When a TSS UoC provides message routing, the TSS UoC shall contain zero or more of

the following Configuration Data Elements:

a. QoS Definition

b. Transformation Map

Note: Configuration of the data associated with the Configuration Data Elements is

achieved through Configuration Services (defined in Section 3.2.5) or by statically

defining the configuration data within the TSS.

3.7.5.1.2 Message Routing Association

The Message Routing Association defines the routing of messages within the system by the TSS.

Note: This is not intended to imply any particular implementation inside the TSS.

Implementation details within the TSS are not standardized and are intentionally left as

an area of variability within the architecture.

1. The Message Routing configuration information shall associate a Route Definition

between a given Source Message Definition and Destination Message Definition pair.

2. The Message Routing configuration information shall associate a name for the route

defined between a given Source Message Definition and Destination Message Definition

pair.

66 Open Group Standard (2017)

3. When a TSS UoC configures transformations, the Message Routing configuration

information shall associate a Transformation Map between a given Source Message

Definition and Destination Message Definition pair.

4. When a TSS UoC configures QoS, the configuration information shall associate QoS

Attributes Values for the QoS Definition which applies to the Route Definition.

5. When a TSS UoC configures message associations, the configuration information shall

associate one Message Definition to another Message Definition.

Note: The message association can be TSS configuration data supplied or an association

built during run-time.

3.7.5.1.3 Route Definition

1. The Route Definition configuration information shall consist of the following data

elements:

a. Route Configuration Data

3.7.5.1.4 QoS Definition

1. The QoS Definition configuration information shall consist of the following data

elements:

a. QoS Policy

b. QoS Attributes

3.7.5.1.5 Transformation Map

The Transformation Map configuration information provides the means to define conversions to

be used by the TSS on a given Message Parameter Interface’s definition entity.

1. When a TSS UoC implements Transformation Map configuration, the Transformation

Map configuration information shall consist of the following data elements:

a. Transformation Type

b. Transformation Configuration Data

3.7.6 Type Abstraction Capability Requirements

Within a TSS UoC, the Type Abstraction (TA) Interface provides portability of a TSS UoC

when implemented using any programming language (such as C) not supporting function

overloading. While maintaining the strongly typed TS Interface, the Type Abstraction Interface

provides an Intra-segment Interface for use by the TSS UoC, as shown for PCS A and PSSS B of

Figure 15. The use of the Type Abstraction interface is optional, as shown for PCS C and PSSS

D of Figure 15.

FACE™ Technical Standard, Edition 3.0 67

TSS Type

Abstraction

TSS Type

Abstraction

PCS A PSSS B

TSS UoC TSS UoC

PCS C

TSS UoC

PSSS D

TSS UoC

TS Interface

TS Type Abstraction Interface

FACE Certification

executed individually

on each component

(PCS, PSSS, TSS

Type Abstraction, and

TSS UoC).

FACE Certification

executed individually

on each component

(PCS, PSSS, TSS

Type Abstraction, and

TSS UoC).

FACE Conformance

Certification executed

individually on each

component

(PCS, PSSS, TSS

Type Abstraction, and

TSS UoC).

Figure 15: Type Abstraction and Interfaces Examples

1. A Type Abstraction Capability shall be configured using TSS Configuration Capability.

2. A Type Abstraction Capability’s configuration data shall be specified in accordance with

the Configuration Services requirements in Section 3.2.5.

3. When implementing the Type Abstraction Capability, a TSS UoC shall also provide the

Distribution Capability.

4. When implementing the Type Abstraction Capability, a TSS UoC shall also provide zero

or more of the following capabilities:

a. QoS Management Capability

b. Message Association Capability

c. Data Transformation Capability

d. Message Pattern Translation Capability

e. Transport Protocol Module Capability

f. Data Store Support Capability

g. Component State Persistence Capability

h. Framework Support Capability

5. A Type Abstraction Capability shall provide the Type Abstraction Interface as specified in

Section 3.7.6.1.

6. A Type Abstraction Capability shall provide the Base Interface in accordance with

requirements in Section 3.8.2.

68 Open Group Standard (2017)

3.7.6.1 Type Abstraction Interface Requirements

The TA Interface is a TSS intra-segment interface and cannot be used by PCS or PSSS UoCs.

The TA Interface is used by modules, libraries, or software components within the TSS layer.

1. The Type Abstraction Interface shall meet the specification of Section E.4.1.

2. A FACE::TS::Base::Initialize(TS) shall be non-blocking regardless of the underlying

transport mechanism.

Note: Initialize(TS) may need to complete asynchronously after Initialize(TA) returns if

the time to complete exceeds some threshold.

3. A FACE::TS::Base::Create_Connection(TS) function shall be non-blocking regardless of

the underlying transport mechanisms.

Note: Create_Connection(TS) may need to complete asynchronously after

Create_Connection(TS) returns if the time to complete exceeds some threshold.

4. A Type Abstraction Capability shall supply the return code value returned from the TA

Interface operations as specified in Section E.4.1.

5. The Type Abstraction Capability shall use the OMG IDL to Programming Language

Mappings defined in Section 3.14 for its Type Abstraction Interface.

3.7.7 QoS Management Capability Requirements

QoS refers to the collective behavior of a data exchange. This behavior is usually specified as a

set of functional and non-functional parameters. Within a TSS UoC, there are several places

where QoS may be enforced, or managed. These include: within the channel between two or

more TSS UoCs (physical protocols), on the data as it is being exchanged, and as the data is

being presented to the consuming UoC. The QoS parameters and the required values are

documented in configuration data as specified in Section 3.2.5.

1. A QoS Management Capability shall be configured through information provided by the

TSS Configuration Capability.

2. A QoS Management Capability configuration data shall be specified in accordance with

the Configuration Services requirements in Section 3.2.5.

3. A QoS Management Capability shall manage the QoS of the messages being transported

by TSS UoCs as specified in the information provided by the TSS Configuration

Capability.

3.7.8 Message Association Capability Requirements

Message Association is a general capability that allows a TSS UoC to maintain an association

between two data elements. Examples of use include the association of security tags to data

structures, the association between a fast updating structure, and a slowly updating structure that

are both part of a message delivered to a UoC, or extended metadata used by the TSS for internal

optimization of transmission of a message.

1. A Message Association Capability shall be configured through information provided by

the TSS Configuration Capability.

FACE™ Technical Standard, Edition 3.0 69

2. A Message Association Capability configuration data shall be specified in accordance

with the Configuration Services requirements in Section 3.2.5.

3. A Message Association Capability shall manage message associations and data tagging in

accordance with the information provided by the TSS Configuration Capability.

3.7.9 Data Transformation Capability Requirements

Data Transformation Capability performs transformations of data to deliver instances of message

parameters defined by the consuming software component in accordance with their USM’s

Platform View. Data Transforms Capability includes security transformations performed on data

for security purposes as described in Section 4.2.2, and are part of the overall TSS Data

Transformation Capability. The FACE Technical Standard does not specify or constrain when

transformations are performed, such that transformations can occur as data is output or as data

input is received.

1. A Data Transformation Capability shall be configured through information provided by

the TSS Configuration Capability.

2. A Data Transformation Capability’s configuration data shall be specified in accordance

with the Configuration Services requirements in Section 3.2.5.

3. A Data Transformation Capability shall manage data transformations in a TSS UoC.

4. A Data Transformation Capability shall use information from data producers to assemble

instances of the Message parameter for data consumers.

5. A Data Transformation Capability shall supply data to consumers at the configured

consumer request rate.

6. A Data Transformation Capability shall provide data transformations configured by the

TSS Configuration Capability.

7. When a TSS UoC provides security services (e.g., encryption, labeling), a Data

Transformation Capability shall perform security transformations.

8. When a Security Transformation is implemented as part of a TSS UoC, all data crossing

the security transformation boundary shall be defined in accordance with the FACE Data

Architecture in Section 3.9.

Note: Given the sensitivity of the internal interface data model, there may be restrictions

on availability and distribution of the detailed data models levied by the platform and/or

security-relevant transform supplier.

9. When using a Security Transformation, the characterization of the transformation shall

include detailed description of the transformation.

Note: The detailed description of the security transformation should be sufficient to enable

interoperability with similar transformations from an independent source.

Note: Given the sensitivity of the transformation characterization data, there may be

restrictions on availability and distribution of the detailed data models levied by the

platform and/or security-relevant transform supplier.

70 Open Group Standard (2017)

3.7.10 Messaging Pattern Capability Requirements

Messaging Pattern Capabilities manage the message pattern, message communication types,

transformation from one message pattern to another message (e.g., Request/Reply to

Publish/Subscribe), and other message processing requirements.

1. A Messaging Pattern Capability shall be configured through information provided by the

TSS Configuration Capability.

2. A Messaging Pattern Capability’s configuration data shall be specified in accordance with

the Configuration Services requirements in Section 3.2.5.

3. A Messaging Pattern Capability shall provide transformation from one distinct message

pattern to another distinct message pattern.

4. A Messaging Pattern Capability shall instantiate independent Message Pattern

Translations individually.

5. A Messaging Pattern Capability shall translate message patterns in conjunction with other

independent translation capabilities within a distributed TSS instantiation.

6. A Messaging Pattern Capability shall perform transformations from one message pattern

to another message pattern (e.g., Publish/Subscribe to Request/Reply).

7. A Messaging Pattern Capability shall provide for instantiation of one or more of the

following message patterns:

a. Publish/Subscribe

b. Request/Reply

Note: Request/Reply is also used as a synonym for Command/Response.

8. A Messaging Pattern Capability shall provide for instantiation of one or more of the

following message communication types:

a. Synchronous Communications

b. Asynchronous Communications

9. A Messaging Pattern Capability shall provide for instantiation of one or more of the

following communication mechanisms as allowed by the FACE OS Interface based upon

the applicable FACE OSS Profile:

a. Networking Standards (e.g., POSIX sockets)

b. Cache

c. Shared Memory

10. A Messaging Pattern Capability shall provide for instantiation of one or more of the

following message structures:

a. Fixed Length

b. Variable Length

11. A Messaging Pattern Capability shall process messages using one or more of the

following message processing types:

FACE™ Technical Standard, Edition 3.0 71

a. Periodic

b. Sporadic

c. Aperiodic

12. A Messaging Pattern Capability shall provide one or more of the following message

distribution types:

a. Broadcast

b. Multicast

c. Unicast

d. Anycast

3.7.11 Transport Protocol Module Capabilities Requirements

As systems built from UoCs become more prevalent, it becomes necessary to connect one

system to another. The ability to do this without modification to the software components of

either system, including the TSS Support Components, helps meet the goals of UoCs. TS to TS

Interoperability across TS domains is achieved by managing and abstracting three levels of

system interaction. First is a semantic understanding of the exchanged data, second is a syntactic

understanding of the method of exchange, and finally is a technical understanding of the

physical mode of exchange.

In the FACE Technical Standard, the semantic understanding is provided by the FACE Data

Architecture. The syntactic and technical interoperability is provided, not by an interoperability

protocol, but by abstracting the interface used to access protocols. This allows for flexibility and

specialization of protocols to meet the varied system requirements that are imposed upon

systems intended to be built from UoCs. The FACE TPM Capability allows the selection

between multiple protocols depending on the connectivity requirements. The TPM Capability

supports multiple protocols, such as TCP, UDP, RTPS, IIOP, Queues, Inter-Process

Communication, inter-partition communication, or others as needed. Additionally, many

physical transports can be supported such as Internet Protocol or Shared Memory.

1. A TPM Capability shall provide one or more TPM(s) for data exchange between TS

domains to achieve interoperability.

2. A TPM Capability shall perform data transport between one instance of a TSS UoC and

another instance of a TSS UoC.

3. A TPM shall be configured using information provided by the TSS Configuration

Capability through the TPM Initialize() function.

4. TPM configuration data shall be specified in accordance with the Configuration Services

requirements in Section 3.2.5.

5. A TPM shall provide a protocol-specific serialization function for the IDL described base

types.

6. A TPM shall provide a protocol-specific deserialization function for the IDL described

base types.

7. A TPM shall serialize data to send on its transport protocol.

72 Open Group Standard (2017)

Note: A TPM may use its own serialization function or the type-specific serialization

interface provided by the TS Capability.

8. A TPM shall deserialize data received from its transport protocol.

Note: A TPM may use its own deserialization function or the type-specific deserialization

interface provided by the TS Capability.

9. A TPM shall supply the data contained in a TS message header to the receiving endpoint.

10. A TPM shall populate the TS message header from data transmitted by a sending TPM.

11. A TPM shall populate a QoS Data Structure with the actual QoS parameter values of the

received TS message instance.

12. A TPM shall return the most current instance of the received TS message payload to the

QoS Management capability.

3.7.11.1 Intra-Segment Transport Protocol Module Interface

The TSS Intra-segment Interfaces are provided and used by modules, libraries, or software

components within the TSS layer. Intra-segment Interfaces support the creation of UoCs

implementing those interfaces. The TSS Intra-segment Interfaces cannot be used by PCS or

PSSS UoCs.

TSS UoCs provide a TS_TPM Interface to enable the reuse of transport protocol plugin modules

which support interoperability between different implementations of TSS UoCs.

3.7.11.2 Transport Protocol Module Interface Requirements

1. A TPM shall provide the TPM Interface as specified in Section E.4.2.

2. A TPM shall supply the return code value returned from TPM Interface operations as

specified in Section E.4.2.

3. The Transport Protocol Module Capability shall use the IDL Programming Language

defined in Section 3.14 for its TPM Interface.

3.7.12 Data Store Support Capability Requirements

Access to Data Stores is a necessary common technical function. This function is usually

provided by the OS segment. However, it is no longer always the case that OS-level interfaces

provide the access to Data Stores. For example, in some architectures, this functionality could be

provided by Data Base Server, Data Services, or File Systems. In fact, some architectures do not

provide OS-level storage access. To maintain portability of PCS and PSSS UoCs across a wide

variety of Data Store access, a common point of presence for Data Store access is required. The

Data Store Access Capability provides this functionality within the TSS so that PCS and PSSS

UoCs can remain agnostic to the source of this information.

1. A Data Store Support Capability shall be configured through information provided by the

TSS Configuration Capability.

2. A Data Store Support Capability configuration data shall be specified in accordance with

the Configuration Services requirements in Section 3.2.5.

3. A Data Store Support Capability shall provide access to data stores.

FACE™ Technical Standard, Edition 3.0 73

4. A Data Store Support Capability shall use the TS Capability to exchange information

between Data Stores and PCS UoCs.

5. A Data Store Support Capability shall use the TS Capability to exchange information

between Data Stores and PSSS UoCs.

3.7.13 Component State Persistence Capability Requirements

The CSP Interface provides a standardized interface for PCS, PSSS, and TSS UoCs to

checkpoint their internal state, or store private data. The standardization of this interface allows

software suppliers to create reusable software components/products, while protecting the

intellectual property associated with the internal data structures of software components. It also

facilitates the integration of these software components into disparate architectures and

platforms. There are two types of data that may use this interface:

 Private data – data only accessed by a single UoC

 Checkpoint data – data used for backup of the state of a UoC to allow for redundancy and

reversion

Note: Neither Checkpoint nor Private data need to be modeled in the FACE Data

Architecture. All other types of data are modeled in the FACE Data Architecture and

use the TS Interface for IO operations.

The data passing through the CSP interface is exempt from being modeled in the FACE Data

Architecture. To limit the use of this interface to a single UoC, the interface and the data store

contain a reference to the UoC that created the stored data. In order to ensure portability of UoCs

across systems, the file locations and permissions are described in a configuration file passed

into the CSP Capability at initialization.

1. A CSP Capability shall be configured through information provided by the TSS

Configuration Capability.

2. The CSP Capability configuration data shall be specified in accordance with the

Configuration Services requirements in Section 3.2.5.

3. A CSP Capability shall provide the CSP Interface as defined in Section 3.8.4.2.

4. A CSP Capability shall provide access to the Checkpoint data when the UUID passed in

matches the UUID associated with the Checkpoint data requested.

5. A CSP Capability shall store Checkpoint data and its associated UUID.

6. A CSP Capability shall provide access to the Private data when the UUID passed in

matches the UUID associated with the Private data requested.

7. A CSP Capability shall store Private data and its associated UUID.

8. A CSP Capability shall supply a library for PCS or PSSS UoCs to use.

3.7.14 Framework Support Capability Requirements

Framework Support Capability (FSC) is an abstraction that translates Component Framework

interfaces to FACE defined interfaces. The FSC requirements are presented here and shown in

Figure 16 and Figure 17. The PCS and PSSS requirements to use framework software

components are presented in the respective sections.

74 Open Group Standard (2017)

Component Frameworks ease development of new software by allowing developers to focus on

the unique domain requirements of their software components. The software that provides

infrastructure to support the functional requirements (“common technical functions”) is provided

by the framework, and accessed by framework-specific APIs. Frameworks, however, are

different from portable libraries. With libraries, software components invoke the functions and

objects provided by the library, but with frameworks, developers implement functions and

objects specific to their software component that are then instantiated and invoked by the

framework. Inclusion of framework support standardizes deployment and control operations to

the integrator, such as independent executables versus container managed executables or

inversion of control of software components.

Many different commercial software components and industry product line frameworks exist

today. These frameworks perform software infrastructure functions such as Life Cycle

Management (LCM), logging, persistence, time processing, etc. However, each framework

provides unique interfaces for each of these functions. These unique interfaces introduce a

barrier to portability of the modules and software components between different frameworks and

often between different implementations of the same frameworks. In order to achieve portability

of UoCs across Component Frameworks, these unique interfaces need to be abstracted.

In a software environment targeting the FACE Reference Architecture, abstraction is

accomplished through the use of the FACE Interfaces (TSS, IOS, Config, and HMFM). Each

framework-unique interface can be proxied by the FSC and mapped to the FACE Interfaces

provided by other TSS Capabilities. This makes the UoC agnostic to the specific framework. In

order to reduce the effort of adding and maintaining the additional syntactic framework

abstractions, and to promote interoperability, the FACE SDM is used to define and isolate the

variation points between frameworks to a data message to/from the TS Interface. The FSC can

be used across the OSS Profiles and across many commercial and military frameworks.

This abstraction strategy places a framework software component in the PCS or PSSS layer, and

the container in the TSS layer. The use of FACE Interfaces to provide abstractions between the

modules and the container isolate the integration changes needed to port the software

components across component and product line frameworks.

Figure 16 depicts the FACE abstraction strategy for a PCS UoC. The PCS UoC is intended to be

a component within a framework container.

Time

Services

Error Logging

Services

Configuration

Services
Run-Time

Services

Communication

Services

FACE PCS UoC

(as a framework component)

TS Interface

Adapter

HMFM Interface

Adapter

CM Interface

Adapter

Life-Cycle

Interface Adapter

TS API Life-Cycle API HMFM API CM API

Framework

Figure 16: PCS UoC as a Framework Component

FACE™ Technical Standard, Edition 3.0 75

Figure 17 depicts the FACE abstraction strategy for a PSSS UoC. The PSSS UoC is intended to

be a component within a framework container.

Time

Services

Error Logging

Services

Configuration

Services
Run-Time

Services

Communication

Services

FACE PSSS UoC

(as a framework component)

TS Interface

Adapter

HMFM Interface

Adapter

CM Interface

Adapter

Life-Cycle

Interface Adapter

TS API Life-Cycle API HMFM API CM API

IOSS UoC

IOS API

Framework

Figure 17: PSSS UoC as a Framework Component

3.7.14.1 Framework Support Capability Requirements

1. A Framework Abstraction Capability shall be configured through information provided by

the TSS Configuration Capability.

2. The FSC configuration data shall be specified in accordance with the Configuration

Services requirements in Section 3.2.5.

3. An FSC shall adapt the specific framework interfaces to the respective TSS Inter-segment

Interfaces.

4. An FSC shall adapt the specific framework interfaces to the Initializable Capability of the

LCM Services as defined by Section 3.13.2.

5. An FSC shall adapt the specific framework interfaces to the Configurable Capability of

the LCM Services as defined by Section 3.13.3.

6. An FSC shall adapt the specific framework interfaces to the Connectable Capability of the

LCM Services as defined by Section 3.13.4.

7. An FSC shall adapt the specific framework interfaces to the Stateful Capability of the

LCM Services as defined by Section 3.13.5.

8. An FSC shall map the LCM technical function provided by a Framework Implementation

to the FACE Data Architecture Platform View that specifies the Life Cycle state data.

9. An FSC shall map the System Time technical function provided by a Framework

Implementation to the FACE Data Architecture Platform View that specifies the system

time data.

10. An FSC shall map the system HMFM technical functions provided by a Framework

Implementation to the FACE Data Architecture Platform View that specifies the system

HMFM data.

11. An FSC shall map the OS HMFM technical functions provided by a Framework

Implementation to the FACE HMFM Interface.

76 Open Group Standard (2017)

12. An FSC shall map the Data Exchange technical functions provided by a Framework

Implementation to the FACE Data Architecture Platform View that specifies the Message

parameter.

13. An FSC shall map other technical functions provided by a Framework Implementation to

the FACE Data Architecture Platform View that specifies the function data.

14. An FSC shall use the native interfaces of the framework implementation required to

perform its technical functions.

3.7.14.2 Interfaces to Support Frameworks

The FSC may call the native interfaces of a Component Framework for core SW Infrastructure

functions. The typical SW Infrastructure function interfaces provided by a Component

Framework container may include (but are not limited to):

 Life Cycle Management

 Error Reporting

 Logging

 Persistent Storage to Data Stores

 Persistent Storage of PCS or PSSS UoC Private data or internal state

 Get/Set Time

To promote portability, the interfaces provided by a framework are accessed through interfaces

defined by the FACE Technical Standard. The LCM functions are accessed through the LCM

Services Interface provided by PCS, PSSS, or TSS UoCs. If Inversion of Control is desired, the

PCS or PSSS UoC provides an execute operation in the UoC Interface. Other functions provided

by the framework are accessed through TSS Inter-segment Interfaces. The Logging and System

Error Reporting Framework functions are accessed through the TS Interface, run-time errors are

accessed through the FACE HMFM Interface, the persistence of PCS/PSSS UoC internal state

uses the CSP Interface, and the remaining framework functions are accessed through the TS

Interface using data types specified by the FACE Data Architecture.

3.8 Transport Services Interfaces

3.8.1 Introduction

The Transport Services Interfaces provide a set of standardized interfaces for software

component communication. UoCs in both the PCS and the PSSS use the interfaces provided by

the TSS libraries for data exchange and access to other software infrastructure services defined

by Section 3.7. The standardization of these interfaces allows software suppliers to create

reusable software components/products, and facilitates the affordable integration of these

software components into disparate architectures and platforms.

3.8.1.1 Inter-Segment Transport Services Interfaces

The TSS Inter-segment Interfaces are provided by TSS UoCs to be used by the PCS, and PSSS

UoCs to access common technical functions provided by the SW Infrastructure such as data

FACE™ Technical Standard, Edition 3.0 77

transport, access to reference data, or CSP information. As defined in Section 3.7.1.1, a TSS may

be composed of UoCs which implement the inter-segment interfaces.

The Inter-segment Interfaces that TSS libraries provide include:

 Type-Specific Interface (TS Interface)

 CSP Interface

Note: Data Store uses the TS Interface to access Data Stores, so it is not a unique interface

provided to users of TS components.

To ensure portability of PCS and PSSS UoCs, and to enable conformance verification, the TS

Interface is strongly typed per the PCS or PSSS UoP Supplied Model (USM). The TS Interface

uses declared and structured data. The Transport Services Capability implemented as a TSS

library provides the TS Interface. The Transport Services Capability manages the TS Interface,

and the Distribution Capability provides for the distribution of information according to

configuration data from the TSS Configuration Capability.

The Inter-segment Transport Services Interfaces support the communication and message

services required to meet the system performance (e.g., throughput, latency, delivery guarantees)

for the associated data exchanges. These interfaces support data transport industry standards.

Examples of standards that may be used to implement the TS Interface include, but are not

limited to, POSIX, ARINC 653, CORBA, and DDS.

3.8.2 TS Interface Description

 The TS Interface supports the following communication styles:

— Buffering/queuing

— Single Instance Messaging (e.g., sampling port, shared memory)

 The TS Interface supports the following synchronization styles:

— Blocking

— Non-blocking

 The TS Interface supports the following message structures:

— Fixed Length

— Variable Length

 The TS Interface supports the following message timing types:

— Periodic

— Sporadic

— Aperiodic

 The TS Interface supports the following message distribution types:

— Broadcast

— Multicast

78 Open Group Standard (2017)

— Unicast

— Anycast

 The TS Interface is strongly typed

The TS Interface services and data types are defined in Appendix E.

3.8.3 The Component State Persistence Interface Description

 The CSP Interface supports storage mechanisms, such as, but not limited to:

— File

— Database

— Object Data Store

— Network Attached Storage

 The CSP Interface supports storage media, such as, but not limited to:

— Spinning Media

— Non-volatile Memory

— Local Disk Storage

— Removable Storage

The CSP Interface Specification is defined in Section E.3.5.

3.8.4 Transport Services Segment Inter-Segment Interface Requirements

3.8.4.1 TS Interface

1. The TS Interface shall meet the Base interface specification of Section E.3.1.

Note: When using a Type Abstraction component, only one implementation of the Base

interface specified by Section E.3.1 is required.

2. The TS Interface shall meet the Type-Specific Typed interface specification of Section

E.3.2.

3. The TS Typed module as defined in Section E.3.2 shall be parameterized with the

DATATYPE_TYPE as described in a USM and in accordance with the FACE language

bindings, defined in Section 3.14.

4. The name of the created TS Typed module shall be the name of the UoC, underscore,

name of the DATATYPE_TYPE.

Note: The name of the module should be unique to support multiple instantiations of

UoCs in the same memory address space.

Note: The IDL to Language Mapping for C prepends the module name to the

send_message(TS), receive_message(TS), and callback_handler(TS) and replaces the

DATATYPE_TYPE with the programming language-specific class or structure type.

FACE™ Technical Standard, Edition 3.0 79

5. The FACE::TS::Base::Initialize(TS) function shall be non-blocking regardless of the

underlying transport mechanism.

Note: Initialize(TS) may need to complete asynchronously after Initialize(TS) returns if

the time to complete exceeds some threshold.

6. The FACE::TS::Base::Create_Connection(TS) function shall be non-blocking regardless

of the underlying transport mechanism.

Note: Create_Connection(TS) may need to complete asynchronously after

Create_Connection(TS) returns if the time to complete exceeds some threshold.

7. A TS Interface shall supply the return code value returned from the Type-Specific Base

Interface functions as specified in Section E.3.1.

8. A TS Interface shall supply the return code value returned from the Type-Specific Typed

Interface functions as specified in Section E.3.2.

9. The TS Type-Specific Extended Typed module as defined in Section E.3.4 shall be

parameterized with the DATATYPE_TYPE and RETURN_DATATYPE as described by

the USM and in accordance with the FACE language bindings, defined in Section 3.14.

10. The name of the created TS Type-Specific Extended Typed module shall be the name of

the UoC, underscore, name of the DATATYPE_TYPE, underscore, and name of the

RETURN_DATATYPE.

3.8.4.2 CSP Interface

1. The CSP Interface shall meet the specification in Section E.3.5.

2. The CSP Interface shall supply the return code value returned from CSP Interface

functions as specified in Section E.3.5.

3.8.5 Transport Services Segment Inter-Segment Message Parameter Data
Requirements

Figure 18 depicts the parameters of TSS Inter-segment Message. Many of the parameters within

the TSS interface, including instances of the message parameter and qos_parameter parameter,

are defined using the FACE Data Architecture. Others are defined in IDL in Appendix E. The

TSS message parameter is modeled as a Platform View as specified in Section 3.8.5.2. The TSS

Header is specified in IDL in Appendix E. The qos_parameter is either Configuration

Information or Data Model Platform View(s). The Header and qos_parameter can provide

metadata about the transported message to the receiving PCS or PSSS UoC.

80 Open Group Standard (2017)

Send Message Operation

Receive Message

Operation

User-Supplied Data Model

MESSAGE INSTANCE

PLATFORM PAYLOAD

HEADER INSTANCE

MESSAGE HEADER

MESSAGE INSTANCE

PLATFORM PAYLOAD

QoS Data INSTANCE

QoS Value (0..n)

QoS Key (0..n)

KEY

Required, Interface Parameter

Optional, Interface Parameter

Required, Data Architecture Information

PLATFORM DATA MODEL

VIEW (PAYLOAD)

PLATFORM DATA ELEMENTS (1..m)

IDL (HEADER)

MESSAGE SOURCE UID

MESSAGE INSTANCE UID

QoS Value (1..m)

QoS Key (0..n)

PLATFORM DATA MODEL

VIEW (QoS)

MESSAGE TIMESTAMP

Figure 18: TSS Inter-Segment Interface Data Parameters

3.8.5.1 TS Interface Data Parameters

An instance of the Message in Figure 18 is the basic element of data exchange within the TSS.

The Message Instance is a concrete instantiation of the message parameter type for the TSS. The

Message Instance is the data known throughout the TSS between UoCs at run-time. Transport of

Message Instances between TSS endpoints may be optimized by the transport method. The

packing and encoding of an instance of the Message are not prescribed by the FACE Technical

Standard. The Message parameter does not include the TSS Data Elements associated with

routing, QoS, definition, data, hierarchy, and conversion.

1. The TS Interface shall provide the following data elements:

a. Header parameter

b. Message parameter

2. When QoS Management is performed, the TS Interface shall provide content for the QoS

parameter.

3.8.5.2 Message Parameter

1. Instances of the Message parameter shall be a language-specific data structure of the

Platform View as specified by the FACE Data Architecture, Section J.2.5.

3.8.5.3 Header Parameter

1. Instances of the Header parameter shall consist of the following data elements in the order

listed below:

a. Message Instance UID

b. Message Source UID

c. Message Timestamp

FACE™ Technical Standard, Edition 3.0 81

3.8.5.4 QoS Parameter

1. Instances of the QoS parameter shall define the QoS values which have been applied to

the transport of data within the system by the TSS UoCs.

2. When QoS Management is performed, instances of the QoS parameter shall consist of

repeating sets of the following data elements in the order listed below:

a. QoS Key

b. QoS Attribute Values

Note: A QoS Key may have multiple possible values, but an instance must have one value

for one key.

3.8.6 Transport Services Segment FACE Data Architecture Requirements

1. The TSS Header Instance shall use the IDL to Programming Language Mappings defined

in Section 3.14 per the TSS Header IDL in Section E.2.1.

Note: For the capabilities it supports, the TSS uses the Integration Model to build

configuration data for QoS, data routing, message associations, and/or transformations, as

described in Section 3.9.1.5.

2. Instances of Time parameters passed by a TSS UoC through the TS Interface shall be

implemented through a USM Platform View in accordance with requirements in Section

3.9.4.

3. Instances of LCM parameters shall be implemented through a USM Platform View in

accordance with requirements in Section 3.9.4.

4. Instances of Data Stores parameters passed by a TSS UoC through the TS Interface shall

be implemented through a USM Platform View in accordance with requirements in

Section 3.9.4.

5. Instances of framework storage message parameters passed by a TSS UoC through the TS

Interface shall be implemented through a USM Platform View in accordance with

requirements in Section 3.9.4.

6. The Transport Service Capability shall use the IDL to Programming Language Mappings

defined in Section 3.14 for its TS Interface.

7. A TSS UoC providing the TS Interface shall provide data to PCS UoCs in conformance

with the Data Model Language Bindings defined in Section 3.9.2.

8. A TSS UoC providing the TS Interface shall provide data to PSSS UoCs in conformance

with the Data Model Language Bindings defined in Section 3.9.2.

9. A TSS UoC providing the TS Interface shall accept data from PCS UoCs in conformance

with the Data Model Language Bindings defined in Section 3.9.2.

10. A TSS UoC providing the TS Interface shall accept data from PSSS UoCs in conformance

with the Data Model Language Bindings defined in Section 3.9.2.

82 Open Group Standard (2017)

3.9 Data Architecture

The Data Architecture consists of the Data Model Language, a set of Data Model Language

bindings that map Data Model Language elements to each of the supported programming

languages, the SDM, and rules for the construction of USMs and DSDMs.

3.9.1 Data Model Language Overview

The Data Model Language is specified by a metamodel providing a formal and unambiguous

description of UoP data exchanges (interfaces between and integration of). The Data Model

Language eliminates ambiguities in the description of this data. Additional OCL constraints

supply semantic rules to which data model content must adhere. A query language and a

template language are provided to specify the selection and presentation of data across key

FACE Interfaces.

Figure 19 illustrates several aspects of the Data Model Language. Groupings of Data Model

Language elements, roughly aligned to the grouping of metamodel elements in Section J.2, are

shown as boxes with rounded corners; relationships between elements as short, stubbed arrows.

Grouping of Data Model Language elements is shown vertically, from top to bottom, showing

definition of data model, interface model, and integration model elements respectively.

Horizontally, from left to right, levels (or perspectives) show refinement of model elements from

a more abstract level, to a more concrete one.

Traceability Model Elements are not shown in order to avoid diagram clutter. Artifact

Generation and Code and Configuration, while not part of the Data Model Language, are shown

for context.

FACE™ Technical Standard, Edition 3.0 83

Figure 19: Data Model Language

The following sections give an overview of each Data Model Language element grouping.

3.9.1.1 Conceptual Data Model Overview

A Conceptual Data Model (CDM) is comprised of entities, characteristics, and associations that

provide definitions of concepts, their characteristics, and the context relating them. Observables

that are fundamental to the domain and have no further decomposition are used to specify these

defining features. Domain concepts can be captured in the CDM through the definition of basis

entities. A basis entity represents a unique domain concept and establishes a foundation from

which conceptual entities can be specialized. Basis entities are axiomatic. This allows for

separation of concerns, allowing multiple domains to be modeled.

3.9.1.2 Logical Data Model Overview

A Logical Data Model (LDM) consists of entities, characteristics, and associations that realize

their definition from the CDM. An LDM provides terms of measurement systems, coordinate

systems, reference points, value domains, and units. The principal level of detail added in an

LDM is provided through frames of reference for representing characteristic values. Multiple

LDM elements may realize a single CDM element.

Conceptual

Data Model
(CDM)

Elements

Logical

Data Model
(LDM)

Elements

Platform

Data Model
(PDM)

Elements

UoP Data

Model (UM)
Elements

Abstract UoP Model Elements

Integration

Model (IM)
Elements

Refinement Message
Selection

Artifact
Generation

Transport
Definition

Data Refinement (semantic, measurement, physical perspectives)

Interface Refinement (abstract and concrete perspectives)

Abstract Integration Model

Elements

Integration Refinement (abstract and concrete perspectives)

Data Model
Definition

UoP Model
Definition

Integration
Model
Definition

Code and

Configuration

Artifact Generation &
Artifacts

FACE Data Model Language
Element Groupings

FACE Architecture
Model

UoP Model Element Grouping

Integration Model Element Grouping

Data Model Element Groupings

84 Open Group Standard (2017)

3.9.1.3 Platform Data Model Overview

A Platform Data Model (PDM) consists of entities, characteristics, and associations that realize

their counterpart definition from an LDM. In a PDM, specific representation details such as data

type and precision are provided to represent characteristics. Multiple PDM elements may realize

a single LDM element. Additionally, the PDM specifies how data is presented across the TS

Interface using views.

3.9.1.4 Unit of Portability Data Model Overview

A UoP Data Model consists of elements that provide the means to formally specify the interfaces

of a UoP. The interfaces are specified using reference to PDM elements to allow “message

typing” of the interface. Abstract UoP elements support a platform-independent specification of

the UoP and its interfaces through references to LDM and CDM elements. Connection model

elements are representations of “logical” connections and do not necessarily correspond to the

actual communication channels for exchanging data.

3.9.1.5 Integration Model Overview

An Integration Model consists of elements that provide the means to model the exchange of

information between UoPs. An Integration Model captures data exchanges, view

transformations, and integration of UoPs for documentation of integration efforts. An Integration

Model relies on UoP Models for expressing interconnectivity. The focus is on documenting UoP

data exchange details.

3.9.2 Data Model Language Bindings

Figure 20 illustrates the Data Model Language Bindings from the PDM to each of the supported

programming languages. The language bindings define the PDM View mapping from the

specified template to data structures in code. These data structures are sent or received by a

software component through the TSS send_message(TS) and receive_message(TS) methods.

The language bindings preserve the byte size and value range when translating to various

processor architectures and programming languages. The language bindings ensure software

components are portable at the API level. It is the responsibility of the TSS to manage

serialization and deserialization of the data structure and to transmit the data.

Appendix J details the PDM Template to IDL bindings.

Figure 20: Data Model Language Bindings

FACE Platform

Data Model

C

C++

Ada

Java

FACE™ Technical Standard, Edition 3.0 85

3.9.2.1 Specification

The first part of the language bindings specifies a mapping from a PDM to IDL. The second

portion of the language bindings defines the map from IDL to each of the supported

programming languages as specified in Section 3.14. These two parts form the Data Model

Language bindings. Figure 21 depicts the Data Model Language Binding specification.

The language bindings define the rules for mapping from PDM elements to programming

language definition of the data types. A specific tool is not required to be used in implementing

these rules.

Note: A software supplier may directly generate or manually create the data structures from a

PDM without leveraging IDL as an intermediate format.

Figure 21: Data Model Language Binding Specification

3.9.2.1.1 IDL to Programming Language Mappings

The FACE Data Architecture follows the IDL to Programming Language Mappings detailed in

Section 3.14 and the Template to IDL Bindings detailed in Section J.8.

3.9.3 Definitions

3.9.3.1 FACE Shared Data Model

The FACE Shared Data Model (SDM) is the primary point of interaction between software

suppliers and system integrators as it is the common foundation for all USMs. The FACE SDM

provides the core extensible elements from which USMs are built. The FACE SDM Governance

Plan defines the policies for management of the FACE SDM. The FACE SDM CCB manages

the FACE SDM.

3.9.3.2 UoP Supplied Model

Software suppliers develop USMs from the SDM using the Data Model Language to represent

information about each UoP, including the data each UoP sends and receives. The Data Model

Language provides and promotes common understanding and meaning of data exchanged.

FACE Data Model Language Bindings

FACE Platform

Data Model

C

C++

Ada

Java

OMG Interface

Definition
Language (IDL)

PDM to IDL

Mapping

86 Open Group Standard (2017)

3.9.3.3 Domain-Specific Data Model

A Domain-Specific Data Model (DSDM) is a data model designed to the FACE Data

Architecture requirements. It captures domain-specific semantics and generally does not contain

UoP Models.

3.9.4 Data Architecture Requirements

The Data Model Language is formally specified by the metamodel and OCL constraints. The

metamodel and associated constraints are specified in Appendix J.

Single Observable Modeling is when the SDM, a DSDM, or a USM is developed to follow the

Single Observable Constraint in Section J.7.1. The Single Observable Constraint limits

Conceptual Entities to composing at most one element of a single Observable type. Models that

follow the Single Observable Constraint provide a clearer understanding of Entities by reducing

the likelihood of semantic information being embedded in the multiple composition of

Observables. This is considered a data modeling best practice.

Entity Uniqueness Modeling is when each conceptual Entity in a DSDM or USM is unique. An

Entity’s Uniqueness is defined as each Entity must have a different Identity from all other

Entities in the model. An Entity’s Identity is defined by the complete set of the Entity’s

characteristics. This is considered data modeling best practice and is encouraged as it helps in

Entity clarity and integration between different USM and DSDM models.

3.9.4.1 USM Requirements

A valid USM conforms to both the metamodel and associated constraints.

1. Each UoC using the TS Interface shall be accompanied by a USM.

2. The USM shall be an XMI file conforming to the EMOF 2.0 metamodel specified in

Appendix J.

3. The USM shall use the “xmi:id” attribute with a unique UUID as the ID for all elements.

4. The USM shall adhere to the OCL constraints in Section J.6.

5. When developed to Single Observable Modeling, the USM shall adhere to the conditional

OCL constraint in Section J.7.1.

Note: This is considered data modeling best practice and is encouraged but may not be

required of all USMs.

6. When developed to Entity Uniqueness Modeling, the USM shall adhere to the conditional

OCL constraint in Section J.7.2.

Note: This is considered data modeling best practice and is encouraged but may not be

required of all USMs.

7. The USM shall include all data elements sent by the UoC across the TS Interface.

8. The USM shall include all data elements received by the UoC across the TS Interface.

9. The USM shall include all data elements used by the UoC in a Security Transform.

FACE™ Technical Standard, Edition 3.0 87

10. The USM shall include all data elements sent by the UoC across the LCM Stateful

Interface.

11. The USM shall include all data elements received by the UoC across the LCM Stateful

Interface.

12. The USM shall adhere to the FACE Shared Data Model Governance Plan.

Note: The FACE SDM Governance Plan describes how to extend the SDM.

13. The USM shall follow the Template to IDL language bindings specified in Section 3.14

and the IDL Language Bindings specified in Section 3.14.

3.9.4.2 Domain-Specific Data Model Requirements

A valid DSDM conforms to both the metamodel and associated constraints. The metamodel and

associated constraints are specified in Appendix J.

1. A DSDM shall be an XMI file conforming to the EMOF 2.0 metamodel specified in

Appendix J.

2. The DSDM shall use the “xmi:id” attribute with a unique UUID as the ID for all elements.

3. The DSDM shall adhere to the OCL constraints in Appendix J.

4. When developed to Single Observable Modeling, the DSDM shall adhere to the

conditional OCL constraint in Section J.7.1.

Note: This is considered data modeling best practice and is encouraged but may not be

required of all DSDMs.

5. When developed to Entity Uniqueness Modeling, the DSDM shall adhere to the

conditional OCL constraint in Section J.7.2.

Note: This is considered data modeling best practice and is encouraged but may not be

required of all DSDMs.

6. The DSDM shall adhere to the FACE Shared Data Model Governance Plan.

Note: The FACE SDM Governance Plan describes how to extend the SDM.

3.10 Portable Components Segment

Software components are designated as portable when they can be redeployed on different

software environments without requiring more than a recompilation of the software component

and a re-linking of software libraries, Programming Language Run-Times, and/or Component

Frameworks.

The Portable Components Segment (PCS) logically contains a wide range of software

components. Software components are considered to be PCS UoCs when they share the

following properties:

 The software component provides software capabilities or services

 The software component is capable of executing in varying instantiations of FACE

infrastructures

88 Open Group Standard (2017)

 The software component exclusively uses the TS Interface for data exchanges

 The software component exclusively uses the OSS Interface for OS support

 The software component adheres to the requirements of the PCS

3.10.1 Portable Components Segment Requirements

1. A PCS UoC shall only use the interfaces defined in Section 3.2, Section 3.8, Section 3.12,

and Section 3.13.

Note: If a Programming Language Run-Time is implemented in the PCS as part of the

UoC, then the Programming Language Run-Time must conform exclusively to a subset of

the TS Interface for all data exchange crossing the UoC boundary per the segment

requirements.

2. A PCS UoC shall communicate with other software components, through the TS Interface

as defined in Section 3.8.

Note: This includes Inter-partition/process and Intra-partition/process UoC to UoC

communication.

3. All data communicated over the TS Interface shall be defined by the FACE Data

Architecture in accordance with requirements in Section 3.9.

4. A Connection element “name” property shall be a case-insensitive string.

5. The Connection name provided to TSS UoCs to create a connection shall match the

“name” property of the corresponding Connection element in the UoC Supplied Model for

the UoC.

Note: The USM may contain a default name which could be overridden by configuration

data.

6. When a PCS UoC provides a graphical user interface, the UoC shall use graphics services

per the requirements in Section 3.12.8.

7. When a PCS UoC retrieves Configuration Information, the UoC shall use the

Configuration API per the requirements in Section 3.2.5.

8. When using Centralized Configuration, a PCS UoC shall use the TSS API.

Note: Section 3.6.3.1.4 describes the Centralized Configuration Service.

9. When implementing a Component Framework, a PCS UoC shall do so according to the

requirements in Section 3.10.1.3.

Note: If a Component Framework is implemented in the PCS as a part of the UoC, then

the Component Framework must conform exclusively to a subset of the TS Interface for

all data exchanges crossing the UoC boundary per the segment requirements.

10. When a PCS UoC uses Data Stores, the PCS UoC shall use the TS Interface to store and

retrieve data as described in Section 3.8.4.1.

11. When using CSP, a PCS UoC shall use the CSP Interface to store and retrieve its

Checkpoint Data as described in Section 3.8.4.2.

FACE™ Technical Standard, Edition 3.0 89

12. When a PCS UoC provides the Injectable Interface, the PCS UoC shall provide the

Injectable Interface as described in Section 3.11.4.1.

3.10.1.1 Portable Components Segment Operational Environment Requirements

1. When using OSS Health Monitoring, a PCS UoC defined to operate in a POSIX

operational environment shall use the FACE Health Monitoring APIs described in Section

3.2.2.

2. A PCS UoC shall conform to the requirements in Section 3.2.4 when using OSGi.

3.10.1.2 PCS UoC Life Cycle Management Services Requirements

1. When providing a LCM Services Interface, a PCS UoC shall do so in accordance with the

requirements of Section 3.13.

2. When using a LCM Services Interface, a PCS UoC shall do so in accordance with the

requirements of Section 3.13.

3.10.1.3 Component Frameworks Provided as Part of PCS UoC Requirements

FACE requirements allow the use of Component Frameworks as integral parts of PCS UoCs as

long as the libraries are FACE aligned and the entire Component Framework is provided as part

of an aligned PCS UoC. There are no specific requirements to use Component Frameworks as

integral parts of PCS UoCs.

1. When exchanging data using a framework, a PCS UoC shall use the TS Interface.

2. When accessing framework configuration interfaces, a PCS UoC shall use the

Configuration Interface.

3. When storing Private and Checkpoint data, a PCS UoC shall use the CSP Interface.

4. When accessing framework capabilities not listed in requirements 1-3 (i.e., persistent

storage, time interfaces, logging), a PCS UoC shall use the TS Interface.

Note: A PCS UoC must use the TS Interface (Send_Message(TS)) to access framework-

persistent storage create and update interfaces.

Note: A PCS UoC must use the TS Interface (Send_Message(TS)) to access framework-

persistent storage request interfaces.

Note: A PCS UoC must use the TS Interface (Receive_Message(TS)) to access

framework-persistent storage response interfaces.

Note: A PCS UoC must use the TS Interface (Receive_Message(TS) to access framework

time get time interfaces.

Note: A PCS UoC must use the TS Interface (Send_Message(TS)) to access framework

time set time interfaces.

Note: A PCS UoC must use the TS Interface to access framework error and logging

interfaces.

5. When a Component Framework is implemented as part of a PCS UoC, the Component

Framework shall use the Initializable Capability of the LCM Services to initialize an

instance of a PCS UoC.

90 Open Group Standard (2017)

6. When a Component Framework is implemented as part of a PCS UoC, the Component

Framework shall use the Initializable Capability of the LCM Services to finalize an

instance of a PCS UoC.

7. When a Component Framework is implemented as part of a PCS UoC, the Component

Framework shall use the Configurable Capability of the LCM Services to configure an

instance of a PCS UoC.

8. When a Component Framework is implemented as part of a PCS UoC, the Component

Framework shall use the Connectable Capability of the LCM Services to connect an

instance of a PCS UoC.

9. When a Component Framework is implemented as part of a PCS UoC, the Component

Framework shall use the Connectable Capability of the LCM Services to disconnect an

instance of a PCS UoC.

10. When a Component Framework is implemented as part of a PCS UoC, the Component

Framework shall use the Stateful Capability of the LCM Services to query the state of an

instance of a PCS UoC.

11. When a Component Framework is implemented as part of a PCS UoC, the Component

Framework shall use the Stateful Capability of the LCM Services to change the state of an

instance of a PCS UoC.

3.10.1.4 Security Transformation Requirements

Security Transformations perform transformations of data for security purposes as described in

Section 4.2.2. The FACE Technical Standard does not specify or constrain where

transformations are performed.

1. When a Security Transformation is implemented as part of a PCS UoC, all data crossing

the Security Transformation boundary shall be defined in accordance with the FACE Data

Architecture in Section 3.9.

Note: Recommend the security transform use a TS Interface when traversing the

transform boundary internal to the PCS.

Note: Given the sensitivity of the internal interface data model, there may be restrictions

on availability and distribution of the detailed data models levied by the platform and/or

security relevant transform supplier.

2. When a Security Transformation is implemented as part of a PCS UoC, the

characterization of the transformation shall include a detailed description of the

transformation.

Note: The detailed description of the security transformation should be sufficient to enable

interoperability with similar transformations.

Note: Given the sensitivity of the transformation characterization data, there may be

restrictions on availability and distribution of the detailed data models levied by the

platform and/or security-relevant transform supplier.

FACE™ Technical Standard, Edition 3.0 91

3.11 Unit of Conformance

A Unit of Conformance (UoC) is developed to meet the conformance requirements of the OSS

Profile(s) and a single segment. System software solutions can be made up of multiple UoCs.

UoCs can be integrated to support these software solutions. Integration of UoCs requires UoC to

UoC communication.

3.11.1 Unit of Conformance Instantiation

One or more UoCs can be deployed within the same address space. When more than one UoC is

deployed in a single address space, it is important for the UoCs to be coordinated so that they do

not conflict with one another. One method of coordinating is to utilize an OSS profile that

requires multi-process support such as General Purpose or Safety Extended. Another method to

coordinate the UoCs is through the use of a container design pattern where the container

software includes an entry point such as “main”, and the container instantiates the objects or

libraries within all UoCs within the address space.

Once the UoCs are instantiated, the communications between the UoCs can be established using

the Injectable Interface.

3.11.2 Unit of Conformance Communications

UoC-to-UoC communication is required to use Transport Services Interfaces as defined in the

FACE Technical Standard. Communication between software components, capabilities, and

services within a UoC are not required to use defined Transport Services Interfaces. Use of

defined Transport Services Interfaces for communication between software components,

capabilities, and services within a UoC are permitted but not required. Figure 22 depicts an

example of PCS inter-UoC and intra-UoC communications. See Section A.1 and Section A.6 for

definitions of APIs and capabilities whose inter-UoC communication usages are restricted.

92 Open Group Standard (2017)

FACE Portable Components Segment

FACE UoC

Component

Service

Component

Capability

FACE UoC

Component

 Service

Capability

 Service

Capability

Capability

FACE Transport Services Segment

Use of the FACE TS

Interface is

mandated for all

INTER-UoC

communications

Use of the FACE

Transport Interface is

optional for INTRA-

UoC communications

Use of the FACE TS

Interface is optional

for INTRA-UoC

communications

Direct UoC-to-UoC

communications are

prohibited

Figure 22: Example PCS Inter-UoC and Intra-UoC Communications

3.11.3 Injectable Interface

FACE Interfaces create an inherent using/providing dependency between UoCs. In order for a

UoC to use an interface, it must be integrated in the same address space with at least one UoC

that provides that interface. One of two strategies is employed to resolve this dependency for any

given FACE Interface. When the FACE Interface is declared by a programming language

binding directly, such as the C function prototypes for HMFM in Appendix F, the dependency is

resolved by the linker. When the FACE Interface is declared by IDL, the dependency is resolved

by integration software using the Injectable Interface. The Injectable Interface implements the

dependency injection idiom of software development.

FACE Interfaces declared by IDL have the feature of supporting more than one interface

provider in the same address space. This allows UoCs to be deployed to the same partition using

different interface providers as needed to satisfy system requirements. In order to leverage this

feature, integration software is responsible for associating the desired instance of the interface

provider to the interface user during initialization of the partition, after all the UoC instances

have been created. The Injectable Interface provides the mechanism for that association.

Table 8 lists, for each FACE segment UoC, the potentially used FACE Interfaces declared by

IDL. When a segment UoC uses one of these interfaces, it must provide the corresponding

Injectable Interface. The user of that Injectable Interface is the integration software. Note that

while the Injectable Interface itself is declared by IDL, it is not used by a segment UoC and is

thus not listed.

FACE™ Technical Standard, Edition 3.0 93

Table 8: FACE Interfaces Requiring UoC to Provide Injectable Interface

Segment UoC Potentially Used FACE Interfaces Defined by IDL

PCS UoC Transport Services Type-Specific Base (Section E.3.1)

Type-Specific Typed (Section E.3.2)
1

Type-Specific Extended (Section E.3.4)
1

Component State Persistence (Section E.3.5)

Life Cycle Management

Services

Initializable (Section D.2)

Configurable (Section D.3)

Connectable (Section D.4)

Stateful (Section D.5)
2

Configuration Services Configuration (Section G.2)

TSS UoC Transport Services Component State Persistence (Section E.3.5)

Type Abstraction (Section E.4.1)

Transport Protocol Module (Section E.4.2)

Serialization (Section E.3.3)

Life Cycle Management

Services

Initializable (Section D.2)

Configurable (Section D.3)

Connectable (Section D.4)

Stateful (Section D.5)
2

Configuration Services Configuration (Section G.2)

PSSS UoC Transport Services Type-Specific Base (Section E.3.1)

Type-Specific Typed (Section E.3.2)
1

Type-Specific Extended (Section E.3.4)
1

Component State Persistence (Section E.3.5)

Life Cycle Management

Services

Initializable (Section D.2)

Configurable (Section D.3)

Connectable (Section D.4)

Stateful (Section D.5)
2

I/O Services Supported I/O Bus Architectures (Section C.3)

Extending I/O Bus Architectures (Section C.4)

Configuration Services Configuration (Section G.2)

94 Open Group Standard (2017)

Segment UoC Potentially Used FACE Interfaces Defined by IDL

IOSS UoC Life Cycle Management

Services

Initializable (Section D.2)

Configurable (Section D.3)

Connectable (Section D.4)

Stateful (Section D.5)
2

Configuration Services Configuration (Section G.2)

1
 This interface is instantiated for each specific message type, and each instantiation requires a

separate instantiation of Injectable.

2
 This interface is instantiated for each state representation, and each instantiation requires a

separate instantiation of Injectable.

3.11.4 Unit of Conformance Requirements

1. A UoC shall exist entirely in a single segment.

3.11.4.1 Injectable Interface Requirements

1. A UoC shall provide an instance of the Injectable Interface for each FACE Interface

declared by IDL that it uses. (See Table 8 for the list of IDL Defined interfaces.)

2. Instances of the Injectable Interface provided by a UoC shall be in accordance with

Appendix I.

3. A UoC shall document the FACE Interfaces declared by IDL that it provides.

4. When the Injectable Interface is instantiated, the instantiated name shall be the name of

the UoC, underscore, and name of INTERFACE_TYPE.

Note: This reduces the potential for name conflicts in the same memory address space by

separate UoCs.

3.11.4.2 Unit of Conformance Packaging Requirements

1. A UoC Package shall be composed of UoCs from one of the following combinations of

FACE segments:

a. TSS and PCS

b. PSSS and TSS

c. IOSS and PSSS

d. IOSS, PSSS, and TSS

e. Multiple UoCs within same FACE segment

Note: Figure 23 depicts an example of different combinations of UoC Packages.

Note: PCS UoCs and PSSS UoCs must not be part of the same UoC Package.

Note: PCS UoCs and IOSS UoCs must not be part of the same UoC Package.

FACE™ Technical Standard, Edition 3.0 95

2. All UoCs in a UoC Package shall be designed to operate in the same partition.

OS

I/O

Services

Segment

Portable

Components

Segment

Platform-

Specific

Services

Segment

Operating System Segment

O
S

OS

Transport

Services

Segment

 UoC

UoC

 UoC

UoC UoC

UoC

UoC

UoC

UoC

TS

TS TS

IO IO

Valid UoC Packages

UoC

UoC

UoC

UoC

 UoC UoC

 UoC

 UoC

 UoC

 UoC

 UoC

 UoC

Valid UoCs

Figure 23: Valid UoC Packaging

3.12 Graphics Services

FACE Graphics Services include the capabilities used to create Human Machine Interfaces

(HMI) and can support 2D Rendering, 3D Rendering, Text Rendering, Context Creation,

Windowing Capabilities, and Distributed Graphics Rendering. The following standards have

been selected to enable the FACE Graphics Services:

 OpenGL/EGL

 ARINC 739

 ARINC 661

There are two classifications of Graphics Services within the FACE Reference Architecture:

Graphics Rendering Services and Graphics Display Management Services. Graphics Rendering

Services are appropriate for platforms where a single graphics standard needs to be implemented

and a single service controls access to the display. Graphics Display Management Services

provide for shared display resources and display management.

3.12.1 Graphics Portability Considerations

Graphics Services creates the ability to develop portable UoCs in other segments which need to

generate displays. Graphics Services prevents those UoCs from having knowledge about end

system displays. Portability is also achieved through the use of well-defined and widely adopted

graphics standards. Being widely adopted implies that the latest revision of a standard may not

be typically supported due to lack of industry adoption.

96 Open Group Standard (2017)

3.12.2 Relationship to FACE Reference Architecture

Graphics Services specified in this section can be placed in the FACE Reference Architecture, as

shown in Figure 24. A Graphics Services UoC can exist in the PCS or the PSSS. A PCS

Graphics Services UoC is required to use a well-defined set of interfaces and graphics standards,

such as OpenGL SC, OpenGL ES, ARINC 739 Client, ARINC 739 Server, ARINC 661 Cockpit

Display System (CDS), or ARINC 661 UA. A PSSS Graphics Services UoC is subject to the

requirements of the PSSS Graphics Services sub-segment. The OSS provides OpenGL/EGL

drivers when graphics drivers are needed for the platform.

Operating

System

Segment

I/O Services Segment

Platform-Specific Services Segment

Graphics Services

OS

OS

Service Service

Device Driver Device Driver

IO

TS

TS

OS

OS

Language

Run-Time
Application

Framework

Platform

Displays
Platform

Sensors

Platform

Devices

KEY

FACE Defined Interface

Operating

System

Health

Monitoring

Proprietary

Graphics

Driver

OpenGL

Device Driver

External Interface

GPU API

ARINC 661 CDS

Graphics UoC

ARINC 739 Server

Graphics UoC

Portable Components Segment

OpenGL

Graphics

UoC

ARINC 661

UA

Graphics

UoC

ARINC 739

Client

Graphics

UoC

Display

Management

UA Graphics

UoC

Transport

Services

Segment

OpenGL

Graphics

UoC

OpenGL
Distribution

Capability

Configuration

Capability

FACE Boundary

Interface Hardware

(e.g., MIL-STD-1553, Ethernet)

Figure 24: Graphics Services UoCs in the FACE Reference Architecture Context

3.12.3 PSSS Graphics

PSSS Graphics Services sub-segment UoCs enable normalization of implementation-specific

graphics rendering APIs. The FACE Technical Standard enables a PSSS Graphics Service UoC

to abstract services beyond the graphics standards specified by the FACE Technical Standard.

3.12.4 Graphics Services

Table 9 defines the graphics standards supported for each Graphics Service. Graphics Services

contribute to multiple FACE segments: OSS, PSSS, and PCS. When configuring a platform

using more than one of the graphics standards, or when it is required that a platform has the

FACE™ Technical Standard, Edition 3.0 97

capability for Graphics UoCs to be added in the future, it is recommended that the platform

provide Graphics Display Management Services.

Table 9: Graphics Services

Screen Sharing

Approach Description

Platform Provided

Graphics Services Graphics Standard

Cooperative screen

sharing

Applications need

knowledge of other

applications sharing the

same screen.

No support is provided by

the system for sharing the

display screen between

Graphics Services UoCs.

Graphics Services UoCs can

be used on a platform with

Basic Graphics Services

implementing one standard

for all Graphics UoCs.

Graphics Rendering

Services

ARINC 661 UAs +

CDS

or

OpenGL + EGL

or

ARINC 739A

Facilitated screen

sharing

A separate function

needs to facilitate the

sharing of the screen

without an application

requiring knowledge.

ARINC 661 provides

system support for the

sharing of the display screen

between Graphics UoCs.

Graphics Services UoCs can

be used on a platform with

Graphics Display

Management Services,

providing the platform

implements the standards

required by all Graphics

Services UoCs.

Graphics Display

Management Services

ARINC 661 UAs +

CDS, plus either one

or both of

OpenGL + EGL

ARINC 739A

3.12.4.1 ARINC 661

The ARINC 661 standard defines interface protocols between an ARINC 661 Cockpit Display

System (CDS) and a User Application (UA). UAs transmit data to the CDS, which is responsible

for managing the rendering of the widgets defined in the ARINC 661 Definition File (DF) using

the graphics infrastructure available on the rendering platform.

Figure 25 provides a visual representation of the relationship of the various ARINC 661 software

components in a generic rendering environment. ARINC 661 UAs incorporate the logic which

drives run-time changes to the ARINC 661 CDS.

98 Open Group Standard (2017)

Proprietary

Proprietary

GPU Driver

OpenGL

Graphics Processor Unit (GPU)

OpenGL Driver

(SC or ES)

ARINC 661 Display

Manager UA

ARINC 661 CMD Stream

EGL

Driver

ARINC 661 Server (CDS)

EGL/Proprietary

ARINC 661

Definition

File (DF)

TS

Figure 25: ARINC 661 Graphics Services Relationships

3.12.4.1.1 Applicability in FACE Profiles

ARINC 661 can be used in the following FACE Profiles:

 Security

 Safety

 General Purpose

3.12.4.1.2 ARINC 661 Widgets

ARINC 661 includes a very large set of widgets which are not all necessary in every

implementation. In order to reduce the requirement for every implementation to support all

widgets, a minimum set of widgets required to be supported by the CDS is defined in Table 10.

Table 10: ARINC 661-5 Widget Subset

Full Widget Set Minimally Required Widget Subset

Active Area

Basic Container x

Blinking Container x

Buffer Format x

Check Button

Combo Box

FACE™ Technical Standard, Edition 3.0 99

Full Widget Set Minimally Required Widget Subset

Connector x

Cursor Pos Overlay

Edit Box Masked

Edit Box Numeric

Edit Box Text

GpArcEllipse x

GpArcCircle x

GpCrown x

GpLine x

GpLinePolar x

GpRectangle x

GpTriangle x

Picture x

Label x

LabelComplex x

MapHorz_ItemList

MapHorz_Source

MapHorz

Mask Container x

Panel x

Picture Push Button

Picture Toggle Button

Pop Up Panel

Pop Up Menu

Pop Up Menu Button

Push Button

100 Open Group Standard (2017)

Full Widget Set Minimally Required Widget Subset

Radio Box

Rotation Container x

Scroll Panel

Scroll List

Symbol x

Tabbed Panel

Tabbed Panel Group

Toggle Button

Translation Container x

Map Grid

External Source x

Map Vert

Map Vert Source

Map Vert Item List

Edit Box Multi Line

Combo Box Edit

Menu Bar

Mutually Exclusive Container x

Proxy Button

Watchdog Container x

Slider

Picture Animated

Symbol Animated

Selection List Button

Edit Box Numeric BCD

Cursor Ref

FACE™ Technical Standard, Edition 3.0 101

Full Widget Set Minimally Required Widget Subset

Cursor Over

Focus Link

Focus In

Focus Out

Size to Fit Container

Shuffle To Fit Container

Symbol Push Button

Symbol Toggle Button

Pop Up Panel Button

GpPolyline x

Paging Container x

Numeric Readout

Map Horz Container

Map Horz Panel

Data Scaling Long x

Data Scaling Ulong x

Data Scaling FR180 x

Broadcast Receiver

No Service Monitor x

3.12.4.2 ARINC 739A

ARINC 739A defines a message-oriented interface between avionics subsystems and a Multi-

purpose Control and Display Unit (MCDU) through an ARINC 429 serial data bus. An MCDU

provides a keyboard and a display with line select keys for the display and control of connected

subsystems within a hierarchical menu-based structure. ARINC 739A was based on ARINC 739

and included changes to allow for a smaller form factor and included considerations for the

MCDU display and dual subsystems installations.

Only the subsystem serial data communication and the related MCDU display functionality may

be part of the ARINC 739A Server in the PSSS.

102 Open Group Standard (2017)

The following specifications in Table 11 define the ARINC 739A functional behavior and

protocol.

Table 11: ARINC 739A Functional Behavior Specifications

Function Specification

Single Subsystems Specification ARINC 739-1: Multi-purpose Control and Display Unit (MCDU)

Dual Subsystems Specification ARINC 739A-1: Multi-purpose Control and Display Unit (MCDU)

The FACE General Purpose, Safety, and Security OSS Profile implementations of this graphics

interface are identical.

3.12.4.3 OpenGL

The Khronos Open Graphics Language (OpenGL) is a cross-language, cross-platform API for

rendering 2D and 3D vector graphics. OpenGL is typically used with a Graphics Processing Unit

(GPU) to achieve hardware-accelerated rendering. The Khronos Native Platform Graphics

Interface (EGL) is an interface between OpenGL APIs and the underlying native platform

windowing system. The Khronos Group manages the OpenGL and EGL specifications. The

FACE Technical Standard specifies the use of EGL, OpenGL Safety-Critical (SC), or OpenGL

Embedded Systems (ES) profiles.

Graphics Services UoCs using OpenGL make direct calls to the OpenGL and EGL drivers to

render graphics content from either the PCS or PSSS segments. Figure 26 illustrates this.

OpenGL Graphics UoC

EGL API

Graphics Processor Unit (GPU)

OpenGL Driver

(SC or ES)

OpenGL API

EGL

Driver

Figure 26: OpenGL Graphics Services UoC

3.12.4.3.1 OpenGL Applicability in FACE Profiles

OpenGL/EGL can be used in the following FACE Profiles:

 Security

 Safety

 General Purpose

FACE™ Technical Standard, Edition 3.0 103

3.12.5 Graphics Rendering Services

Graphics Rendering Services are appropriate for platforms where only a single graphics standard

is provided and a single service controls access to the display. Graphics Services UoCs rendering

to a single screen can be ported between FACE environments with minimal effort.

3.12.6 Graphics Display Management Services

Graphics Display Management Services provide a standard way to share and control graphics

resources within a platform. The Graphics Display Management Services reside in the PSSS. It

is recommended that platforms provide these services when integrating multiple PCS Graphics

Services or UoCs onto a common display.

Display Management is the ability to allocate and control parts of, or the whole display, to a

specific Graphic Services UoC. Display Management aims to provide the ability to add Graphics

Services UoCs to a system with minimal integration relative to the existing software

components. In order to allow future additions of Graphics Services UoCs, the concept of a

display manager was created. This method allows most existing Graphics Services UoCs to

remain unchanged when adding new Graphics Services UoCs to the system.

ARINC 661 is used for Display Management. This allows OpenGL software components to co-

exist with ARINC 661 UA software components. It also provides an enforceable display space

partitioning scheme similar to the memory and space partitioning of the operating system. The

ARINC 661 CDS provides a standardized interface to control window positioning, focus, and

stacking, and a single instance in the FACE Reference Architecture constrains ownership of the

display surfaces to the CDS which enforces display space partitioning.

The FACE Technical Standard defines Graphics Display Management Services where an

ARINC 661 Display Management UA UoC is responsible for display manager logic. The

ARINC 661 Display Management UA is the only software component that needs to be updated

to add additional Graphics Services UoCs to a system. An example of a simple display

management UA UoC is one which provides the whole screen to a single OpenGL Graphics

Services UoC. A complex display management software component may allow several Graphics

Services UoCs to share the screen.

3.12.6.1.1 The Display Management Environment

In the Graphics Display Management Services, the ARINC 661 CDS “owns” the display, and is

responsible for layout and visibility of everything drawn on the screen, and, in general, is the

only software capable of drawing on the screen. ARINC 661 defines the External Source widget

as a way to position a video source at a specific location on a display surface. The External

Source widget provides a portable means to composite multiple Graphics Services UoCs on a

single screen. The External Source widget has defined interfaces to control which Graphics

Services UoCs outputs are visible at a given time, the Graphics Services UoC’s outputs location

and size on the screen, as well as the stacking order of the windows.

The ARINC 661 CDS uses the EGL_EXT_compositor extension to set the size of and allocate

off-screen buffers for the OpenGL Graphics Services UoCs. The extension allows for the

composition of multiple OpenGL/EGL graphics contexts within a multi-partitioned EGL system.

The extension allows a primary EGLContext to be created with multiple off-screen windows.

The extension provides for asynchronous off-screen window updates and information assurance

by the compositor using the primary EGLContext. The extension prevents OpenGL Graphics

104 Open Group Standard (2017)

UoC from interfering with other rendering contexts within the system and from rendering to the

primary EGLContext.

Therefore, an OpenGL Graphics Services UoC renders using the local OpenGL and EGL APIs.

OpenGL Graphics Services UoCs using standard EGL functions are able to query the screen size

the ARINC 661 CDS set for the given OpenGL Graphics Service UoC, and have no need to

know of any of the other Graphics Services UoCs sharing the same display surface. The

OpenGL Graphics Services UoCs render as they normally would; either periodically or event-

driven. When an OpenGL Graphics Services UoC finishes rendering a frame, the Graphics

Services UoC calls the standard OpenGL and EGL APIs to flush the buffer to the screen. This

allows the OpenGL Graphics Services UoC to maintain the highest level of portability.

Figure 27 shows some of the data flows and APIs used to allow OpenGL, ARINC 661, and

ARINC 739 to co-exist on the same system. OpenGL Graphics Services UoCs only use OpenGL

and EGL APIs to render graphics, which are then placed on the display by the ARINC 661 CDS.

ARINC 661 UAs use the ARINC 661 data stream to communicate directly with the ARINC 661

CDS using the TS Interface. The ARINC 661 CDS also communicates window sizing and

positioning to the EGL driver such that OpenGL Graphics Services UoCs have correct sizing

data using the EGL_EXT_compositor extension.

Figure 27 also shows an ARINC 739 Server Graphics Services UoC using a proprietary interface

to the GPU to render its graphic. The ARINC 739-rendered frames are then placed on the

display surface by the ARINC 661 CDS according to any display management that may be

applied. The ARINC 661 CDS interfaces to the graphics rendering system using any of the

available APIs for which a platform may expose to Graphics Services UoCs.

OpenGL Graphics UoC

EGL API

Proprietary

Proprietary

GPU Driver

OpenGL

Graphics Hardware (GPU)

OpenGL GPU

Driver

(SC or ES)

OpenGL

API

ARINC 661 Display

Manager UA

ARINC 661 CMD Stream

EGL Driver w/

EGL_EXT_compositor

ARINC 661 Server (CDS)

EGL/Proprietary

Proprietary

Proprietary GPU

Driver

ARINC 739

Graphics UoC

ARINC 739 Server

ARINC 739 Command Stream

TS TS

Figure 27: Graphics Services Software Component Relationships

3.12.6.1.2 External Source Widgets

ARINC 661 external source widgets are used to provide window control for rendering objects

outside of the other ARINC 661 widgets. Windows are made available to OpenGL via an EGL

driver that includes the EGL_EXT_compositor extension. The ARINC 661 CDS uses the same

FACE™ Technical Standard, Edition 3.0 105

EGL driver to control the OpenGL rendering areas. In this environment, an ARINC 661 DF file

for window management consists of standard ARINC 661 graphics widgets including some

number of external source widgets. The windows are then managed by the Display Management

UA UoC using the standard ARINC 661 object stacking, location, and visibility rules. The

ARINC 661 CDS configures the EGL driver such that OpenGL Graphics Services UoCs can

correctly use the screen.

The External Source widget using the EGL_EXT_compositor extension provides a standard

interface to specify window location and dimensions for OpenGL frame buffers used by the

OpenGL Graphics Services UoCs. This provides a means to control specialized hardware

designed to composite external video, or similar software components of non-ARINC 661-

generated images or video. The ARINC 661 CDS works with the EGL driver such that OpenGL

Graphics Services UoCs can share the screen space. An OpenGL Graphics Services UoC using

this EGL API may exist in the PCS or PSSS.

3.12.7 OSS Requirements for Graphics Services

1. When supporting OpenGL, an OSS UoC shall provide OpenGL drivers compatible with

OpenGL SC 1.0.1 or OpenGL SC 2.0, or OpenGL ES 2.0.

2. When supporting EGL, an OSS UoC shall provide EGL drivers compatible with EGL 1.4

or EGL 1.4 with the EGL_EXT_compositor extension.

3. When supporting Graphics Display Management Services, an OSS UoC shall provide an

EGL driver with the EGL_EXT_compositor extension.

Note: An OpenGL or EGL driver can be provided as part of the OSS. OpenGL and EGL

drivers expected to support Graphics UoCs in the PCS or PSSS will need to be able to

support OpenGL SC 1.0.1 or OpenGL SC 2.0, or OpenGL ES 2.0 or EGL 1.4, or EGL

1.4 with EGL_EXT_compositor extensions.

3.12.8 PCS Requirements for Graphics Services

3.12.8.1 ARINC 661 Requirements

The FACE General Purpose, Safety, and Security Profile requirements for the ARINC 661

standard are identical and defined here.

3.12.8.1.1 PCS User Application Requirements

1. A Graphics Services UoC implementing ARINC 661 UAs in the PCS shall satisfy the

requirements in Section 3.10.

2. A Graphics Services UoC implementing an ARINC 661 UA shall use the TS Interface to

communicate ARINC 661 data.

3. A Graphics Services UoC implementing an ARINC 661 UA shall document the set of

ARINC 661 widgets it uses.

4. A Graphics Services UoC implementing an ARINC 661 UA shall have an associated

ARINC 661 DF.

106 Open Group Standard (2017)

3.12.8.1.2 PCS Cockpit Display System Requirements

1. The ARINC 661 CDS UoC shall provide OpenGL windowing using the external source

widget when configured to support Graphics Display Management Services.

2. A Graphics Services UoC implementing an ARINC 661 CDS in the PCS shall support the

logic specified in ARINC 661-5 for widgets it provides.

3. A Graphics Services UoC implementing an ARINC 661 CDS in the PCS shall provide the

minimum widget subset as specified in Table 10.

Note: The ARINC 661 CDS may provide additional widgets.

4. A Graphics Services UoC implementing an ARINC 661 CDS in the PCS shall satisfy the

requirements in Section 3.10.

5. A Graphics Services UoC implementing an ARINC 661 CDS shall use the TS Interface to

communicate ARINC 661 data.

6. A Graphics Services UoC implementing an ARINC 661 CDS shall use the XSD defined

in Section H.2 for its style data configuration.

7. A Graphics Services UoC implementing an ARINC 661 CDS shall use the XSD defined

in Section H.3 for its display management configuration parameters.

8. A Graphics Services UoC implementing an ARINC 661 CDS shall document the set of

ARINC 661 widgets it provides.

3.12.8.2 ARINC 739A Requirements

1. A Graphics Services UoC shall use ARINC 739A messages defined in Section 3.7 of

ARINC 739-1 or ARINC 739A-1 when communicating with the ARINC 739A Services.

2. ARINC 739 Client UoCs deployed to the PCS shall satisfy the requirements in Section

3.10.

3.12.8.3 OpenGL Requirements

1. A Graphics Services UoC using OpenGL shall also use EGL, Version 1.4.

Note: A Graphics Services UoC may only use extended EGL as specified in the OSS

graphics requirements.

2. A Graphics Services UoC using OpenGL in the:

a. General Purpose Profile shall use OpenGL SC 1.0.1, OpenGL SC 2.0, or OpenGL

ES 2.0.

b. Safety Profile shall use OpenGL SC 1.0.1 or OpenGL SC 2.0.

c. Security Profile shall use OpenGL SC 1.0.1 or OpenGL SC 2.0.

Note: Graphics Services UoC may not use extended OpenGL and be conformant.

3. A Graphics Services UoC shall be restricted to the core profile for the OpenGL version

being used.

Note: This does not preclude use of dynamic binding to use OpenGL extensions, however

the UoC must not rely on the existence of any OpenGL extensions.

FACE™ Technical Standard, Edition 3.0 107

4. A Graphics Services UoC using eglGetDisplay shall use a configurable parameter for the

display_id input argument.

Note: The configurable parameter, for example, could be read from a file or passed in at

startup of the software component. See Configuration Services in Section 3.2.5.

5. A Graphics Services UoC using eglCreateWindowSurface shall use a configurable

parameter for win input argument when using EGL_EXT_compositor as off-screen

windows.

Note: The configurable parameter, for example, could be read from a file or passed in at

startup of the software component. See Configuration Services in Section 3.2.5.

6. A Graphics Services UoC using eglCreateContext shall use a configurable parameter for

the EGL_EXTERNAL_REF_ID_EXT attribute during context creation when not using

the EGL_PRIMARY_COMPOSITOR_CONTEXT_EXT attribute.

3.12.9 PSSS Requirements for Graphics Services

This section includes the PSGS sub-segment requirements.

1. When a PSSS Graphics Service UoC renders using a method other than OpenGL, as

defined in Section 3.12.7, the Graphics Service UoC shall use the graphics driver API.

Note: This allows a PSSS Graphics Service UoC to use interfaces not defined in the IOS

or OSS APIs for graphics rendering.

2. ARINC 661 Requirements

The FACE General Purpose, Safety, and Security Profile requirements for the ARINC 661

standard are identical and defined here.

3.12.9.1 PSSS Cockpit Display System Requirements

1. The ARINC 661 CDS UoC shall provide OpenGL windowing using the external source

widget when configured to support Graphics Display Management Services.

2. A Graphics Services UoC implementing an ARINC 661 CDS in the PSSS shall support

the logic specified in ARINC 661-5 for widgets it provides.

3. A Graphics Services UoC implementing an ARINC 661 CDS in the PSSS shall provide

the minimum widget subset as specified in Table 10.

Note: The ARINC 661 CDS may provide additional widgets.

4. A Graphics Services UoC implementing an ARINC 661 CDS shall use the TS Interface to

communicate ARINC 661 data.

5. A Graphics Services UoC implementing an ARINC 661 CDS shall use the XSD defined

in Section H.2 for its style data configuration.

6. A Graphics Services UoC implementing an ARINC 661 CDS shall use the XSD defined

in Section H.3 for its display management configuration parameters.

Note: The Graphics Services UoC implementing an ARINC 661 CDS in the PSSS may

have direct access to any proprietary graphics hardware drivers and APIs.

108 Open Group Standard (2017)

7. A Graphics Services UoC implementing an ARINC 661 Display Management UA shall

have an associated ARINC 661 DF.

8. A Graphics Services UoC implementing an ARINC 661 CDS shall document the set of

ARINC 661 widgets it provides.

3.12.9.2 PSSS User Application Requirements

1. A Graphics Services UoC implementing an ARINC 661 UA shall use the TS Interface to

communicate ARINC 661 data.

2. A Graphics Services UoC implementing an ARINC 661 UA shall document the set of

ARINC 661 widgets it uses.

3.12.9.3 ARINC 739A Requirements

1. A Graphics Services UoC shall use ARINC 739A messages defined in Section 3.7 of

ARINC 739-1 or ARINC 739A-1 when communicating with the ARINC 739A Services.

3.12.9.4 OpenGL Requirements

The requirements for OpenGL apply to both PCS and PSSS subsections of the FACE Technical

Standard.

1. A Graphics Services UoC using OpenGL shall also use EGL, Version 1.4.

Note: A Graphics Services UoC may only use extended EGL as specified in the OSS

graphics requirements.

2. A Graphics Services UoC using OpenGL in the:

a. General Purpose Profile shall use OpenGL SC 1.0.1, OpenGL SC 2.0, or OpenGL

ES 2.0.

b. Safety Profile shall use OpenGL SC 1.0.1 or OpenGL SC 2.0.

c. Security Profile shall use OpenGL SC 1.0.1 or OpenGL SC 2.0.

Note: Graphics Services UoC may not use extended OpenGL and be conformant.

3. A Graphics Services UoC shall be restricted to the core profile for the OpenGL version

being used.

Note: This does not preclude use of dynamic binding to use OpenGL extensions; however,

the UoC must not rely on the existence of any OpenGL extensions.

4. A Graphics Services UoC using eglGetDisplay shall use a configurable parameter for the

display_id input argument.

Note: The configurable parameter, for example, could be read from a file or passed in at

startup of the software component. See Configuration Services.

5. When using EGL_EXT_compositor as off-screen windows, a Graphics Services UoC

using eglCreateWindowSurface shall use a configurable parameter for the win input

argument.

Note: The configurable parameter, for example, could be read from a file or passed in at

startup of the software component. See Configuration Services.

FACE™ Technical Standard, Edition 3.0 109

6. When calling eglCreateContext and not using the

EGL_PRIMARY_COMPOSITOR_CONTEXT_EXT attribute, a Graphics Services UoC

shall use a configurable parameter for the EGL_EXTERNAL_REF_ID_EXT attribute.

7. A Graphics Services UoC using OpenGL shall document its OpenGL version.

3.13 Life Cycle Management Services

3.13.1 Introduction

The Life Cycle Management Services provide a common and consistent approach for managing

the life-cycle of UoCs. Software Suppliers and System Integrators can depend on the common

interface to support their Life Cycle Management (LCM) solution implementation.

3.13.1.1 Goals

The LCM Services are defined to provide a consistent approach for software suppliers and

system integrators to address several complexities that come with integrating UoCs into a

system. Some of the Life Cycle integration complexities include:

 An instance of the UoC is initialized and finalized at execution points that are highly

dependent on the system design

 An instance of the UoC is configured at execution points that are highly dependent on the

system design

 An instance of the UoC is integrated when a component framework solution is used,

where characteristics of that component framework solution are highly dependent on the

system design

 An instance of the UoC is integrated with state management algorithms that are highly

dependent on the system design

 The system coordinates the state of multiple UoC instances, where the possible states and

valid transitions are highly dependent upon each UoC

A UoC that addresses these complexities via the LCM Services provides more flexibility for

reuse. Systems that employ the LCM Services to address these complexities may reap cost and

schedule benefits from the consistent technical integration of multiple UoCs.

3.13.1.2 Approach

There are four capabilities offered by LCM Services:

 Initializable Capability (Section 3.13.2)

 Configurable Capability (Section 3.13.3)

 Connectable Capability (Section 3.13.4)

 Stateful Capability (Section 3.13.5)

110 Open Group Standard (2017)

The Capabilities are independent and optional. Each Capability is defined by a corresponding

Interface. A UoC that provides one or more of the LCM Capabilities is referred to as a Managed

UoC in this context.

LCM Services does not define an interface to create or destroy instances. Section 3.14 addresses

the syntax for those operations. LCM Services assumes an existent software object that

implements one or more of the interfaces defined.

The time-ordered sequence of execution points supported by LCM Services is as follows:

1. Initialization via the Initializable Capability

2. Configuration via the Configurable Capability

3. Framework startup via the Connectable Capability

4. State transitions via the Stateful Capability

5. Framework teardown via the Connectable Capability

6. Finalization via the Initializable Capability

The Stateful capability uses parameterized data types for state representation, allowing each

Managed UoC to define its own valid state values. The FACE Technical Standard need not,

therefore, require any specific state representations or transitions. The state of the system

becomes a function in part of the states of managed UoCs, and appropriate state transition

behavior remains an aspect of system design. The SDM does define a state representation that

may be suitable for adoption by a Managed UoC when additional states are not required.

3.13.1.3 Security and Safety Considerations

The capabilities provided by LCM Services coincide with cross-cutting security and safety

assurance concerns. The existence of LCM Services in the FACE Technical Standard does not

change the continued need for assurance case analysis. Factors involved include, but are not

limited to, the assurance level of the system and its constituent UoCs, the criticality requirements

of the system and consequent design decisions, and criteria established by the designated

assurance authority.

In Real Time Safety-Critical (RTSC) systems, reliable operation and integrity of safeguards

during post-startup operation must be assured. Use of LCM Services Interfaces is constrained to

preclude changes in executable memory space and execution scheduling for RTSC systems. Use

of the Initializable, Configurable, Connectable, and Stateful Capabilities is constrained to system

startup/shutdown to ensure that a single known software configuration exists during operation.

In security-critical systems, employing LCM Services needs to be assured as part of the system

design to minimize vulnerabilities. Any of the LCM Services Capabilities could be exploited by

malicious or unstable software which could compromise the proper behavior of the system.

3.13.2 Initializable Capability Requirements

The Initializable Capability provides an entry point to an instance of a Managed UoC at the

initialization and finalization execution points.

1. A UoC that provides the LCM Services Initializable Capability shall provide the LCM

Services Initializable Interface per Section D.2.

FACE™ Technical Standard, Edition 3.0 111

2. A UoC that uses the LCM Services Initializable Capability shall use the LCM Services

Initializable Interface per Section D.2.

3.13.3 Configurable Capability Requirements

The Configurable Capability supports the configuration execution point for an instance of a

Managed UoC. This execution point is intended to support parameters specific to the Managed

UoC that are not associated with configuration behavior defined by other FACE Interfaces.

1. A UoC that provides the LCM Services Configurable Capability shall provide the LCM

Services Configurable Interface per Section D.3.

2. A UoC that uses the LCM Services Configurable Capability shall use the LCM Services

Configurable Interface per Section D.3.

3.13.4 Connectable Capability Requirements

The Connectable Capability provides an entry point to an instance of a Managed UoC at the

framework startup and framework teardown execution points.

1. A UoC that provides the LCM Services Connectable Capability shall provide the LCM

Connectable Services Interface per Section D.4.

2. A UoC that uses the LCM Services Connectable Capability shall use the LCM Services

Connectable Interface per Section D.4.

3.13.5 Stateful Capability Requirements

The Stateful Capability supports state transition execution points for an instance of a Managed

UoC.

1. A UoC that provides the LCM Services Stateful Capability shall provide the LCM

Services Stateful Interface per Section D.5.

2. A UoC that uses the LCM Services Stateful Capability shall use the LCM Services

Stateful Interface per Section D.5.

3. The REPORTED_STATE_VALUE_TYPE parameter of the LCM Stateful Interface shall

be a face.datamodel.platform.View as specified in Section J.2.5.44.

4. The REQUESTED_STATE_VALUE_TYPE parameter of the LCM Stateful Interface

shall be a face.datamodel.platform.View as specified in Section J.2.5.44.

5. When the LCM Stateful Interface is instantiated, the instantiated name shall be the name

of the UoC, underscore, name of REPORTED_STATE_VALUE_TYPE, underscore, and

name of the REQUESTED_STATE_VALUE_TYPE.

Note: This reduces the potential for name conflicts in the same memory address space by

separate UoCs.

112 Open Group Standard (2017)

3.14 IDL to Programming Language Mappings

Several FACE Standardized Interfaces and the Data Model Language Bindings are specified

using the OMG Interface Definition Language (IDL), Version 4.1. The portion of the IDL

language used in these specifications is a profile consisting of the following building blocks:

 Building Block Core Data Types

 Building Block Interfaces – Basic

 Building Block Interfaces – Full

 Building Block Template Modules

This section describes language mappings from this profile to several programming languages.

Note: Throughout this section, the phrase “IDL compiler” is used to refer to an IDL compiler

that supports these Language Mappings.

3.14.1 Exceptions

IDL exceptions map to nothing in every target language. IDL interface attributes or operations

that raise exceptions map to every target language as if they did not raise an exception.

3.14.2 Template Modules

Template modules are similar to C++ templates, in that they allow a module and its contents to

be parameterized. A template module is not actually used until it is instantiated with appropriate

parameters, so template module definitions and their contents do not map to anything until they

are instantiated. Once a template module has been instantiated, it is treated exactly as a classical

module would be treated if defined at the point the template module was instantiated.

Template Module Example

// IDL

module A<typename T> {

 typedef T MyThing;

};

module B {

 module A<long> MyModuleA;

};

// (treated as a classical module at the point of instantiation)

module B {

 module MyModuleA {

 typedef long MyThing;

 };

};

3.14.3 Constants

These mappings do not support IDL constants whose constant expression evaluates to a string or

fixed-point. In such cases, an IDL compiler emits a diagnostic indicating the use of an

unsupported construct.

FACE™ Technical Standard, Edition 3.0 113

3.14.4 Constant Expressions

A constant expression in IDL maps to every target language either as a literal that is semantically

equivalent in value and type to the result of the IDL expression’s evaluation, as described in

Section 7.4.1.4.3 of the IDL 4.1 Specification, or an expression that mimics the form and

semantics of the IDL expression and results in the same value.

Constant Expression Example

// IDL

1 + 1

// Permissible mapping to C

2

// Another permissible mapping to C

1 + 1

Note: An IDL constant definition is invalid if its expression is outside its type’s range. In

such cases, an IDL compiler emits a diagnostic indicating the error.

Invalid IDL Constant Definition Example

// IDL

const short Foo = 1 + 65535; /* error – result outside

 range of IDL short */

3.14.5 Preprocessor Directives

The only preprocessor directives supported are:

#include <...>

#include “...”

#ifndef identifier

#define identifier

#endif

#pragma FACE include_guard

3.14.6 Wide Characters and Wide Strings

These mappings do not support IDL wide characters or wide strings.

3.14.7 IDL to C Mapping

This section describes a mapping from IDL 4.1 to C99 (ISO/IEC 9899:1999: Programming

Languages – C). It is based on mappings defined in OMG IDL C Language Mapping, Version

1.0.

3.14.7.1 Names

Names in IDL generally obey C naming conventions, with exceptions described below. Unless

otherwise excepted below, unscoped names in IDL appear in the generated source code

character-for-character.

In the event that a name that is legal in IDL conflicts with a reserved C keyword, the name for

that symbol is constructed by prefixing it with “FACE_”. Any language in the remainder of this

section indicating that a C construct has the “same name” as its IDL counterpart takes this

conflict resolution into account.

114 Open Group Standard (2017)

3.14.7.1.1 Scoped Names

IDL provides a scoping mechanism similar to C++: modules map roughly to namespaces and

interfaces can open new scopes similar to C++ classes. As the C programming language lacks

these features, any name that is not in the global scope is constructed to ensure uniqueness. The

enclosing scope of a particular name is prepended to that name with an underscore.

Scoped Names Example 1

module A {

 module B {

 const long Foo = 0;

 interface Bar {

 void baz();

 };

 };

};

The scoped names are as follows:

 Foo: A_B_Foo

 Bar: A_B_Bar

 Baz: A_B_Bar_baz

Because of these constructed names, using underscores in IDL identifiers may result in duplicate

symbols in C. In the following example, both “foo_bar” and “bar” typedefs map to “foo_bar” in

C, because “bar” is in the “foo” module. An IDL compiler emits an error if such a conflict

occurs.

Scoped Names Example 2

// IDL

typedef long foo_bar;

module foo {

 typedef short bar; /* Legal IDL, but would cause duplicate symbol in C.

 Emit error. */

};

3.14.7.1.2 File Names

An IDL source file maps to a C header file with the same base name and a “.h” extension. If the

IDL source file is defined in this Technical Standard, then the header file is in a “FACE”

directory.

3.14.7.2 Preprocessor Directives

#include directives in IDL result in equivalent #include directives to be emitted in the generated

C code. Filenames in IDL #include directives map to C according to Section 3.14.7.1.2.

Other preprocessor directives do not map to anything in the C representation. Because of this, an

#ifndef include guard is always present in a C source file generated from IDL. The identifier

used in the guard is the base name of the resulting C header file, in all caps, prepended with an

underscore, and appended with “_H”.

#include Example

// IDL (foo.idl)

#include <bar.idl>

FACE™ Technical Standard, Edition 3.0 115

/* (contents unspecified in this example) */

// C (foo.h)

#ifndef _FOO_H

#define _FOO_H

#include <bar.h>

/* (contents unspecified in this example) */

#endif

In the event that two files generated from IDL files with identical names are part of the same

translation unit, the preprocessor directives conflict. To address this, an IDL compiler supports

the following pragma, which overrides the automatically generated include guard:

#pragma FACE include_guard “DESIRED_INCLUDE_GUARD”

It is an error for more than one such pragma to be in the same file.

Example Usage of the include_guard Pragma

// IDL (foo.idl)

#pragma FACE include_guard "_MY_FOO_H"

/* (contents unspecified in this example) */

// C (foo.h)

#ifndef _MY_FOO_H

#define _MY_FOO_H

/* (contents unspecified in this example) */

#endif

3.14.7.3 Modules

Modules have no corresponding C language construct and thus do not appear directly as

generated code. Instead, modules influence the scoped name generated for any contained

elements as described in Section 3.14.7.1. Scoped names are used when resolving definitions

from other modules.

Modules Example

// IDL

module A {

 typedef long MyLong;

 module B {

 typedef MyLong MyOtherLong;

 };

};

module C {

 typedef A::MyLong MyOtherLong;

};

// C

typedef FACE_long A_MyLong;

typedef A_MyLong A_B_MyOtherLong;

typedef A_MyLong C_MyOtherLong;

3.14.7.4 Typedefs

An IDL typedef creates an alias for a type; it maps directly to a C typedef. The C typedef’s alias

is the scoped name of the IDL typedef, as described in Section 3.14.7.1; the C typedef type’s

mapping is specified in the IDL type’s relevant section below. Multiple declarators in IDL map

to the same in C.

116 Open Group Standard (2017)

Typedef Example 1

// IDL

typedef long Foo, Bar;

module A {

 typedef Bar Baz;

};

// C

typedef FACE_long Foo, Bar;

typedef Bar A_Baz;

Structures, unions, and enumerations can be declared within a typedef in IDL, which is logically

equivalent to a type declaration immediately followed by a typedef.

Typedef Example 2

// IDL

typedef struct Foo_struct { long x; } Foo;

// (logically equivalent to the following IDL)

struct Foo_struct { long x; };

typedef Foo_struct Foo;

3.14.7.5 Constants

A constant in IDL is mapped to a #define in C. The #define identifier is the fully scoped name of

the IDL constant, as specified in Section 3.14.7.1. If the IDL constant’s value expression is a

scoped name, then the #define replacement is mapped from that scoped name as specified in

Section 3.14.7.1. Otherwise, the #define replacement is a C expression mapped from the IDL

constant expression as specified in Section 3.14.4. In all cases, the #define replacement includes

a cast to the fully-qualified type mapped from the IDL constant’s type as specified elsewhere.

Constants Example

// IDL

typedef long MyLong;

enum Color {RED, GREEN, BLUE};

module A {

 const long FooLong = 1 + 65535;

 const boolean FooBool = TRUE;

 const MyLong FooMyLong = FooLong;

 const Color clr = RED;

};

// C

typedef FACE_long MyLong;

typedef enum Color {Color_RED, Color_GREEN, Color_BLUE} Color;

#define A_FooLong ((FACE_long)65536)

#define A_FooBool ((FACE_boolean)true)

#define A_FooMyLong ((MyLong)A_FooLong)

#define A_clr ((Color)Color_RED)

3.14.7.6 Simple Types

3.14.7.6.1 Basic Types

IDL Basic Types map to C types according to Table 12 below. Implementations provide

definitions for these C types that align with the given size and range requirements. The file

containing these definitions is “FACE/types.h”, as specified in Section K.1.1.

FACE™ Technical Standard, Edition 3.0 117

Table 12: IDL Basic Type C Mapping

IDL

Basic Type C Type

Size

(bytes) Range of Values

Default

Value

short FACE_short 2 -2^15 to (2^15 - 1) 0

long FACE_long 4 -2^31 to (2^31 - 1) 0

long long FACE_long_long 8 -2^63 to (2^63 - 1) 0

unsigned

short

FACE_unsigned_short 2 0 to (2^16 - 1) 0

unsigned long FACE_unsigned_long 4 0 to (2^32 - 1) 0

unsigned long

long

FACE_unsigned_long_long 8 0 to (2^64 - 1) 0

float FACE_float 4 IEEE 754-2008 single

precision floating point

0.0

double FACE_double 8 IEEE 754-2008 double

precision floating point

0.0

long double FACE_long_double 10 IEEE 754-2008 extended

double precision floating

point

0.0

char FACE_char 1 -2^7 to (2^7 - 1) 0

boolean FACE_boolean 1 0 to 1 0

octet FACE_octet 1 0 to (2^8 - 1) 0

3.14.7.6.2 Sequences

Bounded and unbounded sequences map to a typedef FACE_sequence and a set of macros that

wrap FACE_sequence functions. There is one macro per FACE_sequence function. The #define

identifier for each macro is <derived function name>(<derived parameter list>), and the

replacement is <FACE_sequence function name>(<parameter list>), where:

 <FACE_sequence function name> is the name of the FACE_sequence function

 <derived function name> is <FACE_sequence function name>, with “FACE_sequence”

replaced by the fully-scoped name of the IDL sequence

 <parameter list> is a comma-separated list of all the FACE_sequence function’s parameter

names, each prepended with an underscore and enclosed in parentheses

Any FACE_sequence parameter named sizeof_T is handled differently, becoming

sizeof(<element type>) in this list, where <element type> is mapped from the IDL

sequence’s type as specified elsewhere.

118 Open Group Standard (2017)

 <derived parameter list> is <parameter list>, with sizeof(<element type>) omitted from

the list, and without parenthesis enclosing each parameter name

Full specification for FACE_sequence is in Section K.1.3.

Sequences also map to a #define in C for the sequence’s bound, where the #define identifier is

the sequence’s fully-scoped name appended with “_bound_value”, and the #define’s

replacement is the sequence’s maximum size cast to a FACE_unsigned_long. To indicate that a

sequence is unbounded, the sentinel value FACE_SEQUENCE_UNBOUNDED_SENTINEL is

used as the replacement value.

Unbounded Sequence Mapping

// IDL

typedef short TYPE;

typedef sequence<TYPE> Foo;

typedef sequence<TYPE,8> Bar;

// C

typedef FACE_short TYPE;

typedef FACE_sequence Foo;

#define Foo_bound_value FACE_SEQUENCE_UNBOUNDED_SENTINEL

#define Foo_init_managed_unbounded(_seq) \

 FACE_sequence_init_managed_unbounded((_seq), sizeof(TYPE))

#define Foo_init_managed_bounded(_seq, _bound) \

 FACE_sequence_init_managed_bounded((_seq), sizeof(TYPE), (_bound))

#define Foo_init_managed_copy(_seq, _src) \

 FACE_sequence_init_managed_copy((_seq), (_src))

#define Foo_init_managed_data(_seq, _arr, _length) \

 FACE_sequence_init_managed_data((_seq), (_arr), sizeof(TYPE), (_length))

#define Foo_init_unmanaged(_seq, _src, _length, _bound) \

 FACE_sequence_init_unmanaged(\

 (_seq), (_src), sizeof(TYPE), (_length), (_bound))

#define Foo_free(_seq) \

 FACE_sequence_free((_seq))

#define Foo_clear(_seq) \

 FACE_sequence_clear((_seq))

#define Foo_append(_seq, _src) \

 FACE_sequence_append((_seq), (_src))

#define Foo_at(_seq, _index) \

 (TYPE *) FACE_sequence_at((_seq), (_index))

#define Foo_buffer(_seq) \

 (TYPE *) FACE_sequence_buffer((_seq))

#define Foo_length(_seq, _length) \

 FACE_sequence_length((_seq), (_length))

#define Foo_capacity(_seq, _capacity) \

 FACE_sequence_capacity((_seq), (_capacity))

#define Foo_bound(_seq, _bound) \

 FACE_sequence_bound((_seq), (_bound))

#define Foo_is_managed(_seq, _is_managed) \

 FACE_sequence_is_managed((_seq), (_is_managed))

FACE™ Technical Standard, Edition 3.0 119

#define Foo_is_bounded(_seq, _is_bounded) \

 FACE_sequence_is_bounded((_seq), (_is_bounded))

#define Foo_is_valid(_seq, _is_valid) \

 FACE_sequence_is_valid((_seq), (_is_valid))

typedef FACE_sequence Bar;

#define Bar_bound_value ((FACE_unsigned_long)8)

#define Bar_init_managed_unbounded(_seq) \

 FACE_sequence_init_managed_unbounded((_seq), sizeof(TYPE))

#define Bar_init_managed_bounded(_seq, _bound) \

 FACE_sequence_init_managed_bounded((_seq), sizeof(TYPE), (_bound))

#define Bar_init_managed_copy(_seq, _src) \

 FACE_sequence_init_managed_copy((_seq), (_src))

#define Bar_init_managed_data(_seq, _arr, _length) \

 FACE_sequence_init_managed_data((_seq), (_arr), sizeof(TYPE), (_length))

#define Bar_init_unmanaged(_seq, _src, _length, _bound) \

 FACE_sequence_init_unmanaged(\

 (_seq), (_src), sizeof(TYPE), (_length), (_bound))

#define Bar_free(_seq) \

 FACE_sequence_free((_seq))

#define Bar_clear(_seq) \

 FACE_sequence_clear((_seq))

#define Bar_append(_seq, _src) \

 FACE_sequence_append((_seq), (_src))

#define Bar_at(_seq, _index) \

 (TYPE *) FACE_sequence_at((_seq), (_index))

#define Bar_buffer(_seq) \

 (TYPE *) FACE_sequence_buffer((_seq))

#define Bar_length(_seq, _length) \

 FACE_sequence_length((_seq), (_length))

#define Bar_capacity(_seq, _capacity) \

 FACE_sequence_capacity((_seq), (_capacity))

#define Bar_bound(_seq, _bound) \

 FACE_sequence_bound((_seq), (_bound))

#define Bar_is_managed(_seq, _is_managed) \

 FACE_sequence_is_managed((_seq), (_is_managed))

#define Bar_is_bounded(_seq, _is_bounded) \

 FACE_sequence_is_bounded((_seq), (_is_bounded))

#define Bar_is_valid(_seq, _is_valid) \

 FACE_sequence_is_valid((_seq), (_is_valid))

3.14.7.6.3 Strings

Bounded and unbounded strings map to a typedef FACE_string and a #define in C, where the

#define identifier is the string’s fully-scoped name appended with “_bound_value”, and the

#define’s replacement is the string’s maximum size cast to a FACE_unsigned_long. To indicate

that a string is unbounded, the sentinel value FACE_STRING_UNBOUNDED_SENTINEL is

used as the replacement value. Full specification for FACE_string is in Section K.1.4.

120 Open Group Standard (2017)

String Example

// IDL

typedef string Foo;

typedef string<8> Bar;

// C

typedef FACE_string Foo;

#define Foo_bound_value FACE_STRING_UNBOUNDED_SENTINEL

typedef FACE_string Bar;

#define Bar_bound_value ((FACE_unsigned_long)8)

3.14.7.6.4 Fixed

A fixed type maps to a typedef FACE_fixed and two #defines to represent the type’s digits and

scale. For the digits #define, the identifier is the fixed type’s fully-scoped name appended with

“_digits”, and the replacement is the type’s total number of digits cast to a

FACE_unsigned_short. For the scale #define, the identifier is the fixed type’s fully-scoped name

appended with “_scale”, and the replacement is the type’s scale cast to a FACE_unsigned_short.

Implementations are responsible for initializing a fixed type using these constants. Full

specification for FACE_fixed is in Section K.1.5.

Fixed Type Example

// IDL

typedef fixed<5,2> Foo;

// C

typedef FACE_fixed Foo;

#define Foo_digits ((FACE_unsigned_short) 5)

#define Foo_scale ((FACE_unsigned_short) 2)

3.14.7.7 Constructed Types

3.14.7.7.1 Structures

An IDL structure maps to a C structure typedef. The C structure and typedef alias names are the

scoped name of the IDL structure, as specified in Section 3.14.7.1. The structure’s members

occur in the same order as in IDL; each member's type and identifier are mapped as specified

elsewhere.

// IDL

typedef long MyLong;

struct A {

 long X;

 MyLong Y;

 char Z;

};

// C

typedef FACE_long MyLong;

typedef struct A {

 FACE_long X;

 MyLong Y;

 FACE_char Z;

} A;

FACE™ Technical Standard, Edition 3.0 121

3.14.7.7.2 Enumerations

An IDL enum maps to a C enum typedef. The C enum and typedef alias names are the scoped

name of the IDL enum, as specified in Section 3.14.7.1. Enum literals map one-to-one from IDL;

enum literal names are the same as in IDL, prepended with <fully-scoped enum name>_.

Enumeration Example

// IDL

enum Color {RED, GREEN, BLUE};

// C

typedef enum Color {Color_RED, Color_GREEN, Color_BLUE} Color;

3.14.7.7.3 Unions

An IDL union maps to a C structure typedef. The C structure and typedef alias names are the

IDL union’s scoped name, as described in Section 3.14.7.1.1. The structure contains two

members: a discriminator named “discriminator” and a union named “values”. The type of the

discriminator is derived from the type of the IDL union’s discriminator as specified elsewhere.

Each IDL union member maps to one member in the C union. Each member’s type and identifier

are mapped as specified elsewhere.

Note: Implementations are responsible for consistently modifying the discriminator and

union. It is recommended that comments be used to document which C union member

corresponds to which discriminator value.

Union Example

// IDL

enum CASES { FOO, BAR, BAZ };

union FooUnion switch (CASES) {

 case FOO: short a;

 case BAR: long b;

 // NOTE: IDL does not require a case for every enum literal

};

// C

typedef enum CASES { CASES_FOO, CASES_BAR, CASES_BAZ } CASES;

typedef struct FooUnion {

 enum CASES discriminator;

 union {

 FACE_short a; // CASES_FOO

 FACE_long b; // CASES_BAR

 } values;

} FooUnion;

3.14.7.8 Arrays

An array in IDL maps to a C-style array of the same dimension. The name of the array is the

scoped name of the IDL array as described in Section 3.14.7.1; the C array type’s mapping is

specified in the IDL type’s relevant section. An additional typedef is generated named <array

name>_slice aliasing the array type with the most significant dimension removed.

Array Example

// IDL

typedef short Foo[10];

typedef short Bar[4][5];

122 Open Group Standard (2017)

// C

typedef FACE_short Foo[10];

typedef FACE_short Bar[4][5];

3.14.7.9 Interfaces

3.14.7.9.1 Declaration

An IDL interface definition is mapped to a pair of C struct typedefs: one whose name is the fully

scoped name of the IDL interface (see Section 3.14.7.1), acting as the main data structure for the

interface; another whose name is constructed by appending _ops to the previous name, acting as

an operation lookup table for the interface.

An IDL interface definition is also mapped to two typedefs for function pointers – one for

initialization of the interface and one for cleanup. The typedef alias for the initialization function

pointer is <fully-scoped interface name>_ctor_t; the typedef alias for the cleanup function

pointer is <fully-scoped interface name>_dtor_t. Both function pointers return

FACE_interface_return and have one parameter named this_obj whose type is a pointer to the

interface struct. An interface’s behavior is implementation-defined if its initialization function

does not return FACE_INTERFACE_NO_ERROR. FACE_interface_return is defined in

“FACE/interface.h”, as specified in Section K.1.2.

An IDL interface is also mapped to a #define macro for each of these two function pointers.

These macros hide the operation table lookup, allowing simpler code in business logic that uses

the interface. The #define identifier for the initialization function is <fully-scoped interface

name>_ctor(_this_obj), and the replacement is ((_this_obj)->ops.ctor)((_this_obj)). The #define

identifier and replacement for the cleanup function is the same, except with dtor instead of ctor.

The main interface struct contains an operations table struct named ops, followed by a void

pointer named data for private data. The operations table struct contains an initialization function

pointer, followed by a cleanup function pointer – both members have the same name as their

respective function pointer type.

An interface may also be declared with a forward declaration, in which case it maps to a forward

declaration of a struct in C.

Interface Declaration Example

// IDL

interface Bar;

interface Foo {};

interface Bar {};

// C

struct Bar;

struct Foo;

// initialize this_obj->data

typedef FACE_interface_return (*Foo_ctor_t)(struct Foo* this_obj);

// clean up this_obj->data

typedef FACE_interface_return (*Foo_dtor_t)(struct Foo* this_obj);

typedef struct Foo_ops {

 Foo_ctor_t ctor;

 Foo_dtor_t dtor;

} Foo_ops;

typedef struct Foo {

 Foo_ops ops;

 void* data;

} Foo;

FACE™ Technical Standard, Edition 3.0 123

#define Foo_ctor(_this_obj) \

 ((_this_obj)->ops.ctor)((_this_obj))

#define Foo_dtor(_this_obj) \

 ((_this_obj)->ops.dtor)((_this_obj))

struct Bar;

// initialize this_obj->data

typedef FACE_interface_return (*Bar_ctor_t)(struct Bar* this_obj);

// clean up this_obj->data

typedef FACE_interface_return (*Bar_dtor_t)(struct Bar* this_obj);

typedef struct Bar_ops {

 Bar_ctor_t ctor;

 Bar_dtor_t dtor;

} Bar_ops;

typedef struct Bar {

 Bar_ops ops;

 void* data;

} Bar;

#define Bar_ctor(_this_obj) \

 ((_this_obj)->ops.ctor)((_this_obj))

#define Bar_dtor(_this_obj) \

 ((_this_obj)->ops.dtor)((_this_obj))

3.14.7.9.2 Operations

An interface operation in IDL maps to the following:

 A typedef defining an alias <fully-scoped interface name>_<operation name>_t for a

function pointer

The first parameter in the function pointer’s signature is named this_obj, and its type is a

pointer to the interface struct. The other parameters map from the IDL parameters in the

same order, each with the same name as its corresponding IDL parameter and with a type

mapped from its corresponding IDL parameter as specified elsewhere. The return type of

the C function pointer is always FACE_interface_return. If the IDL operation has a non-

void return type, then the C function pointer maps as if the IDL operation had an

additional “out” parameter named retval whose type is the non-void return type.

 A member in the interface operations table struct

The name of the member is the same as the IDL operation, and its type is the alias defined

by the typedef. These members follow the initialization and cleanup function pointer

members, and they are declared in the same order as the operations in IDL.

 A #define macro for the operation

This macro hides the operation table lookup, allowing simpler code in business logic that

uses the interface. The #define identifier for the initialization function is <fully-scoped

interface name>_<operation name>(<parameter list>), and the replacement is

((_this_obj)->ops.<operation_name>)(<paren_parameter list>), where <parameter list> is

a comma-separated list of parameter names from the corresponding function pointer, each

prepended with an underscore, and where <paren parameter_list> is the same, but with

parentheses around each underscore-prepended parameter name.

These function pointers, the operations table struct, and the main interface struct are effectively

analogous to a C++ abstract class. Keeping the C++ analogy, these functions are effectively

“pure virtual”.

Interface Operations Example

// IDL

124 Open Group Standard (2017)

interface Foo {

 void go();

 long stop(in short x);

};

// C

struct Foo;

typedef FACE_interface_return (*Foo_ctor_t)(struct Foo* this_obj);

typedef FACE_interface_return (*Foo_dtor_t)(struct Foo* this_obj);

// 1. typedef defining alias for function pointer

// corresponding to operation

typedef FACE_interface_return (*Foo_go_t)(struct Foo* this_obj);
typedef FACE_interface_return

 (*Foo_stop_t)(struct Foo* this_obj, FACE_short x, FACE_long* retval);

typedef struct Foo_ops {

 Foo_ctor_t ctor;

 Foo_dtor_t dtor;

 // 2. operations table struct members corresponding to the operations

 Foo_go_t go;

 Foo_stop_t stop;

} Foo_ops;

typedef struct Foo {

 Foo_ops ops;

 void* data;

} Foo;

#define Foo_ctor(_this_obj) \

 ((_this_obj)->ops.ctor)((_this_obj))

#define Foo_dtor(_this_obj) \

 ((_this_obj)->ops.dtor)((_this_obj))

// 3. Macro corresponding to the operation

#define Foo_go(_this_obj) \

 ((_this_obj)->ops.go)((_this_obj))

#define Foo_stop(_this_obj, _x, _retval) \

 ((_this_obj)->ops.stop)((_this_obj), (_x), (_retval))

A parameter’s directionality in IDL affects the parameter’s type in C, as summarized in Table

13. The return type of a C function pointer corresponding to an operation is always

FACE_interface_return.

Table 13: IDL Operation Parameter C Mapping

Parameter Type in inout out

Basic Type T T * T *

Enumeration T T * T *

Sequence const T * T * T *

String const T * T * T *

Fixed const T * T * T *

Structure const T * T * T *

Union const T * T * T *

FACE™ Technical Standard, Edition 3.0 125

Parameter Type in inout out

Interface const T * T * T **

Array const T T T

The following outlines the ownership and memory management responsibilities of parameter

passing based on an IDL parameter’s directionality:

 IDL in parameters – the caller is responsible for providing all storage (either dynamically

or statically allocated)

 IDL out parameters – the caller is responsible for providing storage (either dynamically or

statically allocated) for the top-level type.

For strings and sequences (whether as parameters themselves or as a component of a

compound type), the callee is permitted to re-size or re-allocate the contained buffer,

provided the instance of the object in question is managed. As a consequence of this, the

caller may choose to simply initialize a string or sequence and rely on the callee to

allocate storage for that object.

 IDL inout parameters – the caller is responsible for providing storage (either dynamically

or statically allocated) for the top-level type

For strings and sequences (whether as parameters themselves or as a component of a

compound type), the callee is permitted to re-size or re-allocate the contained buffer,

provided the instance of the object in question is managed. As a consequence of this, the

caller may choose to simply initialize a string or sequence and rely on the callee to

allocate storage for that object.

3.14.7.9.3 Attributes

Attributes in IDL logically map to an accessor operation for both mutable and readonly

attributes, and a mutator operation for mutable attributes. The accessor operation is named

get_<attribute name>, takes no parameters, and returns the same type as the attribute. The

mutator operation is named set_<attribute name>, takes an in parameter with the same type and

identifier as the attribute, and returns void. These operations then map according to Section

3.14.7.9.2. Both operations are declared at the same point the attribute was declared, and the set

operation immediately follows its corresponding get operation.

Interface Attributes Example

// IDL

interface Foo {

 attribute long x;

 readonly attribute string y;

};

// logically equivalent to the following IDL

interface Foo {

 long get_x();

 void set_x(in long x);

 long get_y();

};

126 Open Group Standard (2017)

3.14.7.9.4 Declarations

Types and constants declared in an interface map to C in the same way they would if declared in

the same scope as the interface, except their name is also scoped by the interface in which they

are declared.

Interface Declaration Example

// IDL

interface Foo {

 typedef char MyChar;

};

// C

/* (constructs for Foo specified in earlier example */

typedef FACE_char Foo_MyChar;

3.14.7.9.5 Inheritance

It is important to note that inheritance in IDL does not imply anything about the implementation

of that interface in a particular programming language. A derived interface in IDL is logically

equivalent to an interface that contains the attributes and operations of its base interface. The

base interface attributes and operations occur before the derived interface operations and in the

same order as in the base interface.

Interface Inheritance Example

// IDL

interface Base {

 readonly attribute long x;

 void stop();

};

interface Foo : Base { void go(); };

// logically equivalent to the following IDL

interface Foo {

 readonly attribute long x;

 void stop();

 void go();

};

In the case of multiple inheritance, base interfaces are considered in the order they are specified,

using depth-first traversal if multiple levels of inheritance exist. (Interface derivation order is

semantically insignificant in IDL, but it is significant when mapping to C, because operations

generate members in a struct, and the order of members in a struct matters in C.)

Interface Multiple Inheritance Example

// IDL

interface A { /* (A members) */ };

interface B : A { /* (B members) */ };

interface C : A { /* (C members) */ };

interface D : B,C { /* (D members) */ };

interface E : C,B { /* (E members) */ };

// C (only operations tables are shown)

typedef struct A_ops {

 // (A member mappings)

} A_ops;

typedef struct B_ops {

 // (A member mappings)

 // (B member mappings)

} B_ops;

FACE™ Technical Standard, Edition 3.0 127

typedef struct C_ops {

 // (A member mappings)

 // (C member mappings)

} C_ops;

typedef struct D_ops {

 // (A member mappings)

 // (B member mappings) – B ops declared before C ops

 // (C member mappings)

 // (D member mappings)

} D_ops;

typedef struct E_ops {

 // (A member mappings)

 // (C member mappings) - C ops declared before B ops

 // (B member mappings)

 // (D member mappings)

} E_ops;

3.14.7.9.6 Implementation

An implementation of an interface is realized by:

 Defining a structure that contains implementation-specific private data

 Declaring and defining functions that match the operations in the interface

An interface implementation is responsible for initializing the private data in the “ctor” function,

cleaning up the private data in the “dtor” function, and setting the primary interface struct’s

“data” member appropriately.

Interface Implementation Example

// IDL

interface Foo {

 void go();

};

// C (Foo interface declaration)

struct Foo;

typedef FACE_interface_return (*Foo_ctor_t)(struct Foo* this_obj);

typedef FACE_interface_return (*Foo_dtor_t)(struct Foo* this_obj);

typedef FACE_interface_return (*Foo_go_t)(struct Foo* this_obj);

typedef struct Foo_ops {

 Foo_ctor_t ctor;

 Foo_dtor_t dtor;

 Foo_go_t go;

} Foo_ops;

typedef struct Foo {

 Foo_ops ops;

 void* data;

} Foo;

#define Foo_ctor(_this_obj) \

 ((_this_obj)->ops.ctor)((_this_obj))

#define Foo_dtor(_this_obj) \

 ((_this_obj)->ops.dtor)((_this_obj))

#define Foo_go(_this_obj) \

 ((_this_obj)->ops.go)((_this_obj))

// C (Foo interface implementation)

// 1. structure defining implementation-specific private data

typedef struct Foo_impl_private_data{

 // members to hold private data...

} Foo_impl_private_data;

// 2. function declarations matching operations in interface

128 Open Group Standard (2017)

// (function definitions are implementation-specific)

FACE_interface_return MyFoo_ctor(struct Foo* this_obj); // initialize this_obj->data

FACE_interface_return MyFoo_dtor(struct Foo* this_obj); // clean up this_obj->data

FACE_interface_return MyFoo_go(struct Foo* this_obj);

The example below illustrates the use of the “Foo” interface. A user “instantiates” the

implementation “MyFoo” by defining a struct “Foo_Instance” whose first member is the

operations table and whose second member is NULL. The address of the “instance” is then

passed as the this_obj parameter to the interface’s functions. The Foo_ctor function will replace

the second member of “Foo_Instance” with a pointer to its private data.

Interface Implementation Use Example

// C (use of Foo interface)

Foo Foo_Instance = {

 { MyFoo_ctor, MyFoo_dtor, MyFoo_go },

 NULL

};

int main(int argc, char* argv[])

{

 FACE_interface_return rc;

 rc = Foo_ctor(&Foo_Instance);

 Foo_go(&Foo_Instance);

 rc = Foo_dtor(&Foo_Instance);

 return 0;

}

3.14.7.10 Native Types

There is no general mapping for a native type. Each native type declaration is accompanied by a

mapping to C which covers all instances in which the native type might be used, including but

not limited to type definitions and operation parameters (in, inout, out).

The following native types are used in FACE Standardized Interfaces:

 FACE::SYSTEM_ADDRESS_TYPE:

— type: void*

— in parameter: SYSTEM_ADDRESS_TYPE (pass by value)

— inout parameter: SYSTEM_ADDRESS_TYPE* (pass by pointer)

— out parameter: SYSTEM_ADDRESS_TYPE* (pass by pointer)

— return: SYSTEM_ADDRESS_TYPE (by value)

3.14.8 IDL to C++ Mapping

This section describes a mapping from IDL 4.1 to C++ 2003 (ISO/IEC 14882:2003:

Programming Languages – C++). It is based on mappings defined in OMG IDL C++ Language

Mapping, Version 1.3. Although this mapping is strictly to C++ 2003, this mapping is also based

on general mapping patterns and strategies presented in the OMG IDL C++11 Language

Mapping, Version 1.2.

FACE™ Technical Standard, Edition 3.0 129

3.14.8.1 Names

Names in IDL generally obey C++ naming conventions, with exceptions described below.

Unless otherwise excepted below, unscoped names in IDL appear in the generated source code

character-for-character.

In the event that a name that is legal in IDL conflicts with a reserved C++ keyword, the name for

that symbol is constructed by prefixing it with “FACE_”. Any language in the remainder of this

section indicating that a C++ construct has the “same name” as its IDL counterpart takes this

conflict resolution into account.

3.14.8.2 File Names

An IDL source file maps to a C++ header file with the same base name and a “.hpp” extension.

If the IDL source file is defined in this Technical Standard, then the header file is in a “FACE”

directory.

3.14.8.3 Preprocessor Directives

#include directives in IDL result in equivalent #include directives to be emitted in the generated

C++ code. Filenames in IDL #include directives map to C++ according to Section 3.14.8.2.

Other preprocessor directives do not map to anything in the C++ representation. Because of this,

an #ifndef include guard is always present in a C++ source file generated from IDL. The

identifier used in the guard is the base name of the resulting C++ header file, in all caps,

prepended with an underscore, and appended with “_HPP”.

#include Example

// IDL (foo.idl)

#include <bar.idl>

/* (contents unspecified in this example) */

// C++ (foo.hpp)

#ifndef _FOO_HPP

#define _FOO_HPP

#include <bar.hpp>

/* (contents unspecified in this example) */

#endif

In the event that two files generated from IDL files with identical names are part of the same

translation unit, the preprocessor directives conflict. To address this, an IDL compiler supports

the following pragma, which overrides the automatically generated include guard:

#pragma FACE include_guard “DESIRED_INCLUDE_GUARD”

It is an error for more than one such pragma to be in the same file.

Example Usage of the include_guard Pragma

// IDL (foo.idl)

#pragma FACE include_guard "_MY_FOO_HPP"

/* (contents unspecified in this example) */

// C++ (foo.hpp)

#ifndef _MY_FOO_HPP

#define _MY_FOO_HPP

/* (contents unspecified in this example) */

#endif

130 Open Group Standard (2017)

3.14.8.4 Modules

Modules map to C++ namespaces.

Scope resolution operators, used when resolving definitions from other modules, map to the

same in C++.

Modules Example

// IDL

module A {

 typedef long MyLong;

 module B {

 typedef MyLong MyOtherLong;

 };

};

module C {

 typedef A::MyLong MyOtherLong;

};

// C++

namespace A {

 typedef FACE::Long MyLong;

 namespace B {

 typedef MyLong MyOtherLong;

 }

}

namespace C {

 typedef A::MyLong MyOtherLong;

}

3.14.8.5 Typedefs

An IDL typedef creates an alias for a type; it maps directly to a C++ typedef. The C++ typedef’s

alias is the name of the IDL typedef; the C++ typedef type’s mapping is specified in the IDL

type’s relevant section below. Multiple declarators in IDL map to the same in C++.

Typedef Example 1

// IDL

typedef long Foo, Bar;
module A {

 typedef Bar Baz;

};

// C++

typedef FACE::Long Foo, Bar;
namespace A {

 typedef Bar Baz;

}

Structures, unions, and enumerations can be declared within a typedef in IDL, which is logically

equivalent to a type declaration immediately followed by a typedef.

Typedef Example 2

// IDL

typedef struct Foo_struct { long x; } Foo;

// (logically equivalent to the following IDL)

struct Foo_struct { long x; };

typedef Foo_struct Foo;

FACE™ Technical Standard, Edition 3.0 131

3.14.8.6 Constants

A constant maps to a #define in C++. The #define identifier is the fully scoped name of the IDL

constant, as specified in Section 3.14.7.1.1. If the IDL constant’s value expression is a scoped

name, then the #define replacement is mapped from that scoped name as specified in Section

3.14.7.1. Otherwise, the #define replacement is a C++ expression mapped from the IDL constant

expression as specified in Section 3.14.4. In all cases, the #define replacement includes a cast to

the fully-qualified type mapped from the IDL constant’s type as specified elsewhere.

Constants Example

// IDL

typedef long MyLong;
enum Color {RED, GREEN, BLUE};

module A {

 const long FooLong = 1 + 65535;

 const boolean FooBool = TRUE;

 const MyLong FooMyLong = FooLong;

 const Color clr = RED;

};

// C++

typedef FACE::Long MyLong;
struct Color {

 enum Value {RED, GREEN, BLUE};

private:

 Color ();

};

#define A_FooLong ((FACE::Long) 65536)

#define A_FooBool ((FACE::Boolean) true)

#define A_FooMyLong ((MyLong)A_FooLong)

#define A_clr ((Color::Value)Color::RED)

3.14.8.7 Simple Types

3.14.8.7.1 Basic Types

IDL Basic Types map to C++ types according to Table 14 below. Implementations provide

definitions for these C++ types that align with the given size and range requirements. The file

containing these definitions is “FACE/types.hpp”, specified in Section K.2.1.

Table 14: IDL Basic Type C++ Mapping

IDL

Basic Type C++ Type

Size

(bytes) Range of Values

Default

Value

short FACE::Short 2 -2^15 to (2^15 - 1) 0

long FACE::Long 4 -2^31 to (2^31 - 1) 0

long long FACE::LongLong 8 -2^63 to (2^63 - 1) 0

unsigned short FACE::UnsignedShort 2 0 to (2^16 - 1) 0

unsigned long FACE::UnsignedLong 4 0 to (2^32 - 1) 0

unsigned long long FACE::UnsignedLongLong 8 0 to (2^64 - 1) 0

132 Open Group Standard (2017)

IDL

Basic Type C++ Type

Size

(bytes) Range of Values

Default

Value

float FACE::Float 4 IEEE 754-2008 single

precision floating point

0.0

double FACE::Double 8 IEEE 754-2008 double

precision floating point

0.0

long double FACE::LongDouble 10 IEEE 754-2008 extended

double precision floating

point

0.0

char FACE::Char 1 -2^7 to (2^7 - 1) 0

boolean FACE::Boolean 1 true or false false

octet FACE::Octet 1 0 to (2^8 - 1) 0

3.14.8.7.2 Sequences

Bounded and unbounded sequences map to a typedef FACE::Sequence specialization with the

appropriate element type and a #define in C++, where the #define identifier is the fully-scoped

name of the sequence (as specified in Section 3.14.7.1.1) appended with “_bound_value”, and

the #define’s replacement is the sequence’s maximum size cast to a FACE::UnsignedLong. To

indicate that a sequence is unbounded, the sentinel value

FACE::Sequence<T>::UNBOUNDED_SENTINEL is used as the replacement value. Full

specification for FACE::Sequence is in Section K.2.2.

Note: The bound of a sequence is an instance parameter of FACE::Sequence.

Implementations are responsible for instantiating a FACE::Sequence with the

appropriate maximum size.

Sequence Example

// IDL

typedef short TYPE;

typedef sequence<TYPE> Foo;

typedef sequence<TYPE,8> Bar;

// C++

typedef FACE::Short TYPE;

typedef FACE::Sequence<TYPE> Foo;

#define Foo_bound_value FACE::Sequence<TYPE>::UNBOUNDED_SENTINEL

typedef FACE::Sequence<TYPE> Bar;

#define Bar_bound_value ((FACE::UnsignedLong) 8)

3.14.8.7.3 Strings

Bounded and unbounded strings map to a typedef FACE::String and a #define in C++, where the

#define identifier is the fully-scoped name of the string (as specified in Section 3.14.7.1.1)

appended with “_bound”, and the #define’s replacement is the string’s maximum size cast to a

FACE::UnsignedLong. To indicate that a string is unbounded, the sentinel value

FACE::String::UNBOUNDED_SENTINEL is used as the replacement value. Full specification

for FACE::String is in Section K.2.3.

FACE™ Technical Standard, Edition 3.0 133

Note: The bound of a string is an instance parameter of FACE::String. Implementations are

responsible for instantiating a FACE::String with the appropriate maximum size.

String Example

// IDL

typedef string Foo;

typedef string<8> Bar;

// C++

typedef FACE::String Foo;

#define Foo_bound_value FACE::String::UNBOUNDED_SENTINEL

typedef FACE::String Bar;

#define Bar_bound_value ((FACE::UnsignedLong) 8)

3.14.8.7.4 Fixed

A fixed type maps to a typedef FACE::Fixed and two #defines to represent the type’s digits and

scale. For the digits #define, the identifier is the fully-scoped name of the fixed type (as specified

in Section 3.14.7.1.1) appended with “_digits”, and the replacement is the type’s total number of

digits cast to a FACE::UnsignedShort. For the scale #define, the identifier is the fully-scoped

name of the fixed type (as specified in Section 3.14.7.1.1) appended with “_scale”, and the

replacement is the type’s scale cast to a FACE::UnsignedShort. Implementations are responsible

for initializing a fixed type using these constants. Full specification for FACE::Fixed is in

Section K.2.4.

Fixed Type Example

// IDL

typedef fixed<5,2> Foo;

// C++

typedef FACE::Fixed Foo;

#define Foo_digits ((FACE::UnsignedShort) 5)

#define Foo_scale ((FACE::UnsignedShort) 2)

3.14.8.8 Constructed Types

3.14.8.8.1 Structures

An IDL structure maps to a C++ structure with the same name. The structure’s members occur

in the same order as in IDL; each member’s type and identifier are mapped as specified

elsewhere.

A forward declaration of a structure in IDL maps to a forward declaration of a structure with the

same name in C++.

Structure Example

// IDL

typedef long MyLong;

struct A {

 long X;

 MyLong Y;

 char Z;

};

// C++

typedef FACE::Long MyLong;

struct A {

 FACE::Long X;

134 Open Group Standard (2017)

 MyLong Y;

 FACE::Char Z;

};

3.14.8.8.2 Enumerations

An IDL enumeration maps to a C++ enum whose literals are specified with the same name and

in the same order as in IDL. To keep enum literals out of the global scope, the C++ enum is

named Value and is wrapped in a struct with the same name as the IDL enum. The struct serves

only to scope the enum, so the struct has a declared private constructor with no implementation

to restrict its construction.

Enumeration Example

// IDL

enum Color {RED, GREEN, BLUE};

// C++

struct Color {

 enum Value {RED, GREEN, BLUE};

private:

 Color ();

};

3.14.8.8.3 Unions

An IDL union maps to a C++ class of the same name. Implementations are responsible for

supplying the definition of this class, and are permitted to define class members beyond what is

specified here. The class contains the following:

 Default constructor – initializes all members to their appropriate default value

 Copy constructor – performs a deep copy

 Assignment operator – performs a deep copy

 Destructor – releases all members

The class contains a public enum RETURN_CODE with two literals in the following order:

 NO_ERROR – indicating no error has occurred

 INVALID_STATE – indicating an operation cannot occur given the union’s current state

Each IDL union member maps to public mutator and accessor methods that have the same name

as the union member. For a member of type T, where T is mapped from the IDL union member’s

type as specified elsewhere:

 The first mutator returns void and has a single parameter whose type is T for basic types

and enumerations and const T& for all other types

 The second mutator returns T& and takes no parameters

 The accessor is const, returns RETURN_CODE, and has a single parameter whose type is

T&

Calling a mutator sets the value of the union member, possibly releasing storage associated with

the member’s old value, and sets the discriminator to the appropriate value. If multiple cases

FACE™ Technical Standard, Edition 3.0 135

exist for the same member, the discriminator is set to the value of the first case listed for that

member.

Calling a member accessor sets its parameter to the member’s value and returns NO_ERROR if

the discriminator is set appropriately; otherwise, the parameter is not modified and

INVALID_STATE is returned.

The IDL union discriminator maps to a public accessor method, and also maps to a mutator

method if any union member has multiple cases. Both methods are named discriminator. For a

discriminator of type T, where T is mapped from the IDL discriminator’s type as specified

elsewhere:

 The mutator (if needed) returns RETURN_CODE and has a single parameter whose type

is T

 The accessor is const, takes no parameters, and returns T

The discriminator mutator may only be used to change the discriminator to a different value for

the same union member, in which case NO_ERROR is returned; otherwise, the discriminator is

not modified and INVALID_STATE is returned.

The discriminator accessor returns the current value of the discriminator. The value returned

from the accessor immediately after the class is constructed depends on the union’s default case:

 Default case explicitly defined – return explicit default case

 No default case defined – return first case

Note: C++ unions are not used in this mapping, because C++ unions cannot contain certain

types as members – specifically, those types mapped to from IDL strings, sequences,

and fixed types.

Union Example

// IDL

enum CASES { FOO, BAR, BAZ };

union FooUnion switch (CASES) {

 case FOO: short a;

 case BAR: long b;

 // NOTE: IDL does not require a case for every enum literal

};

// C++

struct CASES {

 enum Value {FOO, BAR, BAZ};

private:

 CASES ();

};

class FooUnion {

public:

 enum RETURN_CODE {

 NO_ERROR,

 INVALID_STATE

 };

 FooUnion();

 FooUnion(const FooUnion&);

 FooUnion& operator=(const FooUnion&);

 ~FooUnion();

136 Open Group Standard (2017)

 // no discriminator mutator defined

 CASES::Value discriminator() const;

 void a(FACE::Short);

 FACE::Short& a();

 RETURN_CODE a(FACE::Short&) const;

 void b(FACE::Long);

 FACE::Long& b();

 RETURN_CODE b(FACE::Long&) const;

 // implementation-specific members

};

3.14.8.9 Arrays

An array in IDL maps to a typedef C-style array of the same name and dimension. The array

type’s mapping is specified in the IDL type’s relevant section. An additional typedef is

generated named <array name>_slice aliasing the array type with the most significant dimension

removed.

Array Example

// IDL

typedef short Foo[10];

typedef short Bar[4][5];

// C++

typedef FACE::Short Foo[10];

typedef FACE::Short Bar[4][5];

3.14.8.10 Interfaces

3.14.8.10.1 Declaration

An IDL interface definition is mapped to an abstract class with the same name in C++. The class

has a protected default constructor with empty inline definition, a private copy constructor with

no definition, a private assignment operator with no definition, and a public pure virtual

destructor. An interface may also be declared with a forward declaration, in which case it maps

to a forward declaration of a class in C++.

Interface Declaration Example

// IDL

interface Bar;
interface Foo {};

interface Bar {};

// C++

class Bar;

class Foo {

protected:

 Foo() {}

private:

 Foo(const Foo&);

 Foo& operator=(const Foo&);

public:

 virtual ~Foo() = 0;

};

class Bar {

protected:

FACE™ Technical Standard, Edition 3.0 137

 Bar() {}

private:

 Bar(const Bar&);

 Bar& operator=(const Bar&);

public:

 virtual ~Bar() = 0;

};

3.14.8.10.2 Operations

An interface operation in IDL maps to a public pure virtual member function declaration with

the same name in C++. The member function’s parameters map from the IDL parameters in the

same order, each with the same name as its corresponding IDL parameter and with a type

mapped from its corresponding IDL parameter as specified elsewhere. The return type of the

C++ member function is always void. If the IDL operation has a non-void return type, then the

C++ member function maps as if the IDL operation had an additional “out” parameter named

retval whose type is the non-void return type.

Interface Operations Example

// IDL

interface Foo {
 void go();

 long stop(in short x);

};

// C++

class Foo {
protected:

 Foo() {}

private:

 Foo(const Foo&);

 Foo& operator=(const Foo&);

public:

 virtual ~Foo() = 0;

 virtual void go() = 0;

 virtual void stop(FACE::Short x, FACE::Long& retval) = 0;

};

A parameter’s directionality in IDL affects the parameter’s type in C++. An in parameter of type

T is passed as T for basic types and const T& for all other types. An inout or out parameter of

type T is passed as T&. The return type of a C++ member function corresponding to an

operation is always void.

The following outlines the ownership and memory management responsibilities of parameter

passing based on an IDL parameter’s directionality:

 IDL in parameters – the caller is responsible for providing all storage (either dynamically

or statically allocated)

 IDL out parameters – the caller is responsible for providing storage (either dynamically or

statically allocated) for the top-level type

For strings and sequences (whether as parameters themselves or as a component of a

compound type), the callee is permitted to re-size or re-allocate the contained buffer,

provided the instance of the object in question is managed. As a consequence of this, the

caller may choose to simply initialize a string or sequence and rely on the callee to

allocate storage for that object.

 IDL inout parameters – the caller is responsible for providing storage (either dynamically

or statically allocated) for the top-level type

138 Open Group Standard (2017)

For strings and sequences (whether as parameters themselves or as a component of a

compound type), the callee is permitted to re-size or re-allocate the contained buffer,

provided the instance of the object in question is managed. As a consequence of this, the

caller may choose to simply initialize a string or sequence and rely on the callee to

allocate storage for that object.

3.14.8.10.3 Attributes

Attributes in an IDL interface map to mutator and accessor methods. The methods are public,

pure virtual, and have the same name as their respective IDL attribute. For an attribute of type T,

where T is mapped from the IDL attribute’s type as specified elsewhere:

 The first mutator returns void and has a single parameter whose type is T for basic types

and const T& for all other types

 The second mutator returns T& and takes no parameters

 The accessor is const, takes no parameters, and returns T for basic types and const T& for

all other types

Readonly attributes map only to the accessor method.

Interface Attributes Example

// IDL

interface Foo {

 attribute long x;

 readonly attribute string y;

};

// C++

class Foo {

protected:

 Foo() {}

private:

 Foo(const Foo&);

 Foo& operator=(const Foo&);

public:

 virtual ~Foo() = 0;

 virtual void x(FACE::Long) = 0;

 virtual FACE::Long& x() = 0;

 virtual FACE::Long x() const = 0;

 virtual const FACE::String& y() const = 0;

};

3.14.8.10.4 Declarations

Types declared in an IDL interface map public typedef declarations in the scope of the class the

interface maps to. The typedef maps to C++ according to Section 3.14.8.5.

Interface Declaration Example

// IDL

interface Foo {

 typedef char MyChar;

};

// C++

class Foo {

protected:

 Foo() {}

FACE™ Technical Standard, Edition 3.0 139

private:

 Foo(const Foo&);

 Foo& operator=(const Foo&);

public:

 typedef FACE::Char MyChar;

 virtual ~Foo() = 0;

};

3.14.8.10.5 Inheritance

A derived interface maps to a C++ class that inherits (publicly) from its base interfaces’ classes.

Interface Inheritance Example

// IDL

interface Base {

 readonly attribute long x;

 void stop();

};

interface Foo : Base { void go(); };

// C++

class Base { /* (contents as specified elsewhere) */ };

class Foo : public Base { /* (contents as specified elsewhere */ };

In the case of multiple inheritance, base interfaces are considered in the order they are specified,

using depth-first traversal if multiple levels of inheritance exist. (Interface derivation order is

semantically insignificant in IDL, but it is significant when mapping to C++, because it dictates

construction and cleanup ordering.)

Interface Multiple Inheritance Example

// IDL

interface A { /* (A members) */ };

interface B : A { /* (B members) */ };

interface C : A { /* (C members) */ };

interface D : B,C { /* (D members) */ };

interface E : C,B { /* (E members) */ };

// C++

class A { /* (contents as specified elsewhere) */ };

class B : public A { /* (contents as specified elsewhere) */ };

class C : public A { /* (contents as specified elsewhere) */ };

class D : public B,C { /* (contents as specified elsewhere) */ };

class E : public C,B { /* (contents as specified elsewhere) */ };

3.14.8.10.6 Implementation

An implementation of an interface is realized in C++ by defining and implementing a concrete

class that inherits from the abstract interface class.

Interface Implementation Example

// IDL

interface Foo {

 void go();

};

// C++ (Foo interface declaration)

class Foo {

protected:

 Foo() {}

private:

 Foo(const Foo&);

 Foo& operator=(const Foo&);

public:

140 Open Group Standard (2017)

 virtual ~Foo() = 0;

 virtual void go() = 0;

};

// C++ (Foo interface implementation)

class MyFooImpl : public Foo {

public:

 ~MyFooImpl(); // implementation elsewhere

 void go(); // implementation elsewhere

// other members as needed by the implementation

};

3.14.8.11 Native Types

There is no general mapping for a native type. Each native type declaration is accompanied by a

mapping to C++ which covers all instances in which the native type might be used, including but

not limited to type definitions and operation parameters (in, inout, out).

The following native types are used in FACE Standardized Interfaces:

 FACE::SYSTEM_ADDRESS_TYPE:

— type: void*

— in parameter: SYSTEM_ADDRESS_TYPE (pass by value)

— inout parameter: SYSTEM_ADDRESS_TYPE& (pass by reference)

— out parameter: SYSTEM_ADDRESS_TYPE& (pass by reference)

— return: SYSTEM_ADDRESS_TYPE (by value)

3.14.9 IDL to Ada Mapping

This section describes a mapping from IDL 4.1 to Ada. It is based on mappings defined in OMG

IDL Language Mapping for Ada, Version 1.3.

This section may be modified in subsequent releases. Prior to implementing, please ensure you

are using the latest revision of FACE Technical Standard, Edition 3.x, and you have checked to

see if any minor releases, corrigenda, or approved corrections have been published.

This language mapping does not support IDL in which a parent module depends on a child

module or two sibling modules are co-dependent.

3.14.9.1 Names

3.14.9.1.1 Identifiers

An identifier in IDL maps to the same identifier in Ada, with the following exceptions (applied

in order):

 Leading underscores are prepended with “U”

 Identifiers ending in an underscore are appended with “U”

 Multiple consecutive underscores are all replaced with “U”, except the first one

 Identifiers that conflict with a reserved Ada keyword are prepended with “FACE_”

FACE™ Technical Standard, Edition 3.0 141

Any language in the remainder of this section indicating that an Ada construct has the “same

name” as its IDL counterpart takes into account these exceptions.

Table 15: Identifier Mapping Example

IDL Identifier Ada Identifier

_T U_T

T_ T_U

T___T T_UUT

package FACE_package

Using leading, trailing, or consecutive underscores in an IDL identifier may cause a conflict

when mapping to Ada. An IDL compiler emits an error if such a conflict occurs.

Identifier Conflict Example

// IDL

typedef long U_T;

typedef long __T; /* Legal IDL, but would cause conflict in Ada.

 Emit error. */

3.14.9.1.2 Scoped Names

Scopes in IDL map to the Ada declarative regions as follows:

Table 16: IDL Scope Ada Mapping

IDL Scope Ada Declarative Region

Global Library package named by the source IDL file’s

name appended with “_IDL_FILE”.

Module or Interface declared in global scope Library package.

Module or Interface declared in non-global-scope Child package.

3.14.9.1.3 File Names

There is no associative mapping of an IDL source file to an Ada source file.

3.14.9.2 Preprocessor Directives

IDL preprocessor directives do not map to anything in Ada.

3.14.9.3 Modules

A module maps to an Ada package with the same name. A module declared in a global scope

maps to a library package; a module declared inside another module maps to a child package of

the package mapped from its parent module. Declarations scoped by an IDL module, including

those made in a “re-opened” module, map to declarations in the corresponding Ada package.

142 Open Group Standard (2017)

Module Example

// IDL

module A {

 typedef short Foo;

};

module A {

 module B {

 typedef short Bar;

 };

};

-- Ada

package A is

 subtype Foo is FACE.Short;

 package B is

 subtype Bar is FACE.Short;

 end B;

end A;

3.14.9.4 Typedefs

An IDL typedef creates an alias for a type; it maps to an Ada subtype whose name is the same as

the IDL alias and whose type is specified in the IDL type’s relevant section below. Multiple

declarators in IDL are logically equivalent to multiple IDL typedefs.

Typedef Example 1

// IDL

module A {

 typedef long Foo, Bar;

 typedef Foo Baz;

};

-- Ada

package A is

 subtype Foo is FACE.Long;

 subtype Bar is FACE.Long;

 subtype Baz is Foo;

end A;

Structures, unions, and enumerations can be declared within a typedef in IDL, which is logically

equivalent to a type declaration immediately followed by a typedef.

Typedef Example 2

// IDL

typedef struct Foo_struct { long x; } Foo;

// (logically equivalent to the following IDL)

struct Foo_struct { long x; };

typedef Foo_struct Foo;

3.14.9.5 Constants

A constant in IDL maps to a constant of the same name in Ada. The type of the Ada constant is

mapped as specified elsewhere. The value of the Ada constant is mapped from the IDL constant

expression as specified in Section 3.14.4.

If the IDL expression is an enumeration literal, the Ada constant’s value is the appropriate

enumeration literal in Ada.

FACE™ Technical Standard, Edition 3.0 143

Constants Example

// IDL

module A {

 typedef long MyLong;

 enum Color {RED, GREEN, BLUE};

 const long FooLong = 1 + 65535;

 const boolean FooBool = TRUE;

 const MyLong FooMyLong = FooLong;

 const Color clr = RED;

};

-- Ada

package A is

 subtype MyLong is FACE.Long;

 type Color is (RED, GREEN, BLUE);

 FooLong : constant FACE.Long := 65536;

 FooBool : constant FACE.Boolean := True;

 FooMyLong : constant MyLong := FooLong;

 clr : constant Color := RED;

end A;

3.14.9.6 Simple Types

3.14.9.6.1 Basic Types

IDL Basic Types map to Ada (sub)types according to Table 17, for which implementations

provide the given definitions.

Table 17: IDL Basic Type Ada Mapping

IDL

Basic Type Ada Type

Subtype/

Derived Ada Base Type

short FACE.Short Subtype Interfaces.Integer_16

long FACE.Long Subtype Interfaces.Integer_32

long long FACE.Long_Long Subtype Interfaces.Integer_64

unsigned short FACE.Unsigned_Short Subtype Interfaces.Unsigned_16

unsigned long FACE.Unsigned_Long Subtype Interfaces.Unsigned_32

unsigned long long FACE.Unsigned_Long_Long Subtype Interfaces.Unsigned_64

float FACE.Float Subtype Interfaces.IEEE_Float_32

double FACE.Double Subtype Interfaces.IEEE_Float_64

long double FACE.Long_Double Subtype Interfaces.IEEE_Extended_Float

char FACE.Char Subtype Standard.Character

octet FACE.Octet Subtype Interfaces.Unsigned_8

boolean FACE.Boolean Subtype Standard.Boolean

144 Open Group Standard (2017)

3.14.9.6.2 Sequences

The first use of a bounded sequence in a scope maps to an instantiation (in the same scope) of

the generic FACE.Sequences.Bounded package named “FACE_Bounded_Sequence_<type>”,

where <type> is the name of the sequence’s element type. The actual for the formal parameter

“Element” is mapped from the sequence’s type as specified elsewhere. All references to the

bounded sequence within the same scope map to the “Sequence” type defined in this

instantiation.

An unbounded sequence maps in the same way, except using an instantiation of

FACE.Sequences.Unbounded named FACE_Unbounded_Sequence_<type>.

When constructing a sequence package instantiation’s name, if the IDL sequence’s element type

is a basic type, <type> is the IDL typename; otherwise, <type> is the typename as mapped to

Ada.

Full specification for these packages is in Section K.3.1.1, Section K.3.1.2, and Section K.3.1.3.

Sequence Example

// IDL

module A {

 typedef sequence< short, 8> Foo;

 typedef sequence< Foo > Bar;

};

-- Ada

with FACE.Sequences.Bounded;

with FACE.Sequences.Unbounded;

package A is

 -- first occurrence of bounded sequence of short

 package FACE_Bounded_Sequence_short is

 new FACE.Sequences.Bounded

 (Element => FACE.Short);

 type Foo is new FACE_Bounded_Sequence_short.Sequence(8);

 -- first occurrence of unbounded sequence of Foo

 package FACE_Unbounded_Sequence_Foo is

 new FACE.Sequences.Unbounded

 (Element => Foo);

 type Bar is new FACE_Unbounded_Sequence_Foo.Sequence;

end A;

3.14.9.6.3 Strings

An IDL unbounded string maps to Ada as if it were an IDL unbounded sequence of characters.

An IDL bounded string maps to Ada as if it were an IDL bounded sequence of characters with

the same bound.

String Example

// IDL

module A {

 typedef string Foo;

};

// logically equivalent to the following IDL

module A {

 typedef sequence<char> Foo;

};

FACE™ Technical Standard, Edition 3.0 145

3.14.9.6.4 Fixed

The first use of an IDL fixed type in a scope maps to a definition (in the same scope) of a

decimal fixed-point type named Fixed_<digits>_<scale>, where <digits> and <scale> are the

digits and scale of the fixed type as specified in IDL. The decimal fixed-point type definition has

the same number of digits as the IDL fixed type, and a delta value equal to 10-<scale>. All

references to the fixed type within the same scope map to subtypes of this type definition.

Fixed Example

// IDL

module A {

 typedef fixed<5,2> Foo;

};

-- Ada

package A is

 type Fixed_5_2 is delta 0.01 digits 5;

 subtype Foo is Fixed_5_2;

end A;

3.14.9.7 Constructed Types

3.14.9.7.1 Structures

An IDL structured type maps to an Ada record. Each structured type member maps to a record

component with the same name, in the same order. The type of each component is mapped as

specified elsewhere.

Structured Type Example

// IDL

module A {

 struct Foo {

 long X;

 char Y;

 };

};

-- Ada

package A is

 type Foo is record

 X : FACE.Long;

 Y : FACE.Char;

 end record;

end A;

3.14.9.7.2 Unions

An IDL union maps to an Ada discriminated record with the same name. The record’s

discriminator is named “Switch”, its type is mapped from the IDL union’s discriminator type as

specified elsewhere, and its default value is the first value of its type. Each union member maps

to a variant in the discriminated record, as specified in Section 3.14.9.7.1. The discrete choice

list for each variant is mapped from the constant expression(s) of the corresponding IDL case

label, as specified in Section 3.14.4, with expressions “or”ed together if a member has multiple

case labels. The discrete choice for the “default” case is “others”.

Union Example 1

// IDL

module A {

 enum Direction {UP, LEFT, RIGHT, DOWN};

 union UnionExample switch (Direction) {

146 Open Group Standard (2017)

 case UP: long myUp;

 case LEFT:

 case RIGHT: short myWay;

 default: boolean myDefault;

 };

};

-- Ada

package A is

 type Direction is (UP, LEFT, RIGHT, DOWN);

 type UnionExample (Switch : A.Direction := A.Direction'first) is record

 case Switch is

 when UP =>

 myUp : FACE.Long;

 when LEFT | RIGHT =>

 myWay : FACE.Short;

 when others =>

 myDefault : FACE.Boolean;

 end case;

 end record;

end A;

Union Example 2

// IDL (No default specified)

module B {

 enum Direction {UP, LEFT, RIGHT};

 union UnionExample switch (Direction) {

 case UP: long myUp;

 case LEFT: short otherWay;

 case RIGHT: short myWay;

 };

};

-- Ada

package B is

 type Direction is (UP, LEFT, RIGHT);

 type UnionExample (Switch : Direction := Direction'first) is record

 case Switch is

 when UP =>

 myUp : FACE.Long;

 when LEFT =>

 otherWay : FACE.Short;

 when RIGHT =>

 myWay : FACE.Short;

 when others =>

 null;

 end case;

 end record;

end A;

3.14.9.7.3 Enumerations

An IDL enumeration maps to an Ada enumerated type with the same name and with literals

specified with the same name and in the same order as in IDL.

Enumeration Example

// IDL

module A {

 enum Color {RED, GREEN, BLUE};

};

-- Ada

package A is

 type Color is (RED, GREEN, BLUE);

end A;

FACE™ Technical Standard, Edition 3.0 147

3.14.9.8 Arrays

The first use of an IDL array in a scope maps to a definition (in the same scope) of an array type.

The type’s name is Array_<dimensionality>_<type> where <type> is the name of the sequence’s

type, and <dimensionality> is the underscore-separated sequence of dimensions as specified in

IDL. The array’s element type is mapped as specified elsewhere; each of its dimensions is over

the range from 0 to 1 less than its corresponding dimension in IDL. All references to the array

within the same scope map to subtypes of this type definition.

When constructing the array type definition’s name, if the IDL array’s element type is a basic

type, <type> is the IDL typename; otherwise, <type> is the typename as mapped to Ada.

Array Example

// IDL

module A {

 typedef short Foo[10];

 typedef short Bar[4][5];

};

-- Ada

package A is

 type Array_10_short is array(0 .. 9) of FACE.Short;

 subtype Foo is Array_10_short;

 type Array_4_5_short is array(0 .. 3, 0 .. 4) of FACE.Short;

 subtype Bar is Array_4_5_short;

end A;

3.14.9.9 Interfaces

3.14.9.9.1 Declaration

An IDL interface maps to a package in Ada (an “interface package”) with the same name. If the

IDL interface is declared inside a module, the interface package is a child package of the

package mapped from the module; otherwise the interface package is a root library package.

The interface package contains an abstract tagged null record named Interface_T (the “interface

type”) and a class-wide general access type for Interface_T named Interface_T_Ptr. Any

reference to the interface (e.g., as an operation parameter or structure member) maps to this type

Interface_T (or Interface_T'Class in some cases).

Interface Declaration Example

// IDL

interface Foo {};

-- Ada

package Foo is

 type Interface_T is abstract tagged null record;

 type Interface_T_Ptr is access all Interface_T'Class;

end Foo;

An IDL interface declared with a forward declaration maps to a package with the same name,

appended with “_Forward”. The package contains an abstract tagged null record named

Interface_T (the “interface forward type”). Any reference to the forward declared interface

before its full declaration maps to this type Interface_T (or Interface_T'Class in some cases).

If an interface is forward declared, the interface package for the full declaration also contains a

nested package named “Convert” for converting between the interface type and the interface

forward type. This package contains two abstract functions – the first is named From_Forward,

148 Open Group Standard (2017)

takes a single in parameter of the interface forward type named “Forward”, and returns the

interface type; the second is named To_Forward, takes a single in parameter of the interface type

named “Full”, and returns the interface forward type.

Interface Forward Declaration Example

// IDL

interface Foo;

interface Foo {};

-- Ada

package Foo_Forward is

 type Interface_T is abstract tagged null record;

end Foo_Forward;

package Foo is

 type Interface_T is abstract tagged null record;

 type Interface_T_Ptr is access all Interface_T'Class;

 package Convert is

 function From_Forward (Forward : in Foo_Forward.Interface_T)

 return Foo.Interface_T is abstract;

 function Interface_To_Forward (Full : in Foo.Interface_T)

 return Foo_Forward.Interface_T is abstract;

 end Convert;

end Foo;

3.14.9.9.2 Operations

An interface operation in IDL maps to an abstract primitive subprogram of the interface type

with the same name as the operation. The first parameter of the subprogram is an access

parameter named “Self” of the interface type.

Each parameter in the operation maps to a parameter in the subprogram with the same name and

mode, in the same order, following the “Self” parameter.

If the operation has a non-void return type and only in parameters, it maps to an abstract function

whose return type is mapped from the operation’s return type. Otherwise, the operation maps to

an abstract procedure. If the operation has a non-void return type, but maps to an abstract

procedure, then the return type maps to an out parameter named “Returns” that follows all other

parameters.

Except for the “Self” parameter, the type of each subprogram parameter or return type is mapped

from the operation parameter’s type or return type, respectively, except when that type is the

interface itself, in which case it maps to the class of the interface type (i.e., Interface_T’Class).

(This prevents multiple controlling parameters, making it clear that the “Self” parameter controls

dispatching.)

Interface Operations Example

// IDL

interface Foo {

 void op1();

 short op2();

 short op3(out long A);

};

-- Ada

package Foo is

 type Interface_T is abstract tagged null record;

 type Interface_T_Ptr is access all Interface_T'Class;

 procedure op1 (Self : access Interface_T) is abstract;

FACE™ Technical Standard, Edition 3.0 149

 function op2 (Self : access Interface_T)

 return FACE.Short is abstract;

 procedure op3 (Self : access Interface_T;

 A : out FACE.Long;

 Result : out FACE.Short) is abstract;

end Foo;

3.14.9.9.3 Attributes

Attributes in IDL logically map to an accessor operation, for both mutable and readonly

attributes, and a mutator operation for mutable attributes. The accessor operation is named

Get_<attribute name>, takes no parameters, and returns the same type as the attribute. The

mutator operation is named Set_<attribute name>, takes an in parameter with the same type and

identifier as the attribute, and returns void. These operations then map according to Section

3.14.9.9.2.

Interface Attributes Example

// IDL

interface Foo {

 attribute long x;

 readonly attribute string y;

};

// logically equivalent to the following IDL

interface Foo {

 long Get_x();

 void Set_x(in long x);

 string Get_y();

};

3.14.9.9.4 Inheritance

The interface type of a derived interface is derived from the interface type of the first listed base

interface. (The operations and attributes of that base interface are then inherited through tagged

type inheritance.) The operations and attributes of all other direct and indirect base interfaces

map to primitive subprograms of the derived interface’s interface type.

Interface Inheritance Example

// IDL

interface Base1 { void stop(); };

interface Base2 { void slow(); };

interface Foo : Base1, Base2 { void go(); };

-- Ada

-- mapping for Base1 and Base2 as specified elsewhere

package Foo is

 type Interface_T is abstract new Base1.Interface_T with null record;

 type Interface_T_Ptr is access all Interface_T'Class;

 procedure slow(Self : access Interface_T) is abstract;

 procedure go(Self : access Interface_T) is abstract;

end Foo;

3.14.9.9.5 Implementation

An implementation of an interface is realized in Ada by defining and implementing a package

containing a type that derives from the interface’s interface type.

Interface Implementation Example

// IDL

interface Foo {

 void go();

150 Open Group Standard (2017)

};

-- Ada (interface declaration)

package Foo is

 type Interface_T is abstract tagged null record;

 type Interface_T_Ptr is access all Interface_T'Class;

 procedure go(Self : access Interface_T) is abstract;

end Foo;

-- Ada (interface implementation)

package MyFooImpl is

 type Interface_T is new foo.Interface_T with private;

 procedure go(Self : access Interface_T);

private

 type Interface_T is new foo.Interface_T with record

 null; -- or any record extension needed by implementation

 end record;

end MyFooImpl;

3.14.9.10 Native Types

There is no general mapping for a native type. Each native type declaration is accompanied by a

mapping to Ada which covers all instances in which the native type might be used, including but

not limited to type definitions and operation parameters (in, inout, out).

The following native types are used in FACE Standardized Interfaces:

 FACE::SYSTEM_ADDRESS_TYPE

In all cases, this type maps to a System.Address in Ada.

3.14.10 IDL to Java Mapping

This section defines a mapping from a subset of IDL 4.1 to Java. It is based on mappings defined

in OMG IDL to Java Language Mapping, Version 1.3. Table 18 is a summary of the mappings

elaborated upon in this section.

This section may be modified in subsequent releases. Prior to implementing, please ensure you

are using the latest revision of FACE Technical Standard, Edition 3.x, and you have checked to

see if any minor releases, corrigenda, or approved corrections have been published.

Table 18: Summary of IDL to Java Mapping

IDL Construct Java Construct

Source file No mapping

Preprocessor directive No mapping

Module Package

Interface Interface

Operation Method (Declared in the Interface)

Attribute Accessor and Mutator Methods in Interface

Inheritance Extending Interfaces

FACE™ Technical Standard, Edition 3.0 151

IDL Construct Java Construct

Data types Classes

Constants Encapsulated by Interfaces

Exception No mapping

3.14.10.1 Names

Names in IDL generally obey Java naming conventions, with exceptions described below.

Unless otherwise excepted below, unscoped names in IDL appear in the generated source code

character-for-character.

In addition, cases exist where a name that is legal in IDL may conflict with the corresponding

Java source. When this occurs, the name for that symbol is constructed by prefixing it with

“FACE_”. The following is a list of potential naming conflicts:

 Keywords in the Java language (e.g., abstract, boolean, if, etc.)

 Java literals (e.g., true, false, null)

 IDL declarations that collide with methods on java.lang.Object (e.g., clone, equals,

hashCode, etc.)

 IDL declarations that collide with class, interface, and method names as defined by this

section

Any language in the remainder of this section indicating that a Java construct has the “same

name” as its IDL counterpart takes this conflict resolution into account.

3.14.10.2 File Names

There is no associative mapping of an IDL source file to a Java source file.

3.14.10.3 Preprocessor Directives

IDL preprocessor directives do not map to anything in Java.

3.14.10.4 Modules

Modules map to Java packages with the same name, lower-cased. Scope resolution operators,

used when resolving definitions from other modules, map to the same package in Java and are

replaced by a Java scope resolution operator.

Modules Example

// IDL

module A {

 module B {

 struct Foo{ long i;};

 };

};

// Java

package a.b;

public interface Foo {

152 Open Group Standard (2017)

 int geti();

 void seti(int i);

}

3.14.10.5 Typedefs

An IDL typedef does not have an equivalent in Java. An IDL typedef aliases a type. When a

typedef alias is used, it is equivalent to using the original type.

Typedef Equivalence Example

// IDL

typedef long Foo;

typedef Foo AnotherFoo;

struct Foo_struct{ AnotherFoo x; };

typedef Foo_struct AnotherFoo_struct;

struct Bar_struct {

 Foo myFoo;

 AnotherFoo myAnotherFoo;

 AnotherFoo_struct myAFStruct;

};

// Equivalent IDL

struct Foo_struct{long x;};

struct Bar_struct{

 long myFoo;

 long myAnotherFoo;

 Foo_struct myAFStruct;

};

3.14.10.6 Constants

Constants map differently depending on scope. In all cases, the value of the Java constant is

mapped from the IDL constant expression as specified in Section 3.14.4, and its type is mapped

as specified elsewhere. If a constant appears within an interface, the IDL constant is mapped to a

final qualified member of the same name in the resulting Java interface.

Constant Example 1

// IDL

module Example {

 interface FooInterface {

 const long aFooConstant = 32;

 };

};

// Java

package Example;

public interface FooInterface{

 final int aFooConstant = 32;

}

If a constant is declared outside of an interface scope, it maps to a Java interface with the same

name as the constant with a final qualified member named “value” for assigning the constant’s

value.

Constants Example 2

// IDL

module Example {

 const long aBarConstant = -42;

};

// Java

package Example;

FACE™ Technical Standard, Edition 3.0 153

public interface aBarConstant {

 final int value = -42;

}

3.14.10.7 Simple Types

3.14.10.7.1 Basic Types

Table 19 shows the mapping of IDL basic types to Java. Care should be taken when using

unsigned types in the IDL as Java does not support usage of unsigned types.

Table 19: IDL Basic Type Java Mapping

IDL Basic Type Java Data Type

short short

long int

long long long

unsigned short short

unsigned long int

unsigned long long long

float float

double double

long double java.math.BigDecimal

char char

octet byte

boolean boolean

3.14.10.7.2 Sequences

An IDL sequence maps to a java.util.List for both bounded and unbounded cases. Bounds are

enforced by the implementation of a method that uses the type, as specified in Section

3.14.10.10.5.

All values specifying the length of a sequence get removed when the IDL maps to Java. If the

value of the sequence length is desired to be represented in the Java representation, then the

value is represented as a constant value in IDL.

Sequence Example

// IDL

struct Foo_struct{ long i;};

typedef Foo_struct AnotherFoo_struct;

struct Bar_struct {

 long myLong;

 sequence<Foo_struct, 32> myFoo;

154 Open Group Standard (2017)

 sequence<AnotherFoo_struct> myAnotherFoo;

};

// Java

public interface Foo_struct {

 int geti();

 void seti(int i);

}

public interface Bar_struct {

 int getmyLong();

 void setmyLong(int myLong);

 java.util.List<Foo_struct> getmyFoo();

 void setmyFoo(java.util.List<Foo_struct> myFoo);

 java.util.List<Foo_struct> getmyAnotherFoo();

 void setmyAnotherFoo(java.util.List<Foo_struct> myAnotherFoo);

}

3.14.10.7.3 Strings

IDL strings map to a Java String for both bounded and unbounded cases. Bounds are enforced

by the implementation of a method that uses the type, as specified in Section 3.14.10.10.5.

Any values restricting the length of an IDL string are removed when mapping to Java. If a value

restricting the length of a string is desired to be represented in the Java representation, then the

value should be represented as a constant value in IDL.

3.14.10.7.4 Fixed

IDL fixed types map to java.math.BigDecimal.

Any value restrictions are removed when IDL maps to Java and no limiting of the fixed type is

done in Java. If a value restricting the IDL fixed type is desired to be represented in the Java

representation, then the value should be represented as a constant value in IDL.

3.14.10.8 Constructed Types

3.14.10.8.1 Structured Types

An IDL struct maps to a Java interface with the same name that contains mutator and accessor

methods for each IDL member. The accessor method for an IDL member is named “get”

followed by the name of the IDL member, takes no parameters, and has a return type mapped

from the IDL member’s type as specified elsewhere. The mutator method for an IDL member is

named “set” followed by the name of the IDL member, returns void, and has a single parameter

whose name is the same as the IDL member and whose type is mapped from the IDL member’s

type as specified elsewhere. An IDL struct defined in an IDL interface maps to a nested Java

interface.

Structure Example

// IDL

typedef long long Foo;

typedef Foo AnotherFoo;

struct Foo_struct { AnotherFoo x; };

typedef Foo_struct AnotherFoo_struct;

struct Bar_struct {

 Foo myFoo;

 AnotherFoo myAnotherFoo;

 AnotherFoo_struct myAFstruct;

};

FACE™ Technical Standard, Edition 3.0 155

// Java

public interface Foo_struct {

 long getx();

 void setx(long x);

}

public interface Bar_struct {

 long getmyFoo();

 void setmyFoo(long myFoo);

 long getmyAnotherFoo();

 void setmyAnotherFoo(long myAnotherFoo);

 Foo_struct getmyAFStruct();

 void setmyAFStruct(Foo_struct myAFStruct);

}

3.14.10.8.2 Unions

An IDL union is mapped to a Java interface with the same name that contains the following:

 An accessor method for the discriminator that is named “getDiscriminator”, takes no

parameters, and has a return type mapped from the IDL discriminator’s type as specified

elsewhere

 An accessor method for each member that is named “get” followed by the name of the

IDL member, takes no parameters, and has a return type mapped from the IDL member’s

type as specified elsewhere

 A mutator method for each member that is named “set” followed by the name of the IDL

member, returns void, and has a single parameter whose name is the same as the IDL

member and whose type is mapped from the IDL member’s type as specified elsewhere

If the IDL union has multiple cases for the same union member, then a mutator is also defined

for the discriminator. The mutator is named “setDiscriminator”, returns void, and has a single

parameter named “Discriminator” whose type is mapped from the IDL discriminator’s type as

specified elsewhere. The mutator may only change the discriminator to a different value for the

same union member; any other use results in UnsupportedOperationException being raised.

The value returned from the discriminator’s accessor immediately after the class is constructed

depends on the union’s default case:

 Default case explicitly defined – return explicit default case

 No default case defined – return first case

Calling a member mutator sets the value of the member and sets the discriminator to the

appropriate value. If multiple cases exist for the same member, the discriminator is set to the first

case listed for that member.

Calling a member accessor returns the member’s value if the discriminator is set appropriately;

any other use results in UnsupportedOperationException being raised.

If the IDL union is defined within an interface, then the resulting Java interface maps to a nested

Java interface.

156 Open Group Standard (2017)

Union Example

// IDL

enum Direction{up,down,left,right};

union UnionExample switch (Direction) {

 case up: long myUp;

 case left:

 case right: short myWay;

 default: boolean myDefault;

};

// Java

public enum Direction {

 up, down, left, right

}

public interface UnionExample {

 Direction getDiscriminator();

 int getmyUp();

 void setmyUp(int val);

 short getmyWay();

 void setmyWay(short val);

 boolean getmyDefault();

 void setmyDefault(boolean myDefault);

}

3.14.10.8.3 Enumerations

An IDL enum is mapped to a public enum with the same name in Java.

If the IDL enum is defined within an interface, then the resulting Java class resides in the

corresponding Java interface.

Enumeration Example

// IDL

module Example{

 enum Direction{up, down, left, right};

};

// Java

package Example;

public enum Direction {

 up, down, left, right

}

3.14.10.8.4 Constructed Recursive Types and Forward Declarations

Forward declarations do not map to Java.

3.14.10.9 Arrays

An IDL array is mapped to a Java array. Bounds are enforced by the implementation of a method

that uses the type, as specified in Section 3.14.10.10.5.

Multi-dimensional IDL arrays map to multi-dimensional Java arrays.

Interface Declaration Example

// IDL

module Example{

 typedef short Foo[10];

 typedef short Bar[4][5];

FACE™ Technical Standard, Edition 3.0 157

 struct X {

 Foo foo;

 Bar bar;

 };

};

// Java

package example;

public interface X {

 short[] getfoo();

 void setfoo(short[] foo);

 short[][] getbar();

 void setbar(short[][] bar);

}

3.14.10.10 Interfaces

3.14.10.10.1 Declaration

An IDL interface definition maps to an interface with the same name in Java.

An IDL interface may also be declared with a forward declaration. This syntax does not map to

Java.

Interface Declaration Example

// IDL

interface Foo {};

// Java

public interface Foo {}

3.14.10.10.2 Operations

An interface operation in IDL maps to a public member method declaration with the same name

in Java.

An operation parameter’s directionality in IDL affects the parameter’s type in Java. An IDL in

parameter of type T is passed as a T for all types. An IDL inout or out parameter of type T

whose corresponding Java type is mutable is passed as a T. An IDL inout or out parameter of

type T whose corresponding Java type is immutable is passed using the

us.opengroup.FACE.Holder class (specified in Section K.4.1) parameterized with the

corresponding Java type. Primitive wrapper classes are used to parameterize the Holder class

when the corresponding Java type is a Java primitive.

The object parameter passing mechanism in Java requires care on both the caller and callee to

abide by the expectation implied in IDL. The following outlines the ownership responsibilities of

object passing based on an IDL parameter’s directionality:

 IDL in parameters – Java objects passed as IDL in parameters are created and owned by

the caller

The callee does not modify or retain a reference to this object beyond the duration of the

call. Violation of these rules can result in unpredictable behavior.

 IDL out and return parameters – Java objects returned as IDL out parameters are created

and owned by the callee

158 Open Group Standard (2017)

The callee does not modify or retain a reference to this object beyond the duration of the

call. Violation of these rules can result in unpredictable behavior.

 IDL inout parameters – Java objects passed as IDL inout parameters follow the guidelines

for in parameters for the in value, and follow the guidelines for out parameters for the out

value

Interface Operations Example

// IDL

interface Foo{

 void go(in long arg1, inout short arg2);

};

// Java

public interface Foo{
 void go (

 /*in*/ int arg1,

 /*inout*/ us.opengroup.FACE.Holder<Short> arg2

);

}

3.14.10.10.3 Attributes

Attributes in an IDL interface map to a pair of methods for each attribute: one mutator method

and one accessor method. The exceptional case is readonly attributes map only to an accessor

method.

The methods have the same name as the attribute. Mutator methods have a void return type and

accept a parameter of the corresponding attribute type. Accessor methods take no parameters and

have a return type matching the attribute type.

Interface Attributes Example

// IDL

interface Foo{

 attribute long x;

 readonly attribute long y;

};

// Java

public interface Foo{
 int getx();

 void setx(int x);

 int gety();

}

3.14.10.10.4 Inheritance

An IDL derived interface maps to a Java interface that extends from the base interface. In the

case of multiple inheritance, the resulting Java interface extends multiple base interfaces.

Interface Inheritance Example

// IDL

interface Base { void stop(); };

interface Foo : Base { void go(); };

// Java

public interface Base {

 void stop();

}

FACE™ Technical Standard, Edition 3.0 159

public interface Foo extends Base{

 void go();

}

3.14.10.10.5 Implementation

An implementation of an interface is realized in Java by defining and implementing a concrete

class that implements the resulting interface.

Interface Implementation Example

// IDL

interface Foo {

 void go();

};

// Java

public interface Foo {

 void go();

}

// Implementation of Foo interface

public class FooImpl implements Foo {

 public void go() {/*some implementation here*/}

}

IDL definitions and accompanying documentation are used to specify language-agnostic

structural and behavioral requirements for interface operations. Some IDL requirements are

implied by a parameter’s type but cannot be enforced by the Java language. For example, an IDL

unsigned short maps to a Java short, which has a wider range of values than dictated by IDL.

Because the Java language does not enforce these requirements, interface implementations are

responsible for enforcing them at run-time.

The us.opengroup.FACE.BAD_PARAM exception is provided for use in the following cases:

 The length of a Java String falls outside the range specified in the IDL for the string

 The length of a Java List falls outside the range specified in the IDL

 The value of a Java short, int, or long is negative where the IDL specifies an unsigned

value

 The value of a java.math.BigDecimal is outside the range specified in the IDL for a long

double or fixed type

The us.opengroup.FACE.DATA_CONVERSION exception is provided for use in the following

cases:

 A Java character (16-bit Unicode) cannot be represented per the IDL definition of a

character (8-bit)

 A character (16-bit Unicode) in a Java String cannot be represented per the IDL definition

of a character (8-bit)

The full specification of BAD_PARAM is in Section K.4.2. The full specification of

DATA_CONVERSION is in Section K.4.3.

160 Open Group Standard (2017)

3.14.10.11 Native Types

There is no general mapping for a native type. Each native type declaration is accompanied by a

mapping to Java which covers all instances in which the native type might be used, including but

not limited to type definitions and operation parameters (in, inout, out).

The following native types are used in FACE Standardized Interfaces:

 FACE::SYSTEM_ADDRESS_TYPE

In all cases, this type maps to a java.nio.ByteBuffer in Java. Note that every use of

FACE::SYSTEM_ADDRESS_TYPE in a FACE Standardized Interface is accompanied

by a length. This length is meaningless in Java; the length of the data can obtained using

ByteBuffer methods.

FACE™ Technical Standard, Edition 3.0 161

4 Security

Military and civilian airborne systems with security considerations are engineered to meet

rigorous security standards specified by the authorizing official and evaluation authority. The

FACE Technical Standard defines the Security Profile to support security-relevant UoCs. While

the Security Profile is targeted for UoCs that actively enforce or contribute to security

requirements, other OSS Profiles may work together with the Security Profile to provide

protection against specific threats and vulnerabilities. The FACE Reference Architecture allows

for evaluation of UoCs providing secure capabilities. The following sections provide basic

security considerations expected of a UoC.

4.1 Scope

Security in the context of the FACE Technical Standard:

 Recognizes that procuring agencies and their designated approval authorities define the

requirements for addressing systems security and processes to achieve Authority to

Operate

 Provides context for processes that capture best principles to be used in developing “high-

assurance” security software

 Specifies Security Profile API sets to facilitate security assessment

 Supports partitioning to address isolation of security functions

 Is agnostic to security processes (e.g., DIARMF, NIST RMF)

 Does not assert a UoC is automatically assessed to some evaluation assurance level

 Recognizes UoCs are a part of the platform security architecture and are evaluated with

the larger system

4.2 Guiding Concepts

The sections below provide guidance and recommendations on developing FACE security-

relevant software components. FACE security-relevant software executes within or supports the

Security Profile. It differs from other OSS Profiles in that it also contributes or influences the

security policy of the system designed to the FACE Reference Architecture. More specifically, a

UoC that executes within the Security Profile but has no mechanism to alter or otherwise impact

the security policy is not considered security-relevant. The following sections include

discussions on isolation of security functions, design constraints, and assessment considerations.

These guiding concepts are critical to reducing the time and cost to field secure solutions to the

warfighter and are applicable to the entire software life-cycle and platform stakeholders.

162 Open Group Standard (2017)

4.2.1 Isolation of Security Functions

The concept of isolation of security-relevant functions from non-security-relevant functions

provides a more robust and threat-resilient solution. Additional benefits include modular, less

complex designs that can minimize the recurring cost and schedule impacts of assessment and

authorization (A&A) required for Authority to Operate. This can help expedite the fielding of

new capabilities by leveraging similarity and visibility of information architecture and

documentation.

The Security Profile enables isolation by:

 Allowing separate ARINC and/or POSIX partitions that can securely separate relevant

functionality into unique time and space execution environments

 Aligning with the FACE Architectural Segments and key interfaces which constrain APIs

used for functional operations

 Securely allowing interoperability with other profiles that do not contain security-relevant

functions

4.2.2 Security Transformations

Transformations are one type of a security control to protect the confidentiality and integrity of

data in transit and at rest within a secure system. Examples include authentication, encryption,

and labeling. A security transformation may also be used to protect Critical Program Information

(CPI). This approach supports isolation of security-enforcing functions which may ease a

security evaluation by limiting the elements that would necessitate an assessment. Security

transformations are intended exclusively for security capabilities as designed to meet system-

level security controls. Information on the security transformation needs to be captured to ensure

portability of PCS, PSSS, and TSS UoCs. Given the sensitivity of both the data and

transformation mechanism, there may be restrictions on availability and distribution of this

information.

Requirements for Security Transformations are included in each applicable segment (Section

3.6.1.3, 3.7.9, and 3.10.1.4, and use of the TS Interface).

4.2.3 Security Guidance and Design Constraints

The Security Profile also addresses functional and performance attributes that define a reference

architecture that can support multiple levels of security processing requirements. To be more

specific, security considerations exhibit the following key operational environment attributes for

PCS, PSSS, and TSS UoCs:

 Trusted Information Flow between software components

 Trusted Information Flow between software components and external interfaces

 Protection of Data in Processing

 Protection of Data in Transit

 Protection of Data at Rest

FACE™ Technical Standard, Edition 3.0 163

It is important to reiterate that the Security Profile is defined for all the FACE segments: OSS,

IOSS, PSSS, TSS, and the PCS. For each of the segments, the Security Profile limits the set of

APIs to those that are robust and necessary to develop security-related software components.

There are security engineering practices that are important but are outside the domain of the

FACE Technical Standard. The specific engineering practices and design constraints vary

depending on your platform security requirements but an overview of some accepted security

design constraints, general guidance, and examples of security considerations associated with

implementing the FACE Technical Standard are included in the FACE Reference

Implementation Guide.

164 Open Group Standard (2017)

5 Safety Considerations

Military and civilian airborne systems with safety considerations are engineered to meet rigorous

airworthiness standards specified by the respective airworthiness authorities. The FACE

Technical Standard defines Safety Profile to support UoCs with safety implications.

Safety considerations in the context of the FACE Reference Architecture:

 Recognize procuring agencies and their designated airworthiness authorities define the

requirements for addressing system safety and processes to achieve airworthiness

 Allow application of software safety design assurance principles

 Specify Safety Profile API sets appropriate for use by UoCs

 The Software Supplier is responsible for the determination of when unbounded sequence

and string data types are appropriate for their given implementation

 Support partitioning to address separation of concerns

 Are agnostic to safety processes (e.g., DO-178, ARP 4754A, ARP 4761)

 Does not assert that a UoC automatically achieves any particular safety certification

There are safety engineering practices that are important but are outside the domain of the FACE

Technical Standard. The specific engineering practices and design constraints vary depending on

your platform safety requirements but an overview of some accepted safety design constraints,

general guidance, and examples of safety considerations associated with implementing the

FACE Technical Standard are included in the FACE Reference Implementation Guide.

FACE™ Technical Standard, Edition 3.0 165

A OSS Profile Details

A.1 OSS Profiles for the POSIX Interface

This normative appendix describes the OSS Profiles based on the IEEE Std 1003.1-2008. The

OSS and OS Interface are described in Section 3.1 and Section 3.2, respectively. Table 20 shows

FACE OS APIs and their associated OSS Profiles. Each API name is a hyperlink to an IEEE Std

1003.1-2008 description of the API.

Explanation for POSIX Call Table Format for the OSS Profile Columns

INCL Included in the Profile indicated at top of column

Blank Excluded from the Profile indicated at top of column

Note: Blank items may be included in future editions of the FACE Technical Standard.

The Inter-UoC column includes a “YES” for those APIs whose Inter-UoC usages are restricted

to Transport Services and I/O Services.

Table 20: FACE OSS Profile APIs

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

tzname INCL INCL INCL POSIX_C_LANG_SUPPORT

stderr INCL POSIX_DEVICE_IO

stdin INCL POSIX_DEVICE_IO

stdout INCL POSIX_DEVICE_IO

optarg POSIX_C_LIB_EXT

opterr POSIX_C_LIB_EXT

optind POSIX_C_LIB_EXT

optopt POSIX_C_LIB_EXT

environ INCL INCL POSIX_SINGLE_PROCESS

errno INCL INCL INCL INCL POSIX_SINGLE_PROCESS

signgam XSI_C_LANG_SUPPORT

timezone XSI_C_LANG_SUPPORT

daylight XSI_C_LANG_SUPPORT

http://www.opengroup.org/onlinepubs/9699919799/functions/tzname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/stderr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/stdin.html
http://www.opengroup.org/onlinepubs/9699919799/functions/stdout.html
http://www.opengroup.org/onlinepubs/9699919799/functions/optarg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/opterr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/optind.html
http://www.opengroup.org/onlinepubs/9699919799/functions/optopt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/environ.html
http://www.opengroup.org/onlinepubs/9699919799/functions/errno.html
http://www.opengroup.org/onlinepubs/9699919799/functions/signgam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/timezone.html
http://www.opengroup.org/onlinepubs/9699919799/functions/daylight.html

166 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

posix_fadvise() _POSIX_ADVISORY_INFO

posix_fallocate() _POSIX_ADVISORY_INFO

posix_memalign() _POSIX_ADVISORY_INFO

aio_cancel() INCL POSIX_ASYNCHRONOUS_IO

aio_error() INCL POSIX_ASYNCHRONOUS_IO

aio_fsync() INCL POSIX_ASYNCHRONOUS_IO

aio_read() INCL POSIX_ASYNCHRONOUS_IO

aio_return() INCL POSIX_ASYNCHRONOUS_IO

aio_suspend() INCL POSIX_ASYNCHRONOUS_IO

aio_write() INCL POSIX_ASYNCHRONOUS_IO

lio_listio() INCL POSIX_ASYNCHRONOUS_IO

pthread_barrier_destroy() INCL POSIX_BARRIERS

pthread_barrier_init() INCL POSIX_BARRIERS

pthread_barrier_wait() INCL POSIX_BARRIERS

pthread_barrierattr_destroy() INCL POSIX_BARRIERS

pthread_barrierattr_init() INCL POSIX_BARRIERS

pthread_barrierattr_ getpshared() POSIX_BARRIERS

pthread_barrierattr_setpshared() POSIX_BARRIERS

clock_nanosleep() INCL INCL INCL INCL POSIX_CLOCK_SELECTION

pthread_condattr_getclock() INCL INCL INCL POSIX_CLOCK_SELECTION

pthread_condattr_setclock() INCL INCL INCL POSIX_CLOCK_SELECTION

clock_getcpuclockid() INCL _POSIX_CPUTIME

fsync() INCL INCL INCL _POSIX_FSYNC

msync() INCL _POSIX_SYNCHRONIZED_IO

mmap() INCL INCL INCL INCL POSIX_MAPPED_FILES

munmap() INCL POSIX_MAPPED_FILES

mlockall() INCL _POSIX_MEMLOCK

munlockall() INCL _POSIX_MEMLOCK

mlock() INCL _POSIX_MEMLOCK_RANGE

munlock() INCL _POSIX_MEMLOCK_RANGE

mprotect() INCL POSIX_MEMORY_PROTECTION

http://pubs.opengroup.org/onlinepubs/9699919799/functions/posix_fadvise.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/posix_fallocate.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/posix_memalign.html
http://www.opengroup.org/onlinepubs/9699919799/functions/aio_cancel.html
http://www.opengroup.org/onlinepubs/9699919799/functions/aio_error.html
http://www.opengroup.org/onlinepubs/9699919799/functions/aio_fsync.html
http://www.opengroup.org/onlinepubs/9699919799/functions/aio_read.html
http://www.opengroup.org/onlinepubs/9699919799/functions/aio_return.html
http://www.opengroup.org/onlinepubs/9699919799/functions/aio_suspend.html
http://www.opengroup.org/onlinepubs/9699919799/functions/aio_write.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lio_listio.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_barrier_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_barrier_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_barrier_wait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_barrierattr_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_barrierattr_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_barrierattr_getpshared.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_barrierattr_setpshared.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clock_nanosleep.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_condattr_getclock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_condattr_setclock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clock_getcpuclockid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fsync.html
http://www.opengroup.org/onlinepubs/9699919799/functions/msync.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mmap.html
http://www.opengroup.org/onlinepubs/9699919799/functions/munmap.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mlockall.html
http://www.opengroup.org/onlinepubs/9699919799/functions/munlockall.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/munlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mprotect.html

FACE™ Technical Standard, Edition 3.0 167

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

mq_close() INCL YES _POSIX_MESSAGE_PASSING

mq_getattr() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

mq_notify() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

mq_open() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

mq_receive() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

mq_send() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

mq_setattr() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

mq_unlink() INCL YES _POSIX_MESSAGE_PASSING

mq_timedreceive() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

mq_timedsend() INCL INCL INCL YES _POSIX_MESSAGE_PASSING

sched_getparam() INCL INCL _POSIX_PRIORITY_SCHEDULING

sched_getscheduler() INCL INCL _POSIX_PRIORITY_SCHEDULING

sched_setparam() INCL INCL _POSIX_PRIORITY_SCHEDULING

sched_setscheduler() INCL INCL _POSIX_PRIORITY_SCHEDULING

posix_spawnattr_ getschedparam() INCL _POSIX_PRIORITY_SCHEDULING

and _POSIX_SPAWN

posix_spawnattr_ getschedpolicy() INCL _POSIX_PRIORITY_SCHEDULING
and _POSIX_SPAWN

posix_spawnattr_ setschedparam() INCL _POSIX_PRIORITY_SCHEDULING

and _POSIX_SPAWN

posix_spawnattr_ setschedpolicy() INCL _POSIX_PRIORITY_SCHEDULING

and _POSIX_SPAWN

sched_yield() INCL INCL INCL INCL _POSIX_PRIORITY_SCHEDULING

sched_get_priority_max() INCL INCL INCL INCL _POSIX_PRIORITY_SCHEDULING

and _POSIX_THREAD_PRIORITY_
SCHEDULING

sched_get_priority_min() INCL INCL INCL INCL _POSIX_PRIORITY_SCHEDULING

and _POSIX_THREAD_PRIORITY_

SCHEDULING

sched_rr_get_interval() INCL INCL _POSIX_PRIORITY_SCHEDULING

and _POSIX_THREAD_PRIORITY_

SCHEDULING

sigqueue() INCL INCL INCL INCL POSIX_REALTIME_SIGNALS

sigtimedwait() INCL INCL INCL INCL POSIX_REALTIME_SIGNALS

sigwaitinfo() INCL INCL INCL INCL POSIX_REALTIME_SIGNALS

sem_close() INCL INCL INCL INCL POSIX_SEMAPHORES

http://www.opengroup.org/onlinepubs/9699919799/functions/mq_close.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_getattr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_notify.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_receive.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_send.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_setattr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_unlink.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_timedreceive.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mq_timedsend.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_getparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_getscheduler.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_setparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_setscheduler.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_getschedparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_getschedpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_setschedparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_setschedpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_yield.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_get_priority_max.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_get_priority_min.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sched_rr_get_interval.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigqueue.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigtimedwait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigwaitinfo.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_close.html

168 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

sem_destroy() INCL INCL POSIX_SEMAPHORES

sem_getvalue() INCL INCL INCL INCL POSIX_SEMAPHORES

sem_init() INCL INCL INCL INCL POSIX_SEMAPHORES

sem_open() INCL INCL INCL INCL POSIX_SEMAPHORES

sem_post() INCL INCL INCL INCL POSIX_SEMAPHORES

sem_trywait() INCL INCL INCL INCL POSIX_SEMAPHORES

sem_unlink() INCL INCL POSIX_SEMAPHORES

sem_wait() INCL INCL INCL INCL POSIX_SEMAPHORES

sem_timedwait() INCL INCL INCL INCL POSIX_SEMAPHORES

shm_open() INCL INCL INCL INCL YES _POSIX_SHARED_MEMORY_

OBJECTS

shm_unlink() INCL YES _POSIX_SHARED_MEMORY_
OBJECTS

posix_madvise() _POSIX_ADVISORY_INFO

posix_spawn() INCL INCL _POSIX_SPAWN

posix_spawn_file_actions_ addclose() INCL _POSIX_SPAWN

posix_spawn_file_actions_ adddup2() INCL _POSIX_SPAWN

posix_spawn_file_actions_ addopen() INCL _POSIX_SPAWN

posix_spawn_file_actions_ destroy() INCL _POSIX_SPAWN

posix_spawn_file_actions_init() INCL _POSIX_SPAWN

posix_spawnattr_destroy() INCL INCL _POSIX_SPAWN

posix_spawnattr_getflags() INCL INCL _POSIX_SPAWN

posix_spawnattr_getpgroup() INCL _POSIX_SPAWN

posix_spawnattr_getsigdefault() INCL INCL _POSIX_SPAWN

posix_spawnattr_getsigmask() INCL INCL _POSIX_SPAWN

posix_spawnattr_init() INCL INCL _POSIX_SPAWN

posix_spawnattr_setflags() INCL INCL _POSIX_SPAWN

posix_spawnattr_setpgroup() INCL _POSIX_SPAWN

posix_spawnattr_setsigdefault() INCL INCL _POSIX_SPAWN

posix_spawnattr_setsigmask() INCL INCL _POSIX_SPAWN

posix_spawnp() INCL _POSIX_SPAWN

pthread_spin_destroy() POSIX_SPIN_LOCKS

http://www.opengroup.org/onlinepubs/9699919799/functions/sem_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_getvalue.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_post.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_trywait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_unlink.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_wait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sem_timedwait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shm_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shm_unlink.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_madvise.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawn_file_actions_addclose.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawn_file_actions_adddup2.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawn_file_actions_addopen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawn_file_actions_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawn_file_actions_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_getflags.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_getpgroup.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_getsigdefault.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_getsigmask.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_setflags.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_setpgroup.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_setsigdefault.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnattr_setsigmask.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_spawnp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_spin_destroy.html

FACE™ Technical Standard, Edition 3.0 169

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

pthread_spin_init() POSIX_SPIN_LOCKS

pthread_spin_lock() _POSIX_SPIN_LOCKS

pthread_spin_trylock() _POSIX_SPIN_LOCKS

pthread_spin_unlock() _POSIX_SPIN_LOCKS

fdatasync() INCL _POSIX_SYNCHRONIZED_IO

pthread_attr_getstacksize() INCL INCL INCL _POSIX_THREAD_ATTR_

STACKSIZE

pthread_attr_setstacksize() INCL INCL INCL _POSIX_THREAD_ATTR_
STACKSIZE

pthread_attr_getstack() INCL INCL INCL INCL XSI_THREADS_EXT

pthread_attr_setstack() INCL INCL INCL INCL XSI_THREADS_EXT

pthread_getcpuclockid() INCL INCL INCL INCL _POSIX_THREAD_CPUTIME

pthread_mutex_getprioceiling() INCL _POSIX_THREAD_PRIO_PROTECT

pthread_mutex_setprioceiling() INCL _POSIX_THREAD_PRIO_PROTECT

pthread_mutexattr_ getprioceiling() INCL INCL INCL INCL _POSIX_THREAD_PRIO_PROTECT

pthread_mutexattr_ setprioceiling() INCL INCL INCL INCL _POSIX_THREAD_PRIO_PROTECT

pthread_attr_getinheritsched() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_

SCHEDULING

pthread_attr_getschedpolicy() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_

SCHEDULING

pthread_attr_getscope() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_
SCHEDULING

pthread_attr_setinheritsched() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_

SCHEDULING

pthread_attr_setschedpolicy() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_

SCHEDULING

pthread_attr_setscope() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_
SCHEDULING

pthread_getschedparam() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_

SCHEDULING

pthread_setschedparam() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_

SCHEDULING

pthread_setschedprio() INCL INCL INCL INCL _POSIX_THREAD_PRIORITY_
SCHEDULING

pthread_condattr_getpshared() INCL _POSIX_THREAD_PROCESS_

SHARED

http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_spin_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_spin_lock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_spin_trylock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_spin_unlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fdatasync.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getstacksize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setstacksize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getstack.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setstack.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_getcpuclockid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_getprioceiling.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_setprioceiling.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_getprioceiling.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_setprioceiling.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getinheritsched.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getschedpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getscope.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setinheritsched.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setschedpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setscope.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_getschedparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_setschedparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_setschedprio.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_condattr_getpshared.html

170 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

pthread_condattr_setpshared() INCL _POSIX_THREAD_PROCESS_

SHARED

pthread_mutexattr_getpshared() INCL _POSIX_THREAD_PROCESS_
SHARED

pthread_mutexattr_setpshared() INCL _POSIX_THREAD_PROCESS_

SHARED

pthread_mutexattr_ getprotocol() INCL INCL INCL INCL _POSIX_THREAD_PRIO_INHERIT or

_POSIX_THREAD_PRIO_PROTECT

pthread_mutexattr_setprotocol() INCL INCL INCL INCL _POSIX_THREAD_PRIO_INHERIT or
_POSIX_THREAD_PRIO_PROTECT

clock_getres() INCL INCL INCL INCL POSIX_TIMERS

clock_gettime() INCL INCL INCL INCL POSIX_TIMERS

clock_settime() INCL INCL INCL INCL POSIX_TIMERS

nanosleep() INCL INCL INCL INCL POSIX_TIMERS

timer_create() INCL INCL INCL INCL POSIX_TIMERS

timer_delete() INCL INCL POSIX_TIMERS

timer_getoverrun() INCL INCL INCL INCL POSIX_TIMERS

timer_gettime() INCL INCL INCL INCL POSIX_TIMERS

timer_settime() INCL INCL INCL INCL POSIX_TIMERS

posix_trace_attr_destroy() _POSIX_TRACE

posix_trace_attr_getclockres() _POSIX_TRACE

posix_trace_attr_ getcreatetime() _POSIX_TRACE

posix_trace_attr_ getgenversion() _POSIX_TRACE

posix_trace_attr_ getmaxdatasize() _POSIX_TRACE

posix_trace_attr_ getmaxsystemeventsize() _POSIX_TRACE

posix_trace_attr_ getmaxusereventsize() _POSIX_TRACE

posix_trace_attr_getname() _POSIX_TRACE

posix_trace_attr_ getstreamfullpolicy() _POSIX_TRACE

posix_trace_attr_ getstreamsize() _POSIX_TRACE

posix_trace_attr_init() _POSIX_TRACE

posix_trace_attr_ setmaxdatasize() _POSIX_TRACE

posix_trace_attr_setname() _POSIX_TRACE

posix_trace_attr_ setstreamfullpolicy() _POSIX_TRACE

posix_trace_attr_setstreamsize() _POSIX_TRACE

http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_condattr_setpshared.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_getpshared.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_setpshared.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_getprotocol.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_setprotocol.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clock_getres.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clock_gettime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clock_settime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nanosleep.html
http://www.opengroup.org/onlinepubs/9699919799/functions/timer_create.html
http://www.opengroup.org/onlinepubs/9699919799/functions/timer_delete.html
http://www.opengroup.org/onlinepubs/9699919799/functions/timer_getoverrun.html
http://www.opengroup.org/onlinepubs/9699919799/functions/timer_gettime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/timer_settime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getclockres.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getcreatetime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getgenversion.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getmaxdatasize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getmaxsystemeventsize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getmaxusereventsize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getstreamfullpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getstreamsize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_setmaxdatasize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_setname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_setstreamfullpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_setstreamsize.html

FACE™ Technical Standard, Edition 3.0 171

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

posix_trace_clear() _POSIX_TRACE

posix_trace_create() _POSIX_TRACE

posix_trace_event() _POSIX_TRACE

posix_trace_eventid_equal() _POSIX_TRACE

posix_trace_eventid_get_ name() _POSIX_TRACE

posix_trace_eventid_open() _POSIX_TRACE

posix_trace_eventtypelist_ getnext_id() _POSIX_TRACE

posix_trace_eventtypelist_ rewind() _POSIX_TRACE

posix_trace_get_attr() _POSIX_TRACE

posix_trace_get_status() _POSIX_TRACE

posix_trace_getnext_event() _POSIX_TRACE

posix_trace_shutdown() _POSIX_TRACE

posix_trace_start() _POSIX_TRACE

posix_trace_stop() _POSIX_TRACE

posix_trace_timedgetnext_ event() _POSIX_TRACE

posix_trace_trygetnext_event() _POSIX_TRACE

posix_trace_eventset_add() _POSIX_TRACE and

_POSIX_TRACE_EVENT_FILTER

posix_trace_eventset_del() _POSIX_TRACE and
_POSIX_TRACE_EVENT_FILTER

posix_trace_eventset_empty() _POSIX_TRACE and

_POSIX_TRACE_EVENT_FILTER

posix_trace_eventset_fill() _POSIX_TRACE and
_POSIX_TRACE_EVENT_FILTER

posix_trace_eventset_ ismember() _POSIX_TRACE and
_POSIX_TRACE_EVENT_FILTER

posix_trace_get_filter() _POSIX_TRACE and

_POSIX_TRACE_EVENT_FILTER

posix_trace_set_filter() _POSIX_TRACE and
_POSIX_TRACE_EVENT_FILTER

posix_trace_trid_eventid_ open() _POSIX_TRACE and
_POSIX_TRACE_EVENT_FILTER

posix_trace_attr_getinherited() _POSIX_TRACE and

_POSIX_TRACE_INHERIT

posix_trace_attr_setinherited() _POSIX_TRACE and
_POSIX_TRACE_INHERIT

http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_clear.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_create.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_event.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventid_equal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventid_get_name.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventid_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventtypelist_getnext_id.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventtypelist_rewind.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_get_attr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_get_status.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_getnext_event.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_shutdown.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_start.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_stop.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_timedgetnext_event.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_trygetnext_event.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventset_add.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventset_del.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventset_empty.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventset_fill.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_eventset_ismember.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_get_filter.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_set_filter.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_trid_eventid_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getinherited.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_setinherited.html

172 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

posix_trace_attr_ getlogfullpolicy() _POSIX_TRACE and

_POSIX_TRACE_LOG

posix_trace_attr_getlogsize() _POSIX_TRACE and
_POSIX_TRACE_LOG

posix_trace_attr_ setlogfullpolicy() _POSIX_TRACE and

_POSIX_TRACE_LOG

posix_trace_attr_setlogsize() _POSIX_TRACE and

_POSIX_TRACE_LOG

posix_trace_close() _POSIX_TRACE and
_POSIX_TRACE_LOG

posix_trace_create_withlog() _POSIX_TRACE and

_POSIX_TRACE_LOG

posix_trace_flush() _POSIX_TRACE and

_POSIX_TRACE_LOG

posix_trace_open() _POSIX_TRACE and
_POSIX_TRACE_LOG

posix_trace_rewind() _POSIX_TRACE and

_POSIX_TRACE_LOG

posix_mem_offset() _POSIX_TYPED_MEMORY_

OBJECTS

posix_typed_mem_get_info() _POSIX_TYPED_MEMORY_
OBJECTS

posix_typed_mem_open() _POSIX_TYPED_MEMORY_

OBJECTS

crypt() _XOPEN_CRYPT

encrypt() _XOPEN_CRYPT

setkey() _XOPEN_CRYPT

fattach() _XOPEN_STREAMS

fdetach() _XOPEN_STREAMS

getmsg() _XOPEN_STREAMS

getpmsg() _XOPEN_STREAMS

ioctl() _XOPEN_STREAMS

isastream() _XOPEN_STREAMS

putmsg() _XOPEN_STREAMS

putpmsg() _XOPEN_STREAMS

posix_devctl() INCL INCL INCL INCL IEEE Std 1003.26, device control

getdate_err XSI_C_LANG_SUPPORT

http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getlogfullpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_getlogsize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_setlogfullpolicy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_attr_setlogsize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_close.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_create_withlog.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_flush.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_trace_rewind.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_mem_offset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_typed_mem_get_info.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_typed_mem_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/crypt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/encrypt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setkey.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fattach.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fdetach.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getmsg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpmsg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ioctl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isastream.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putmsg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putpmsg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getdate_err.html

FACE™ Technical Standard, Edition 3.0 173

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

longjmp() INCL POSIX_C_LANG_JUMP

setjmp() INCL POSIX_C_LANG_JUMP

acos() INCL INCL INCL INCL POSIX_C_LANG_MATH

acosf() INCL POSIX_C_LANG_MATH

acosh() INCL INCL INCL INCL POSIX_C_LANG_MATH

acoshf() INCL POSIX_C_LANG_MATH

acoshl() INCL POSIX_C_LANG_MATH

acosl() INCL POSIX_C_LANG_MATH

asin() INCL INCL INCL INCL POSIX_C_LANG_MATH

asinf() INCL POSIX_C_LANG_MATH

asinh() INCL INCL INCL INCL POSIX_C_LANG_MATH

asinhf() INCL POSIX_C_LANG_MATH

asinhl() INCL POSIX_C_LANG_MATH

asinl() INCL POSIX_C_LANG_MATH

atan() INCL INCL INCL INCL POSIX_C_LANG_MATH

atan2() INCL INCL INCL INCL POSIX_C_LANG_MATH

atan2f() INCL POSIX_C_LANG_MATH

atan2l() INCL POSIX_C_LANG_MATH

atanf() INCL POSIX_C_LANG_MATH

atanh() INCL INCL INCL INCL POSIX_C_LANG_MATH

atanhf() INCL POSIX_C_LANG_MATH

atanhl() INCL POSIX_C_LANG_MATH

atanl() INCL POSIX_C_LANG_MATH

cabs() INCL POSIX_C_LANG_MATH

cabsf() INCL POSIX_C_LANG_MATH

cabsl() INCL POSIX_C_LANG_MATH

cacos() INCL POSIX_C_LANG_MATH

cacosf() INCL POSIX_C_LANG_MATH

cacosh() INCL POSIX_C_LANG_MATH

cacoshf() INCL POSIX_C_LANG_MATH

cacoshl() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/longjmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setjmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/acos.html
http://www.opengroup.org/onlinepubs/9699919799/functions/acosf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/acosh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/acoshf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/acoshl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/acosl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asin.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asinf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asinh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asinhf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asinhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asinl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atan.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atan2.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atan2f.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atan2l.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atanh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atanhf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atanhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atanl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cabs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cabsf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cabsl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cacos.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cacosf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cacosh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cacoshf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cacoshl.html

174 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

cacosl() INCL POSIX_C_LANG_MATH

carg() INCL POSIX_C_LANG_MATH

cargf() INCL POSIX_C_LANG_MATH

cargl() INCL POSIX_C_LANG_MATH

casin() INCL POSIX_C_LANG_MATH

casinf() INCL POSIX_C_LANG_MATH

casinh() INCL POSIX_C_LANG_MATH

casinhf() INCL POSIX_C_LANG_MATH

casinhl() INCL POSIX_C_LANG_MATH

casinl() INCL POSIX_C_LANG_MATH

catan() INCL POSIX_C_LANG_MATH

catanf() INCL POSIX_C_LANG_MATH

catanh() INCL POSIX_C_LANG_MATH

catanhf() INCL POSIX_C_LANG_MATH

catanhl() INCL POSIX_C_LANG_MATH

catanl() INCL POSIX_C_LANG_MATH

cbrt() INCL POSIX_C_LANG_MATH

cbrtf() INCL POSIX_C_LANG_MATH

cbrtl() INCL POSIX_C_LANG_MATH

ccos() INCL POSIX_C_LANG_MATH

ccosf() INCL POSIX_C_LANG_MATH

ccosh() INCL POSIX_C_LANG_MATH

ccoshf() INCL POSIX_C_LANG_MATH

ccoshl() INCL POSIX_C_LANG_MATH

ccosl() INCL POSIX_C_LANG_MATH

ceil() INCL INCL INCL INCL POSIX_C_LANG_MATH

ceilf() INCL POSIX_C_LANG_MATH

ceill() INCL POSIX_C_LANG_MATH

cexp() INCL POSIX_C_LANG_MATH

cexpf() INCL POSIX_C_LANG_MATH

cexpl() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/cacosl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/carg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cargf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cargl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/casin.html
http://www.opengroup.org/onlinepubs/9699919799/functions/casinf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/casinh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/casinhf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/casinhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/casinl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catan.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catanh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catanhf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catanhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catanl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cbrt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cbrtf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cbrtl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ccos.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ccosf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ccosh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ccoshf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ccoshl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ccosl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ceil.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ceilf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ceill.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cexp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cexpf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cexpl.html

FACE™ Technical Standard, Edition 3.0 175

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

cimag() INCL POSIX_C_LANG_MATH

cimagf() INCL POSIX_C_LANG_MATH

cimagl() INCL POSIX_C_LANG_MATH

clog() INCL POSIX_C_LANG_MATH

clogf() INCL POSIX_C_LANG_MATH

clogl() INCL POSIX_C_LANG_MATH

conj() INCL POSIX_C_LANG_MATH

conjf() INCL POSIX_C_LANG_MATH

conjl() INCL POSIX_C_LANG_MATH

copysign() INCL POSIX_C_LANG_MATH

copysignf() INCL POSIX_C_LANG_MATH

copysignl() INCL POSIX_C_LANG_MATH

cos() INCL INCL INCL INCL POSIX_C_LANG_MATH

cosf() INCL POSIX_C_LANG_MATH

cosh() INCL INCL INCL INCL POSIX_C_LANG_MATH

coshf() INCL POSIX_C_LANG_MATH

coshl() INCL POSIX_C_LANG_MATH

cosl() INCL POSIX_C_LANG_MATH

cpow() INCL POSIX_C_LANG_MATH

cpowf() INCL POSIX_C_LANG_MATH

cpowl() INCL POSIX_C_LANG_MATH

cproj() INCL POSIX_C_LANG_MATH

cprojf() INCL POSIX_C_LANG_MATH

cprojl() INCL POSIX_C_LANG_MATH

creal() INCL POSIX_C_LANG_MATH

crealf() INCL POSIX_C_LANG_MATH

creall() INCL POSIX_C_LANG_MATH

csin() INCL POSIX_C_LANG_MATH

csinf() INCL POSIX_C_LANG_MATH

csinh() INCL POSIX_C_LANG_MATH

csinhf() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/cimag.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cimagf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cimagl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clog.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clogf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clogl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/conj.html
http://www.opengroup.org/onlinepubs/9699919799/functions/conjf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/conjl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/copysign.html
http://www.opengroup.org/onlinepubs/9699919799/functions/copysignf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/copysignl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cos.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cosf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cosh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/coshf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/coshl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cosl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cpow.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cpowf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cpowl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cproj.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cprojf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cprojl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/creal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/crealf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/creall.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csin.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csinf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csinh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csinhf.html

176 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

csinhl() INCL POSIX_C_LANG_MATH

csinl() INCL POSIX_C_LANG_MATH

csqrt() INCL POSIX_C_LANG_MATH

csqrtf() INCL POSIX_C_LANG_MATH

csqrtl() INCL POSIX_C_LANG_MATH

ctan() INCL POSIX_C_LANG_MATH

ctanf() INCL POSIX_C_LANG_MATH

ctanh() INCL POSIX_C_LANG_MATH

ctanhf() INCL POSIX_C_LANG_MATH

ctanhl() INCL POSIX_C_LANG_MATH

ctanl() INCL POSIX_C_LANG_MATH

erf() INCL POSIX_C_LANG_MATH

erfc() INCL POSIX_C_LANG_MATH

erfcf() INCL POSIX_C_LANG_MATH

erfcl() INCL POSIX_C_LANG_MATH

erff() INCL POSIX_C_LANG_MATH

erfl() INCL POSIX_C_LANG_MATH

exp() INCL INCL INCL INCL POSIX_C_LANG_MATH

exp2() INCL POSIX_C_LANG_MATH

exp2f() INCL POSIX_C_LANG_MATH

exp2l() INCL POSIX_C_LANG_MATH

expf() INCL POSIX_C_LANG_MATH

expl() INCL POSIX_C_LANG_MATH

expm1() INCL POSIX_C_LANG_MATH

expm1f() INCL POSIX_C_LANG_MATH

expm1l() INCL POSIX_C_LANG_MATH

fabs() INCL INCL INCL INCL POSIX_C_LANG_MATH

fabsf() INCL POSIX_C_LANG_MATH

fabsl() INCL POSIX_C_LANG_MATH

fdim() INCL POSIX_C_LANG_MATH

fdimf() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/csinhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csinl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csqrt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csqrtf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/csqrtl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctan.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctanh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctanhf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctanhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctanl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/erf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/erfc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/erfcf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/erfcl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/erff.html
http://www.opengroup.org/onlinepubs/9699919799/functions/erfl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/exp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/exp2.html
http://www.opengroup.org/onlinepubs/9699919799/functions/exp2f.html
http://www.opengroup.org/onlinepubs/9699919799/functions/exp2l.html
http://www.opengroup.org/onlinepubs/9699919799/functions/expf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/expl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/expm1.html
http://www.opengroup.org/onlinepubs/9699919799/functions/expm1f.html
http://www.opengroup.org/onlinepubs/9699919799/functions/expm1l.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fabs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fabsf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fabsl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fdim.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fdimf.html

FACE™ Technical Standard, Edition 3.0 177

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

fdiml() INCL POSIX_C_LANG_MATH

floor() INCL INCL INCL INCL POSIX_C_LANG_MATH

floorf() INCL POSIX_C_LANG_MATH

floorl() INCL POSIX_C_LANG_MATH

fma() INCL POSIX_C_LANG_MATH

fmaf() INCL POSIX_C_LANG_MATH

fmal() INCL POSIX_C_LANG_MATH

fmax() INCL POSIX_C_LANG_MATH

fmaxf() INCL POSIX_C_LANG_MATH

fmaxl() INCL POSIX_C_LANG_MATH

fmin() INCL POSIX_C_LANG_MATH

fminf() INCL POSIX_C_LANG_MATH

fminl() INCL POSIX_C_LANG_MATH

fmod() INCL INCL INCL INCL POSIX_C_LANG_MATH

fmodf() INCL POSIX_C_LANG_MATH

fmodl() INCL POSIX_C_LANG_MATH

fpclassify() INCL POSIX_C_LANG_MATH

frexp() INCL INCL INCL INCL POSIX_C_LANG_MATH

frexpf() INCL POSIX_C_LANG_MATH

frexpl() INCL POSIX_C_LANG_MATH

hypot() INCL POSIX_C_LANG_MATH

hypotf() INCL POSIX_C_LANG_MATH

hypotl() INCL POSIX_C_LANG_MATH

ilogb() INCL POSIX_C_LANG_MATH

ilogbf() INCL POSIX_C_LANG_MATH

ilogbl() INCL POSIX_C_LANG_MATH

isfinite() INCL POSIX_C_LANG_MATH

isgreater() INCL POSIX_C_LANG_MATH

isgreaterequal() INCL POSIX_C_LANG_MATH

isinf() INCL INCL INCL INCL POSIX_C_LANG_MATH

isless() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/fdiml.html
http://www.opengroup.org/onlinepubs/9699919799/functions/floor.html
http://www.opengroup.org/onlinepubs/9699919799/functions/floorf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/floorl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fma.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmaf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmax.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmaxf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmaxl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmin.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fminf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fminl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmod.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmodf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmodl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fpclassify.html
http://www.opengroup.org/onlinepubs/9699919799/functions/frexp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/frexpf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/frexpl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/hypot.html
http://www.opengroup.org/onlinepubs/9699919799/functions/hypotf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/hypotl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ilogb.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ilogbf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ilogbl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isfinite.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isgreater.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isgreaterequal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isinf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isless.html

178 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

islessequal() INCL POSIX_C_LANG_MATH

islessgreater() INCL POSIX_C_LANG_MATH

isnan() INCL INCL INCL INCL POSIX_C_LANG_MATH

isnormal() INCL POSIX_C_LANG_MATH

isunordered() INCL POSIX_C_LANG_MATH

ldexp() INCL INCL INCL INCL POSIX_C_LANG_MATH

ldexpf() INCL POSIX_C_LANG_MATH

ldexpl() INCL POSIX_C_LANG_MATH

lgamma() INCL POSIX_C_LANG_MATH

lgammaf() INCL POSIX_C_LANG_MATH

lgammal() INCL POSIX_C_LANG_MATH

llrint() INCL POSIX_C_LANG_MATH

llrintf() INCL POSIX_C_LANG_MATH

llrintl() INCL POSIX_C_LANG_MATH

llround() INCL POSIX_C_LANG_MATH

llroundf() INCL POSIX_C_LANG_MATH

llroundl() INCL POSIX_C_LANG_MATH

log() INCL INCL INCL INCL POSIX_C_LANG_MATH

log10() INCL INCL INCL INCL POSIX_C_LANG_MATH

log10f() INCL POSIX_C_LANG_MATH

log10l() INCL POSIX_C_LANG_MATH

log1p() INCL POSIX_C_LANG_MATH

log1pf() INCL POSIX_C_LANG_MATH

log1pl() INCL POSIX_C_LANG_MATH

log2() INCL POSIX_C_LANG_MATH

log2f() INCL POSIX_C_LANG_MATH

log2l() INCL POSIX_C_LANG_MATH

logb() INCL POSIX_C_LANG_MATH

logbf() INCL POSIX_C_LANG_MATH

logbl() INCL POSIX_C_LANG_MATH

logf() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/islessequal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/islessgreater.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isnan.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isnormal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isunordered.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ldexp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ldexpf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ldexpl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lgamma.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lgammaf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lgammal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/llrint.html
http://www.opengroup.org/onlinepubs/9699919799/functions/llrintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/llrintl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/llround.html
http://www.opengroup.org/onlinepubs/9699919799/functions/llroundf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/llroundl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log10.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log10f.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log10l.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log1p.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log1pf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log1pl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log2.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log2f.html
http://www.opengroup.org/onlinepubs/9699919799/functions/log2l.html
http://www.opengroup.org/onlinepubs/9699919799/functions/logb.html
http://www.opengroup.org/onlinepubs/9699919799/functions/logbf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/logbl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/logf.html

FACE™ Technical Standard, Edition 3.0 179

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

logl() INCL POSIX_C_LANG_MATH

lrint() INCL POSIX_C_LANG_MATH

lrintf() INCL POSIX_C_LANG_MATH

lrintl() INCL POSIX_C_LANG_MATH

lround() INCL POSIX_C_LANG_MATH

lroundf() INCL POSIX_C_LANG_MATH

lroundl() INCL POSIX_C_LANG_MATH

modf() INCL INCL INCL INCL POSIX_C_LANG_MATH

modff() INCL POSIX_C_LANG_MATH

modfl() INCL POSIX_C_LANG_MATH

nan() INCL POSIX_C_LANG_MATH

nanf() INCL POSIX_C_LANG_MATH

nanl() INCL POSIX_C_LANG_MATH

nearbyint() INCL POSIX_C_LANG_MATH

nearbyintf() INCL POSIX_C_LANG_MATH

nearbyintl() INCL POSIX_C_LANG_MATH

nextafter() INCL POSIX_C_LANG_MATH

nextafterf() INCL POSIX_C_LANG_MATH

nextafterl() INCL POSIX_C_LANG_MATH

nexttoward() INCL POSIX_C_LANG_MATH

nexttowardf() INCL POSIX_C_LANG_MATH

nexttowardl() INCL POSIX_C_LANG_MATH

pow() INCL INCL INCL INCL POSIX_C_LANG_MATH

powf() INCL POSIX_C_LANG_MATH

powl() INCL POSIX_C_LANG_MATH

remainder() INCL POSIX_C_LANG_MATH

remainderf() INCL POSIX_C_LANG_MATH

remainderl() INCL POSIX_C_LANG_MATH

remquo() INCL POSIX_C_LANG_MATH

remquof() INCL POSIX_C_LANG_MATH

remquol() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/logl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lrint.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lrintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lrintl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lround.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lroundf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lroundl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/modf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/modff.html
http://www.opengroup.org/onlinepubs/9699919799/functions/modfl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nan.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nanl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nearbyint.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nearbyintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nearbyintl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nextafter.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nextafterf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nextafterl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nexttoward.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nexttowardf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nexttowardl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pow.html
http://www.opengroup.org/onlinepubs/9699919799/functions/powf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/powl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remainder.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remainderf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remainderl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remquo.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remquof.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remquol.html

180 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

rint() INCL POSIX_C_LANG_MATH

rintf() INCL POSIX_C_LANG_MATH

rintl() INCL POSIX_C_LANG_MATH

round() INCL POSIX_C_LANG_MATH

roundf() INCL POSIX_C_LANG_MATH

roundl() INCL POSIX_C_LANG_MATH

scalbln() INCL POSIX_C_LANG_MATH

scalblnf() INCL POSIX_C_LANG_MATH

scalblnl() INCL POSIX_C_LANG_MATH

scalbn() INCL POSIX_C_LANG_MATH

scalbnf() INCL POSIX_C_LANG_MATH

scalbnl() INCL POSIX_C_LANG_MATH

signbit() INCL POSIX_C_LANG_MATH

sin() INCL INCL INCL INCL POSIX_C_LANG_MATH

sinf() INCL POSIX_C_LANG_MATH

sinh() INCL INCL INCL INCL POSIX_C_LANG_MATH

sinhf() INCL POSIX_C_LANG_MATH

sinhl() INCL POSIX_C_LANG_MATH

sinl() INCL POSIX_C_LANG_MATH

sqrt() INCL INCL INCL INCL POSIX_C_LANG_MATH

sqrtf() INCL POSIX_C_LANG_MATH

sqrtl() INCL POSIX_C_LANG_MATH

tan() INCL INCL INCL INCL POSIX_C_LANG_MATH

tanf() INCL POSIX_C_LANG_MATH

tanh() INCL INCL INCL INCL POSIX_C_LANG_MATH

tanhf() INCL POSIX_C_LANG_MATH

tanhl() INCL POSIX_C_LANG_MATH

tanl() INCL POSIX_C_LANG_MATH

tgamma() INCL POSIX_C_LANG_MATH

tgammaf() INCL POSIX_C_LANG_MATH

tgammal() INCL POSIX_C_LANG_MATH

http://www.opengroup.org/onlinepubs/9699919799/functions/rint.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rintl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/round.html
http://www.opengroup.org/onlinepubs/9699919799/functions/roundf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/roundl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/scalbln.html
http://www.opengroup.org/onlinepubs/9699919799/functions/scalblnf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/scalblnl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/scalbn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/scalbnf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/scalbnl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/signbit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sin.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sinf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sinh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sinhf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sinhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sinl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sqrt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sqrtf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sqrtl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tan.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tanh.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tanhf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tanhl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tanl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tgamma.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tgammaf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tgammal.html

FACE™ Technical Standard, Edition 3.0 181

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

trunc() INCL POSIX_C_LANG_MATH

truncf() INCL POSIX_C_LANG_MATH

truncl() INCL POSIX_C_LANG_MATH

abs() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

atof() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

atoi() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

atol() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

atoll() INCL POSIX_C_LANG_SUPPORT

bsearch() INCL INCL POSIX_C_LANG_SUPPORT

calloc() INCL INCL INCL POSIX_C_LANG_SUPPORT

ctime() POSIX_C_LANG_SUPPORT

difftime() INCL INCL INCL POSIX_C_LANG_SUPPORT

div() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

feclearexcept() INCL POSIX_C_LANG_SUPPORT

fegetenv() INCL POSIX_C_LANG_SUPPORT

fegetexceptflag() INCL POSIX_C_LANG_SUPPORT

fegetround() INCL POSIX_C_LANG_SUPPORT

feholdexcept() INCL POSIX_C_LANG_SUPPORT

feraiseexcept() INCL POSIX_C_LANG_SUPPORT

fesetenv() INCL POSIX_C_LANG_SUPPORT

fesetexceptflag() INCL POSIX_C_LANG_SUPPORT

fesetround() INCL POSIX_C_LANG_SUPPORT

fetestexcept() INCL POSIX_C_LANG_SUPPORT

feupdateenv() INCL POSIX_C_LANG_SUPPORT

free() INCL INCL POSIX_C_LANG_SUPPORT

gmtime() INCL POSIX_C_LANG_SUPPORT

imaxabs() INCL POSIX_C_LANG_SUPPORT

imaxdiv() INCL POSIX_C_LANG_SUPPORT

isalnum() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isalpha() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isblank() INCL POSIX_C_LANG_SUPPORT

http://www.opengroup.org/onlinepubs/9699919799/functions/trunc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/truncf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/truncl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/abs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atof.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atoi.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atol.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atoll.html
http://www.opengroup.org/onlinepubs/9699919799/functions/bsearch.html
http://www.opengroup.org/onlinepubs/9699919799/functions/calloc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/difftime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/div.html
http://www.opengroup.org/onlinepubs/9699919799/functions/feclearexcept.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fegetenv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fegetexceptflag.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fegetround.html
http://www.opengroup.org/onlinepubs/9699919799/functions/feholdexcept.html
http://www.opengroup.org/onlinepubs/9699919799/functions/feraiseexcept.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fesetenv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fesetexceptflag.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fesetround.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fetestexcept.html
http://www.opengroup.org/onlinepubs/9699919799/functions/feupdateenv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/free.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gmtime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/imaxabs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/imaxdiv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isalnum.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isalpha.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isblank.html

182 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

iscntrl() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isdigit() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isgraph() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

islower() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isprint() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

ispunct() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isspace() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isupper() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

isxdigit() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

labs() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

ldiv() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

llabs() INCL POSIX_C_LANG_SUPPORT

lldiv() INCL POSIX_C_LANG_SUPPORT

localeconv() INCL POSIX_C_LANG_SUPPORT

localtime() INCL POSIX_C_LANG_SUPPORT

malloc() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

memchr() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

memcmp() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

memcpy() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

memmove() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

memset() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

mktime() INCL INCL INCL POSIX_C_LANG_SUPPORT

qsort() INCL POSIX_C_LANG_SUPPORT

rand() INCL POSIX_C_LANG_SUPPORT

realloc() INCL INCL POSIX_C_LANG_SUPPORT

setlocale() INCL POSIX_C_LANG_SUPPORT

snprintf() INCL INCL INCL POSIX_C_LANG_SUPPORT

sprintf() INCL POSIX_C_LANG_SUPPORT

srand() INCL POSIX_C_LANG_SUPPORT

sscanf() INCL INCL POSIX_C_LANG_SUPPORT

strcat() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

http://www.opengroup.org/onlinepubs/9699919799/functions/iscntrl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isdigit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isgraph.html
http://www.opengroup.org/onlinepubs/9699919799/functions/islower.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isprint.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ispunct.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isspace.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isupper.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isxdigit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/labs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ldiv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/llabs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lldiv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/localeconv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/localtime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/malloc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/memchr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/memcmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/memcpy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/memmove.html
http://www.opengroup.org/onlinepubs/9699919799/functions/memset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mktime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/qsort.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rand.html
http://www.opengroup.org/onlinepubs/9699919799/functions/realloc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setlocale.html
http://www.opengroup.org/onlinepubs/9699919799/functions/snprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/srand.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strcat.html

FACE™ Technical Standard, Edition 3.0 183

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

strchr() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strcmp() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strcoll() INCL POSIX_C_LANG_SUPPORT

strcpy() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strcspn() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strerror() INCL POSIX_C_LANG_SUPPORT

strftime() INCL INCL POSIX_C_LANG_SUPPORT

strlen() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strncat() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strncmp() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strncpy() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strpbrk() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strrchr() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strspn() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strstr() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strtod() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strtof() INCL POSIX_C_LANG_SUPPORT

strtoimax() INCL POSIX_C_LANG_SUPPORT

strtok() INCL POSIX_C_LANG_SUPPORT

strtol() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strtold() INCL POSIX_C_LANG_SUPPORT

strtoll() INCL POSIX_C_LANG_SUPPORT

strtoul() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

strtoull() INCL POSIX_C_LANG_SUPPORT

strtoumax() INCL POSIX_C_LANG_SUPPORT

strxfrm() INCL POSIX_C_LANG_SUPPORT

time() INCL INCL INCL POSIX_C_LANG_SUPPORT

tolower() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

toupper() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT

tzset() INCL INCL INCL POSIX_C_LANG_SUPPORT

va_arg() INCL INCL POSIX_C_LANG_SUPPORT

http://www.opengroup.org/onlinepubs/9699919799/functions/strchr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strcmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strcoll.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strcpy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strcspn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strerror.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strftime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strlen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strncat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strncmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strncpy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strpbrk.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strrchr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strspn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strstr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtod.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtof.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtoimax.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtok.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtol.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtold.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtoll.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtoul.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtoull.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtoumax.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strxfrm.html
http://www.opengroup.org/onlinepubs/9699919799/functions/time.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tolower.html
http://www.opengroup.org/onlinepubs/9699919799/functions/toupper.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tzset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/va_arg.html

184 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

va_copy() INCL POSIX_C_LANG_SUPPORT

va_end() INCL INCL POSIX_C_LANG_SUPPORT

va_start() INCL INCL POSIX_C_LANG_SUPPORT

vsnprintf() INCL INCL POSIX_C_LANG_SUPPORT

vsprintf() INCL POSIX_C_LANG_SUPPORT

vsscanf() INCL POSIX_C_LANG_SUPPORT

asctime() POSIX_C_LANG_SUPPORT

asctime_r() INCL INCL INCL POSIX_C_LANG_SUPPORT_R

ctime_r() INCL INCL INCL POSIX_C_LANG_SUPPORT_R

gmtime_r() INCL INCL INCL POSIX_C_LANG_SUPPORT_R

localtime_r() INCL INCL INCL POSIX_C_LANG_SUPPORT_R

rand_r() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT_R

strerror_r() INCL INCL INCL POSIX_C_LANG_SUPPORT_R

strtok_r() INCL INCL INCL INCL POSIX_C_LANG_SUPPORT_R

btowc() POSIX_C_LANG_WIDE_CHAR

iswalnum() POSIX_C_LANG_WIDE_CHAR

iswalpha() POSIX_C_LANG_WIDE_CHAR

iswblank() POSIX_C_LANG_WIDE_CHAR

iswcntrl() POSIX_C_LANG_WIDE_CHAR

iswctype() POSIX_C_LANG_WIDE_CHAR

iswdigit() POSIX_C_LANG_WIDE_CHAR

iswgraph() POSIX_C_LANG_WIDE_CHAR

iswlower() POSIX_C_LANG_WIDE_CHAR

iswprint() POSIX_C_LANG_WIDE_CHAR

iswpunct() POSIX_C_LANG_WIDE_CHAR

iswspace() POSIX_C_LANG_WIDE_CHAR

iswupper() POSIX_C_LANG_WIDE_CHAR

iswxdigit() POSIX_C_LANG_WIDE_CHAR

mblen() POSIX_C_LANG_WIDE_CHAR

mbrlen() POSIX_C_LANG_WIDE_CHAR

mbrtowc() POSIX_C_LANG_WIDE_CHAR

http://www.opengroup.org/onlinepubs/9699919799/functions/va_copy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/va_end.html
http://www.opengroup.org/onlinepubs/9699919799/functions/va_start.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vsnprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vsprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vsscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asctime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/asctime_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctime_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gmtime_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/localtime_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rand_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strerror_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strtok_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/btowc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswalnum.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswalpha.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswblank.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswcntrl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswctype.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswdigit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswgraph.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswlower.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswprint.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswpunct.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswspace.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswupper.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iswxdigit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mblen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mbrlen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mbrtowc.html

FACE™ Technical Standard, Edition 3.0 185

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

mbsinit() POSIX_C_LANG_WIDE_CHAR

mbsrtowcs() POSIX_C_LANG_WIDE_CHAR

mbstowcs() POSIX_C_LANG_WIDE_CHAR

mbtowc() POSIX_C_LANG_WIDE_CHAR

swprintf() POSIX_C_LANG_WIDE_CHAR

swscanf() POSIX_C_LANG_WIDE_CHAR

towctrans() POSIX_C_LANG_WIDE_CHAR

towlower() POSIX_C_LANG_WIDE_CHAR

towupper() POSIX_C_LANG_WIDE_CHAR

vswprintf() POSIX_C_LANG_WIDE_CHAR

vswscanf() POSIX_C_LANG_WIDE_CHAR

wcrtomb() POSIX_C_LANG_WIDE_CHAR

wcscat() POSIX_C_LANG_WIDE_CHAR

wcschr() POSIX_C_LANG_WIDE_CHAR

wcscmp() POSIX_C_LANG_WIDE_CHAR

wcscoll() POSIX_C_LANG_WIDE_CHAR

wcscpy() POSIX_C_LANG_WIDE_CHAR

wcscspn() POSIX_C_LANG_WIDE_CHAR

wcsftime() POSIX_C_LANG_WIDE_CHAR

wcslen() POSIX_C_LANG_WIDE_CHAR

wcsncat() POSIX_C_LANG_WIDE_CHAR

wcsncmp() POSIX_C_LANG_WIDE_CHAR

wcsncpy() POSIX_C_LANG_WIDE_CHAR

wcspbrk() POSIX_C_LANG_WIDE_CHAR

wcsrchr() POSIX_C_LANG_WIDE_CHAR

wcsrtombs() POSIX_C_LANG_WIDE_CHAR

wcsspn() POSIX_C_LANG_WIDE_CHAR

wcsstr() POSIX_C_LANG_WIDE_CHAR

wcstod() POSIX_C_LANG_WIDE_CHAR

wcstof() POSIX_C_LANG_WIDE_CHAR

wcstoimax() POSIX_C_LANG_WIDE_CHAR

http://www.opengroup.org/onlinepubs/9699919799/functions/mbsinit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mbsrtowcs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mbstowcs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mbtowc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/swprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/swscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/towctrans.html
http://www.opengroup.org/onlinepubs/9699919799/functions/towlower.html
http://www.opengroup.org/onlinepubs/9699919799/functions/towupper.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vswprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vswscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcrtomb.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcscat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcschr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcscmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcscoll.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcscpy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcscspn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsftime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcslen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsncat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsncmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsncpy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcspbrk.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsrchr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsrtombs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsspn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsstr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstod.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstof.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstoimax.html

186 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

wcstok() POSIX_C_LANG_WIDE_CHAR

wcstol() POSIX_C_LANG_WIDE_CHAR

wcstold() POSIX_C_LANG_WIDE_CHAR

wcstoll() POSIX_C_LANG_WIDE_CHAR

wcstombs() POSIX_C_LANG_WIDE_CHAR

wcstoul() POSIX_C_LANG_WIDE_CHAR

wcstoull() POSIX_C_LANG_WIDE_CHAR

wcstoumax() POSIX_C_LANG_WIDE_CHAR

wcsxfrm() POSIX_C_LANG_WIDE_CHAR

wctob() POSIX_C_LANG_WIDE_CHAR

wctomb() POSIX_C_LANG_WIDE_CHAR

wctrans() POSIX_C_LANG_WIDE_CHAR

wctype() POSIX_C_LANG_WIDE_CHAR

wmemchr() POSIX_C_LANG_WIDE_CHAR

wmemcmp() POSIX_C_LANG_WIDE_CHAR

wmemcpy() POSIX_C_LANG_WIDE_CHAR

wmemmove() POSIX_C_LANG_WIDE_CHAR

wmemset() POSIX_C_LANG_WIDE_CHAR

clearerr() INCL INCL INCL POSIX_DEVICE_IO

close() INCL INCL INCL POSIX_DEVICE_IO

fclose() INCL INCL INCL POSIX_DEVICE_IO

fdopen() INCL POSIX_DEVICE_IO

feof() INCL INCL INCL POSIX_DEVICE_IO

ferror() INCL INCL INCL POSIX_DEVICE_IO

fflush() INCL INCL INCL POSIX_DEVICE_IO

fgetc() INCL INCL INCL POSIX_DEVICE_IO

fgets() INCL INCL INCL POSIX_DEVICE_IO

fileno() INCL INCL INCL POSIX_DEVICE_IO

fopen() INCL INCL INCL POSIX_DEVICE_IO

fprintf() INCL INCL INCL POSIX_DEVICE_IO

fputc() INCL POSIX_DEVICE_IO

http://www.opengroup.org/onlinepubs/9699919799/functions/wcstok.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstol.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstold.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstoll.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstombs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstoul.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstoull.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcstoumax.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcsxfrm.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wctob.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wctomb.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wctrans.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wctype.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wmemchr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wmemcmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wmemcpy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wmemmove.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wmemset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clearerr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/close.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fclose.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fdopen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/feof.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ferror.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fflush.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fgetc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fgets.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fileno.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fopen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fputc.html

FACE™ Technical Standard, Edition 3.0 187

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

fputs() INCL POSIX_DEVICE_IO

fread() INCL INCL INCL POSIX_DEVICE_IO

freopen() INCL INCL INCL POSIX_DEVICE_IO

fscanf() INCL POSIX_DEVICE_IO

fwrite() INCL INCL INCL POSIX_DEVICE_IO

getc() INCL POSIX_DEVICE_IO

getchar() INCL POSIX_DEVICE_IO

gets() POSIX_DEVICE_IO

open() INCL INCL INCL POSIX_DEVICE_IO

perror() INCL POSIX_DEVICE_IO

printf() INCL POSIX_DEVICE_IO

putc() INCL POSIX_DEVICE_IO

putchar() INCL POSIX_DEVICE_IO

puts() INCL POSIX_DEVICE_IO

read() INCL INCL INCL POSIX_DEVICE_IO

scanf() INCL POSIX_DEVICE_IO

setbuf() INCL POSIX_DEVICE_IO

setvbuf() INCL POSIX_DEVICE_IO

ungetc() INCL POSIX_DEVICE_IO

vfprintf() INCL INCL POSIX_DEVICE_IO

vfscanf() INCL POSIX_DEVICE_IO

vprintf() INCL POSIX_DEVICE_IO

vscanf() INCL POSIX_DEVICE_IO

write() INCL INCL INCL POSIX_DEVICE_IO

cfgetispeed() POSIX_DEVICE_SPECIFIC

cfgetospeed() POSIX_DEVICE_SPECIFIC

cfsetispeed() POSIX_DEVICE_SPECIFIC

cfsetospeed() POSIX_DEVICE_SPECIFIC

ctermid() POSIX_DEVICE_SPECIFIC

isatty() POSIX_DEVICE_SPECIFIC

tcdrain() POSIX_DEVICE_SPECIFIC

http://www.opengroup.org/onlinepubs/9699919799/functions/fputs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fread.html
http://www.opengroup.org/onlinepubs/9699919799/functions/freopen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fwrite.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getchar.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gets.html
http://www.opengroup.org/onlinepubs/9699919799/functions/open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/perror.html
http://www.opengroup.org/onlinepubs/9699919799/functions/printf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putchar.html
http://www.opengroup.org/onlinepubs/9699919799/functions/puts.html
http://www.opengroup.org/onlinepubs/9699919799/functions/read.html
http://www.opengroup.org/onlinepubs/9699919799/functions/scanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setbuf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setvbuf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ungetc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vfprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vfscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/write.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cfgetispeed.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cfgetospeed.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cfsetispeed.html
http://www.opengroup.org/onlinepubs/9699919799/functions/cfsetospeed.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ctermid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isatty.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcdrain.html

188 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

tcflow() POSIX_DEVICE_SPECIFIC

tcflush() POSIX_DEVICE_SPECIFIC

tcgetattr() POSIX_DEVICE_SPECIFIC

tcsendbreak() POSIX_DEVICE_SPECIFIC

tcsetattr() POSIX_DEVICE_SPECIFIC

ttyname() POSIX_DEVICE_SPECIFIC

ttyname_r() POSIX_DEVICE_SPECIFIC_R

FD_CLR() INCL INCL INCL YES POSIX_DEVICE_IO

FD_ISSET() INCL INCL INCL YES POSIX_DEVICE_IO

FD_SET() INCL INCL INCL YES POSIX_DEVICE_IO

FD_ZERO() INCL INCL INCL YES POSIX_DEVICE_IO

pselect() INCL YES POSIX_DEVICE_IO

select() INCL INCL INCL YES POSIX_DEVICE_IO

dup() INCL POSIX_FD_MGMT

dup2() INCL INCL POSIX_FD_MGMT

fcntl() INCL INCL POSIX_FD_MGMT

fgetpos() INCL POSIX_FD_MGMT

fseek() INCL INCL INCL POSIX_FD_MGMT

fseeko() INCL INCL INCL POSIX_FD_MGMT

fsetpos() INCL POSIX_FD_MGMT

ftell() INCL INCL INCL POSIX_FD_MGMT

ftello() INCL INCL INCL POSIX_FD_MGMT

ftruncate() INCL INCL INCL INCL POSIX_FD_MGMT

lseek() INCL INCL INCL POSIX_FD_MGMT

rewind() INCL POSIX_FD_MGMT

mkfifo() INCL INCL POSIX_FIFO

chmod() INCL INCL POSIX_FILE_ATTRIBUTES

chown() INCL INCL POSIX_FILE_ATTRIBUTES

fchmod() INCL POSIX_FILE_ATTRIBUTES

fchown() INCL POSIX_FILE_ATTRIBUTES

umask() INCL INCL INCL POSIX_FILE_ATTRIBUTES

http://www.opengroup.org/onlinepubs/9699919799/functions/tcflow.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcflush.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcgetattr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcsendbreak.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcsetattr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ttyname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ttyname_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/FD_CLR.html
http://www.opengroup.org/onlinepubs/9699919799/functions/FD_ISSET.html
http://www.opengroup.org/onlinepubs/9699919799/functions/FD_SET.html
http://www.opengroup.org/onlinepubs/9699919799/functions/FD_ZERO.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pselect.html
http://www.opengroup.org/onlinepubs/9699919799/functions/select.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dup.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dup2.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fcntl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fgetpos.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fseek.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fseeko.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fsetpos.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ftell.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ftello.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ftruncate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lseek.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rewind.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mkfifo.html
http://www.opengroup.org/onlinepubs/9699919799/functions/chmod.html
http://www.opengroup.org/onlinepubs/9699919799/functions/chown.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fchmod.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fchown.html
http://www.opengroup.org/onlinepubs/9699919799/functions/umask.html

FACE™ Technical Standard, Edition 3.0 189

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

flockfile() INCL INCL POSIX_FILE_LOCKING

ftrylockfile() INCL INCL POSIX_FILE_LOCKING

funlockfile() INCL INCL POSIX_FILE_LOCKING

getc_unlocked() INCL POSIX_FILE_LOCKING

getchar_unlocked() INCL POSIX_FILE_LOCKING

putc_unlocked() INCL POSIX_FILE_LOCKING

putchar_unlocked() INCL POSIX_FILE_LOCKING

access() INCL INCL INCL POSIX_FILE_SYSTEM

chdir() INCL INCL INCL POSIX_FILE_SYSTEM

closedir() INCL INCL INCL POSIX_FILE_SYSTEM

creat() INCL INCL INCL POSIX_FILE_SYSTEM

fchdir() POSIX_FILE_SYSTEM

fpathconf() INCL POSIX_FILE_SYSTEM

fstat() INCL INCL INCL POSIX_FILE_SYSTEM

fstatvfs() POSIX_FILE_SYSTEM

getcwd() INCL INCL INCL POSIX_FILE_SYSTEM

link() INCL INCL INCL POSIX_FILE_SYSTEM

mkdir() INCL INCL INCL POSIX_FILE_SYSTEM

mkstemp() POSIX_FILE_SYSTEM

opendir() INCL INCL INCL POSIX_FILE_SYSTEM

pathconf() INCL POSIX_FILE_SYSTEM

readdir() INCL INCL INCL POSIX_FILE_SYSTEM

remove() INCL INCL INCL POSIX_FILE_SYSTEM

rename() INCL INCL INCL POSIX_FILE_SYSTEM

rewinddir() INCL INCL INCL POSIX_FILE_SYSTEM

rmdir() INCL INCL INCL POSIX_FILE_SYSTEM

stat() INCL INCL INCL INCL POSIX_FILE_SYSTEM

statvfs() POSIX_FILE_SYSTEM

tmpfile() INCL POSIX_FILE_SYSTEM

tmpnam() POSIX_FILE_SYSTEM

truncate() POSIX_FILE_SYSTEM

http://www.opengroup.org/onlinepubs/9699919799/functions/flockfile.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ftrylockfile.html
http://www.opengroup.org/onlinepubs/9699919799/functions/funlockfile.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getc_unlocked.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getchar_unlocked.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putc_unlocked.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putchar_unlocked.html
http://www.opengroup.org/onlinepubs/9699919799/functions/access.html
http://www.opengroup.org/onlinepubs/9699919799/functions/chdir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/closedir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/creat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fchdir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fpathconf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fstat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fstatvfs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getcwd.html
http://www.opengroup.org/onlinepubs/9699919799/functions/link.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mkdir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mkstemp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/opendir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pathconf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/readdir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remove.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rename.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rewinddir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/rmdir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/stat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/statvfs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tmpfile.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tmpnam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/truncate.html

190 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

unlink() INCL INCL INCL POSIX_FILE_SYSTEM

utime() POSIX_FILE_SYSTEM

utimes()

readdir_r() INCL INCL INCL POSIX_FILE_SYSTEM_R

glob() POSIX_FILE_SYSTEM_GLOB

globfree() POSIX_FILE_SYSTEM_GLOB

setpgid() POSIX_JOB_CONTROL

tcgetpgrp() POSIX_JOB_CONTROL

tcsetpgrp() POSIX_JOB_CONTROL

_Exit() INCL INCL POSIX_MULTI_PROCESS

_exit() INCL INCL POSIX_MULTI_PROCESS

assert() INCL POSIX_MULTI_PROCESS

atexit() INCL INCL POSIX_MULTI_PROCESS

clock() INCL INCL POSIX_MULTI_PROCESS

execl() INCL INCL POSIX_MULTI_PROCESS

execle() INCL INCL POSIX_MULTI_PROCESS

execlp() POSIX_MULTI_PROCESS

execv() INCL INCL POSIX_MULTI_PROCESS

execve() INCL INCL POSIX_MULTI_PROCESS

execvp() POSIX_MULTI_PROCESS

exit() INCL INCL POSIX_MULTI_PROCESS

fork() INCL INCL POSIX_MULTI_PROCESS

getpgid() POSIX_MULTI_PROCESS

getpgrp() INCL INCL POSIX_MULTI_PROCESS

getpid() INCL INCL POSIX_MULTI_PROCESS

getppid() INCL INCL POSIX_MULTI_PROCESS

getsid() POSIX_MULTI_PROCESS

setsid() INCL POSIX_MULTI_PROCESS

sleep() INCL INCL POSIX_MULTI_PROCESS

times() INCL INCL POSIX_MULTI_PROCESS

wait() INCL POSIX_MULTI_PROCESS

http://www.opengroup.org/onlinepubs/9699919799/functions/unlink.html
http://www.opengroup.org/onlinepubs/9699919799/functions/utime.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/utimes.html
http://www.opengroup.org/onlinepubs/9699919799/functions/readdir_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/glob.html
http://www.opengroup.org/onlinepubs/9699919799/functions/globfree.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setpgid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcgetpgrp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcsetpgrp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/_Exit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/_exit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/assert.html
http://www.opengroup.org/onlinepubs/9699919799/functions/atexit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/clock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/execl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/execle.html
http://www.opengroup.org/onlinepubs/9699919799/functions/execlp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/execv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/execve.html
http://www.opengroup.org/onlinepubs/9699919799/functions/execvp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/exit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fork.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpgid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpgrp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getppid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getsid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setsid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sleep.html
http://www.opengroup.org/onlinepubs/9699919799/functions/times.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wait.html

FACE™ Technical Standard, Edition 3.0 191

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

waitid() POSIX_MULTI_PROCESS

waitpid() INCL INCL POSIX_MULTI_PROCESS

accept() INCL INCL YES POSIX_NETWORKING

bind() INCL INCL INCL INCL YES POSIX_NETWORKING

connect() INCL INCL INCL INCL YES POSIX_NETWORKING

endhostent() INCL YES POSIX_NETWORKING

endnetent() INCL YES POSIX_NETWORKING

endprotoent() INCL YES POSIX_NETWORKING

endservent() INCL YES POSIX_NETWORKING

freeaddrinfo() INCL INCL INCL INCL YES POSIX_NETWORKING

gai_strerror() INCL YES POSIX_NETWORKING

getaddrinfo() INCL INCL INCL INCL YES POSIX_NETWORKING

gethostent() INCL YES POSIX_NETWORKING

gethostname() INCL INCL INCL YES POSIX_NETWORKING

getnameinfo() INCL INCL INCL INCL YES POSIX_NETWORKING

getnetbyaddr() INCL YES POSIX_NETWORKING

getnetbyname() INCL YES POSIX_NETWORKING

getnetent() INCL YES POSIX_NETWORKING

getpeername() INCL INCL INCL INCL YES POSIX_NETWORKING

getprotobyname() INCL YES POSIX_NETWORKING

getprotobynumber() INCL YES POSIX_NETWORKING

getprotoent() INCL YES POSIX_NETWORKING

getservbyname() INCL YES POSIX_NETWORKING

getservbyport() INCL POSIX_NETWORKING

getservent() INCL POSIX_NETWORKING

getsockname() INCL INCL INCL INCL YES POSIX_NETWORKING

getsockopt() INCL INCL INCL INCL YES POSIX_NETWORKING

htonl() INCL INCL INCL INCL POSIX_NETWORKING

htons() INCL INCL INCL INCL POSIX_NETWORKING

if_freenameindex() INCL YES POSIX_NETWORKING

if_indextoname() INCL YES POSIX_NETWORKING

http://www.opengroup.org/onlinepubs/9699919799/functions/waitid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/waitpid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/accept.html
http://www.opengroup.org/onlinepubs/9699919799/functions/bind.html
http://www.opengroup.org/onlinepubs/9699919799/functions/connect.html
http://www.opengroup.org/onlinepubs/9699919799/functions/endhostent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/endnetent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/endprotoent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/endservent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/freeaddrinfo.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gai_strerror.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getaddrinfo.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gethostent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gethostname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getnameinfo.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getnetbyaddr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getnetbyname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getnetent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpeername.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getprotobyname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getprotobynumber.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getprotoent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getservbyname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getservbyport.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getservent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getsockname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/htonl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/htons.html
http://www.opengroup.org/onlinepubs/9699919799/functions/if_freenameindex.html
http://www.opengroup.org/onlinepubs/9699919799/functions/if_indextoname.html

192 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

if_nameindex() INCL YES POSIX_NETWORKING

if_nametoindex() INCL YES POSIX_NETWORKING

inet_addr() INCL YES POSIX_NETWORKING

inet_ntoa() INCL YES POSIX_NETWORKING

inet_ntop() INCL INCL INCL INCL YES POSIX_NETWORKING

inet_pton() INCL INCL INCL INCL YES POSIX_NETWORKING

listen() INCL INCL YES POSIX_NETWORKING

ntohl() INCL INCL INCL INCL POSIX_NETWORKING

ntohs() INCL INCL INCL INCL POSIX_NETWORKING

recv() INCL INCL INCL INCL YES POSIX_NETWORKING

recvfrom() INCL INCL INCL INCL YES POSIX_NETWORKING

recvmsg() INCL YES POSIX_NETWORKING

send() INCL INCL INCL INCL YES POSIX_NETWORKING

sendmsg() INCL YES POSIX_NETWORKING

sendto() INCL INCL INCL INCL YES POSIX_NETWORKING

sethostent() INCL YES POSIX_NETWORKING

setnetent() INCL YES POSIX_NETWORKING

setprotoent() INCL YES POSIX_NETWORKING

setservent() INCL YES POSIX_NETWORKING

setsockopt() INCL INCL INCL INCL YES POSIX_NETWORKING

shutdown() INCL INCL INCL INCL YES POSIX_NETWORKING

sockatmark() INCL YES POSIX_NETWORKING

socket() INCL INCL INCL INCL YES POSIX_NETWORKING

socketpair() INCL YES POSIX_NETWORKING

pipe() INCL INCL POSIX_PIPE

regerror() POSIX_REGEXP

regexec() POSIX_REGEXP

regfree() POSIX_REGEXP

pthread_rwlock_destroy() INCL POSIX_RW_LOCKS

pthread_rwlock_init() INCL POSIX_RW_LOCKS

pthread_rwlock_rdlock() INCL POSIX_RW_LOCKS

http://www.opengroup.org/onlinepubs/9699919799/functions/if_nameindex.html
http://www.opengroup.org/onlinepubs/9699919799/functions/if_nametoindex.html
http://www.opengroup.org/onlinepubs/9699919799/functions/inet_addr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/inet_ntoa.html
http://www.opengroup.org/onlinepubs/9699919799/functions/inet_ntop.html
http://www.opengroup.org/onlinepubs/9699919799/functions/inet_pton.html
http://www.opengroup.org/onlinepubs/9699919799/functions/listen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ntohl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ntohs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/recv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/recvfrom.html
http://www.opengroup.org/onlinepubs/9699919799/functions/recvmsg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/send.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sendmsg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sendto.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sethostent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setnetent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setprotoent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setservent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shutdown.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sockatmark.html
http://www.opengroup.org/onlinepubs/9699919799/functions/socket.html
http://www.opengroup.org/onlinepubs/9699919799/functions/socketpair.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pipe.html
http://www.opengroup.org/onlinepubs/9699919799/functions/regerror.html
http://www.opengroup.org/onlinepubs/9699919799/functions/regexec.html
http://www.opengroup.org/onlinepubs/9699919799/functions/regfree.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_rdlock.html

FACE™ Technical Standard, Edition 3.0 193

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

pthread_rwlock_tryrdlock() INCL POSIX_RW_LOCKS

pthread_rwlock_trywrlock() INCL POSIX_RW_LOCKS

pthread_rwlock_unlock() INCL POSIX_RW_LOCKS

pthread_rwlock_wrlock() INCL POSIX_RW_LOCKS

pthread_rwlockattr_destroy() INCL POSIX_RW_LOCKS

pthread_rwlockattr_init() INCL POSIX_RW_LOCKS

pthread_rwlockattr_ getpshared() POSIX_RW_LOCKS

pthread_rwlockattr_ setpshared() POSIX_RW_LOCKS

pthread_rwlock_timedrdlock() INCL POSIX_RW_LOCKS

pthread_rwlock_timedwrlock() INCL POSIX_RW_LOCKS

pclose() POSIX_SHELL_FUNC

popen() POSIX_SHELL_FUNC

system() POSIX_SHELL_FUNC

wordexp() POSIX_SHELL_FUNC

wordfree() POSIX_SHELL_FUNC

siglongjmp() INCL INCL POSIX_SIGNAL_JUMP

sigsetjmp() INCL INCL POSIX_SIGNAL_JUMP

abort() INCL INCL POSIX_SIGNALS

alarm() INCL INCL INCL INCL POSIX_SIGNALS

kill() INCL INCL POSIX_SIGNALS

pause() INCL INCL INCL INCL POSIX_SIGNALS

raise() INCL INCL POSIX_SIGNALS

sigaction() INCL INCL INCL INCL POSIX_SIGNALS

sigaddset() INCL INCL INCL INCL POSIX_SIGNALS

sigdelset() INCL INCL INCL INCL POSIX_SIGNALS

sigemptyset() INCL INCL INCL INCL POSIX_SIGNALS

sigfillset() INCL INCL INCL INCL POSIX_SIGNALS

sigismember() INCL INCL INCL INCL POSIX_SIGNALS

signal() INCL POSIX_SIGNALS

sigpending() INCL INCL INCL INCL POSIX_SIGNALS

sigprocmask() INCL POSIX_SIGNALS

http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_tryrdlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_trywrlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_unlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_wrlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlockattr_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlockattr_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlockattr_getpshared.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlockattr_setpshared.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_timedrdlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_timedwrlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pclose.html
http://www.opengroup.org/onlinepubs/9699919799/functions/popen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/system.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wordexp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wordfree.html
http://www.opengroup.org/onlinepubs/9699919799/functions/siglongjmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigsetjmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/abort.html
http://www.opengroup.org/onlinepubs/9699919799/functions/alarm.html
http://www.opengroup.org/onlinepubs/9699919799/functions/kill.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pause.html
http://www.opengroup.org/onlinepubs/9699919799/functions/raise.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigaction.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigaddset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigdelset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigemptyset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigfillset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigismember.html
http://www.opengroup.org/onlinepubs/9699919799/functions/signal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigpending.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigprocmask.html

194 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

sigsuspend() INCL INCL INCL INCL POSIX_SIGNALS

sigwait() INCL INCL INCL INCL POSIX_SIGNALS

confstr() INCL POSIX_SINGLE_PROCESS

getenv() INCL INCL POSIX_SINGLE_PROCESS

setenv() INCL POSIX_SINGLE_PROCESS

sysconf() INCL INCL POSIX_SINGLE_PROCESS

uname() INCL INCL POSIX_SINGLE_PROCESS

unsetenv() INCL POSIX_SINGLE_PROCESS

fnmatch() POSIX_C_LIB_EXT

getopt() POSIX_C_LIB_EXT

lstat() INCL INCL POSIX_SYMBOLIC_LINKS

readlink() POSIX_SYMBOLIC_LINKS

symlink() POSIX_SYMBOLIC_LINKS

getgrgid() POSIX_SYSTEM_DATABASE

getgrnam() POSIX_SYSTEM_DATABASE

getpwnam() POSIX_SYSTEM_DATABASE

getpwuid() POSIX_SYSTEM_DATABASE

getgrgid_r() POSIX_SYSTEM_DATABASE_R

getgrnam_r() POSIX_SYSTEM_DATABASE_R

getpwnam_r() POSIX_SYSTEM_DATABASE_R

getpwuid_r() POSIX_SYSTEM_DATABASE_R

pthread_atfork() INCL INCL POSIX_THREADS_BASE

pthread_attr_destroy() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_attr_getdetachstate() INCL INCL POSIX_THREADS_BASE

pthread_attr_getschedparam() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_attr_init() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_attr_setdetachstate() INCL INCL POSIX_THREADS_BASE

pthread_attr_setschedparam() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_cancel() INCL INCL POSIX_THREADS_BASE

pthread_cleanup_pop() INCL INCL POSIX_THREADS_BASE

pthread_cleanup_push() INCL INCL POSIX_THREADS_BASE

http://www.opengroup.org/onlinepubs/9699919799/functions/sigsuspend.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigwait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/confstr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getenv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setenv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sysconf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/uname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/unsetenv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getopt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lstat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/readlink.html
http://www.opengroup.org/onlinepubs/9699919799/functions/symlink.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getgrgid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getgrnam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpwnam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpwuid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getgrgid_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getgrnam_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpwnam_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpwuid_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_atfork.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getdetachstate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getschedparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setdetachstate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setschedparam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cancel.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cleanup_pop.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cleanup_push.html

FACE™ Technical Standard, Edition 3.0 195

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

pthread_cond_broadcast() INCL INCL INCL POSIX_THREADS_BASE

pthread_cond_destroy() INCL INCL INCL POSIX_THREADS_BASE

pthread_cond_init() INCL INCL INCL POSIX_THREADS_BASE

pthread_cond_signal() INCL INCL INCL POSIX_THREADS_BASE

pthread_cond_timedwait() INCL INCL INCL POSIX_THREADS_BASE

pthread_cond_wait() INCL INCL INCL POSIX_THREADS_BASE

pthread_condattr_destroy() INCL INCL INCL POSIX_THREADS_BASE

pthread_condattr_init() INCL INCL INCL POSIX_THREADS_BASE

pthread_create() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_detach() INCL INCL POSIX_THREADS_BASE

pthread_equal() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_exit() INCL INCL POSIX_THREADS_BASE

pthread_getspecific() INCL INCL INCL POSIX_THREADS_BASE

pthread_join() INCL INCL POSIX_THREADS_BASE

pthread_key_create() INCL INCL INCL POSIX_THREADS_BASE

pthread_key_delete() INCL INCL POSIX_THREADS_BASE

pthread_kill() INCL INCL POSIX_THREADS_BASE

pthread_mutex_destroy() INCL INCL POSIX_THREADS_BASE

pthread_mutex_init() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_mutex_lock() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_mutex_timedlock() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_mutex_trylock() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_mutex_unlock() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_mutexattr_destroy() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_mutexattr_init() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_once() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_self() INCL INCL INCL INCL POSIX_THREADS_BASE

pthread_setcancelstate() INCL INCL POSIX_THREADS_BASE

pthread_setcanceltype() INCL INCL POSIX_THREADS_BASE

pthread_setspecific() INCL INCL INCL POSIX_THREADS_BASE

pthread_sigmask() INCL INCL INCL INCL POSIX_THREADS_BASE

http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_broadcast.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_signal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_timedwait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_wait.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_condattr_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_condattr_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_create.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_detach.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_equal.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_exit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_getspecific.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_join.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_key_create.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_key_delete.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_kill.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_lock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_timedlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_trylock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_unlock.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_destroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_init.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_once.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_self.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_setcancelstate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_setcanceltype.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_setspecific.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_sigmask.html

196 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

pthread_testcancel() INCL POSIX_THREADS_BASE

getegid() INCL INCL POSIX_USER_GROUPS

geteuid() INCL INCL POSIX_USER_GROUPS

getgid() INCL INCL POSIX_USER_GROUPS

getgroups() INCL INCL POSIX_USER_GROUPS

getlogin() INCL POSIX_USER_GROUPS

getuid() INCL INCL POSIX_USER_GROUPS

setegid() INCL INCL POSIX_USER_GROUPS

seteuid() INCL INCL POSIX_USER_GROUPS

setgid() INCL INCL POSIX_USER_GROUPS

setuid() INCL INCL POSIX_USER_GROUPS

getlogin_r() POSIX_USER_GROUPS_R

fgetwc() POSIX_WIDE_CHAR_

DEVICE_IO

fgetws() POSIX_WIDE_CHAR_

DEVICE_IO

fputwc() POSIX_WIDE_CHAR_

DEVICE_IO

fputws() POSIX_WIDE_CHAR_

DEVICE_IO

fwide() POSIX_WIDE_CHAR_

DEVICE_IO

fwprintf() POSIX_WIDE_CHAR_

DEVICE_IO

fwscanf() POSIX_WIDE_CHAR_

DEVICE_IO

getwc() POSIX_WIDE_CHAR_

DEVICE_IO

getwchar() POSIX_WIDE_CHAR_

DEVICE_IO

putwc() POSIX_WIDE_CHAR_

DEVICE_IO

putwchar() POSIX_WIDE_CHAR_

DEVICE_IO

http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_testcancel.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getegid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/geteuid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getgid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getgroups.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getlogin.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getuid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setegid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/seteuid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setgid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setuid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getlogin_r.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fgetwc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fgetws.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fputwc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fputws.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fwide.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fwprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fwscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getwc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getwchar.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putwc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putwchar.html

FACE™ Technical Standard, Edition 3.0 197

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

ungetwc() POSIX_WIDE_CHAR_

DEVICE_IO

vfwprintf() POSIX_WIDE_CHAR_

DEVICE_IO

vfwscanf() POSIX_WIDE_CHAR_

DEVICE_IO

vwprintf() POSIX_WIDE_CHAR_

DEVICE_IO

vwscanf() POSIX_WIDE_CHAR_

DEVICE_IO

wprintf() POSIX_WIDE_CHAR_

DEVICE_IO

wscanf() POSIX_WIDE_CHAR_

DEVICE_IO

_tolower() XSI_C_LANG_SUPPORT

_toupper() XSI_C_LANG_SUPPORT

a64l() XSI_C_LANG_SUPPORT

drand48() XSI_C_LANG_SUPPORT

erand48() XSI_C_LANG_SUPPORT

ffs() XSI_C_LANG_SUPPORT

getdate() XSI_C_LANG_SUPPORT

getsubopt() POSIX_C_LIB_EXT

hcreate() XSI_C_LANG_SUPPORT

hdestroy() XSI_C_LANG_SUPPORT

hsearch() XSI_C_LANG_SUPPORT

iconv() POSIX_I18N

iconv_close() POSIX_I18N

iconv_open() POSIX_I18N

initstate() XSI_C_LANG_SUPPORT

insque() XSI_C_LANG_SUPPORT

isascii() XSI_C_LANG_SUPPORT

jrand48() XSI_C_LANG_SUPPORT

l64a() XSI_C_LANG_SUPPORT

http://www.opengroup.org/onlinepubs/9699919799/functions/ungetwc.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vfwprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vfwscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vwprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/vwscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wprintf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wscanf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/_tolower.html
http://www.opengroup.org/onlinepubs/9699919799/functions/_toupper.html
http://www.opengroup.org/onlinepubs/9699919799/functions/a64l.html
http://www.opengroup.org/onlinepubs/9699919799/functions/drand48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/erand48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ffs.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getdate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getsubopt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/hcreate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/hdestroy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/hsearch.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iconv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iconv_close.html
http://www.opengroup.org/onlinepubs/9699919799/functions/iconv_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/initstate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/insque.html
http://www.opengroup.org/onlinepubs/9699919799/functions/isascii.html
http://www.opengroup.org/onlinepubs/9699919799/functions/jrand48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/l64a.html

198 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

lcong48() XSI_C_LANG_SUPPORT

lfind() XSI_C_LANG_SUPPORT

lrand48() XSI_C_LANG_SUPPORT

lsearch() XSI_C_LANG_SUPPORT

memccpy() XSI_C_LANG_SUPPORT

mrand48() XSI_C_LANG_SUPPORT

nrand48() XSI_C_LANG_SUPPORT

random() XSI_C_LANG_SUPPORT

remque() XSI_C_LANG_SUPPORT

seed48() XSI_C_LANG_SUPPORT

setstate() XSI_C_LANG_SUPPORT

srand48() XSI_C_LANG_SUPPORT

srandom() XSI_C_LANG_SUPPORT

strcasecmp() POSIX_C_LIB_EXT

strdup() POSIX_C_LIB_EXT

strfmon() POSIX_C_LIB_EXT

strncasecmp() POSIX_C_LIB_EXT

strptime() XSI_C_LANG_SUPPORT

swab() XSI_C_LANG_SUPPORT

tdelete() XSI_C_LANG_SUPPORT

tfind() XSI_C_LANG_SUPPORT

toascii() XSI_C_LANG_SUPPORT

tsearch() XSI_C_LANG_SUPPORT

twalk() XSI_C_LANG_SUPPORT

dbm_clearerr() XSI_DBM

dbm_close() XSI_DBM

dbm_delete() XSI_DBM

dbm_error() XSI_DBM

dbm_fetch() XSI_DBM

dbm_firstkey() XSI_DBM

dbm_nextkey() XSI_DBM

http://www.opengroup.org/onlinepubs/9699919799/functions/lcong48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lfind.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lrand48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lsearch.html
http://www.opengroup.org/onlinepubs/9699919799/functions/memccpy.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mrand48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nrand48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/random.html
http://www.opengroup.org/onlinepubs/9699919799/functions/remque.html
http://www.opengroup.org/onlinepubs/9699919799/functions/seed48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setstate.html
http://www.opengroup.org/onlinepubs/9699919799/functions/srand48.html
http://www.opengroup.org/onlinepubs/9699919799/functions/srandom.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strcasecmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strdup.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strfmon.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strncasecmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/strptime.html
http://www.opengroup.org/onlinepubs/9699919799/functions/swab.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tdelete.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tfind.html
http://www.opengroup.org/onlinepubs/9699919799/functions/toascii.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tsearch.html
http://www.opengroup.org/onlinepubs/9699919799/functions/twalk.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_clearerr.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_close.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_delete.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_error.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_fetch.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_firstkey.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_nextkey.html

FACE™ Technical Standard, Edition 3.0 199

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

dbm_open() XSI_DBM

dbm_store() XSI_DBM

fmtmsg() XSI_DEVICE_IO

poll() POSIX_DEVICE_IO

pread() POSIX_DEVICE_IO

pwrite() POSIX_DEVICE_IO

readv() XSI_DEVICE_IO

writev() XSI_DEVICE_IO

grantpt() XSI_DEVICE_SPECIFIC

posix_openpt() XSI_DEVICE_SPECIFIC

ptsname() XSI_DEVICE_SPECIFIC

unlockpt() XSI_DEVICE_SPECIFIC

dlclose() POSIX_DYNAMIC_LINKING

dlerror() POSIX_DYNAMIC_LINKING

dlopen() POSIX_DYNAMIC_LINKING

dlsym() POSIX_DYNAMIC_LINKING

basename() XSI_FILE_SYSTEM

dirname() XSI_FILE_SYSTEM

ftw() XSI_FILE_SYSTEM

lchown() POSIX_SYMBOLIC_LINKS

lockf() XSI_FILE_SYSTEM

mknod() XSI_FILE_SYSTEM

nftw() XSI_FILE_SYSTEM

realpath() XSI_FILE_SYSTEM

seekdir() XSI_FILE_SYSTEM

sync() XSI_FILE_SYSTEM

telldir() XSI_FILE_SYSTEM

tempnam() XSI_FILE_SYSTEM

catclose() POSIX_I18N

catgets() POSIX_I18N

catopen() POSIX_I18N

http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_open.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dbm_store.html
http://www.opengroup.org/onlinepubs/9699919799/functions/fmtmsg.html
http://www.opengroup.org/onlinepubs/9699919799/functions/poll.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pread.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pwrite.html
http://www.opengroup.org/onlinepubs/9699919799/functions/readv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/writev.html
http://www.opengroup.org/onlinepubs/9699919799/functions/grantpt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/posix_openpt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ptsname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/unlockpt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dlclose.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dlerror.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dlopen.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dlsym.html
http://www.opengroup.org/onlinepubs/9699919799/functions/basename.html
http://www.opengroup.org/onlinepubs/9699919799/functions/dirname.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ftw.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lchown.html
http://www.opengroup.org/onlinepubs/9699919799/functions/lockf.html
http://www.opengroup.org/onlinepubs/9699919799/functions/mknod.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nftw.html
http://www.opengroup.org/onlinepubs/9699919799/functions/realpath.html
http://www.opengroup.org/onlinepubs/9699919799/functions/seekdir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sync.html
http://www.opengroup.org/onlinepubs/9699919799/functions/telldir.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tempnam.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catclose.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catgets.html
http://www.opengroup.org/onlinepubs/9699919799/functions/catopen.html

200 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

msgctl() XSI_IPC

msgget() XSI_IPC

msgrcv() XSI_IPC

msgsnd() XSI_IPC

nl_langinfo() POSIX_I18N

semctl() XSI_IPC

semget() XSI_IPC

semop() XSI_IPC

shmat() XSI_IPC

shmctl() XSI_IPC

shmdt() XSI_IPC

shmget() XSI_IPC

ftok() XSI_IPC

tcgetsid() POSIX_JOB_CONTROL

_longjmp() XSI_JUMP

_setjmp() XSI_JUMP

j0() XSI_MATH

j1() XSI_MATH

jn() XSI_MATH

y0() XSI_MATH

y1() XSI_MATH

yn() XSI_MATH

getpriority() XSI_MULTI_PROCESS

getrlimit() XSI_MULTI_PROCESS

getrusage() XSI_MULTI_PROCESS

nice() XSI_MULTI_PROCESS

setpgrp() XSI_MULTI_PROCESS

setpriority() XSI_MULTI_PROCESS

setrlimit() XSI_MULTI_PROCESS

ulimit() XSI_MULTI_PROCESS

killpg() XSI_SIGNALS

http://www.opengroup.org/onlinepubs/9699919799/functions/msgctl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/msgget.html
http://www.opengroup.org/onlinepubs/9699919799/functions/msgrcv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/msgsnd.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nl_langinfo.html
http://www.opengroup.org/onlinepubs/9699919799/functions/semctl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/semget.html
http://www.opengroup.org/onlinepubs/9699919799/functions/semop.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shmat.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shmctl.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shmdt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/shmget.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ftok.html
http://www.opengroup.org/onlinepubs/9699919799/functions/tcgetsid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/_longjmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/_setjmp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/j0.html
http://www.opengroup.org/onlinepubs/9699919799/functions/j1.html
http://www.opengroup.org/onlinepubs/9699919799/functions/jn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/y0.html
http://www.opengroup.org/onlinepubs/9699919799/functions/y1.html
http://www.opengroup.org/onlinepubs/9699919799/functions/yn.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpriority.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getrlimit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getrusage.html
http://www.opengroup.org/onlinepubs/9699919799/functions/nice.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setpgrp.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setpriority.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setrlimit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/ulimit.html
http://www.opengroup.org/onlinepubs/9699919799/functions/killpg.html

FACE™ Technical Standard, Edition 3.0 201

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

sigaltstack() XSI_SIGNALS

sighold() XSI_SIGNALS

sigignore() XSI_SIGNALS

siginterrupt() XSI_SIGNALS

sigpause() XSI_SIGNALS

sigrelse() XSI_SIGNALS

sigset() XSI_SIGNALS

gethostid() XSI_SINGLE_PROCESS

gettimeofday() XSI_SINGLE_PROCESS

putenv() XSI_SINGLE_PROCESS

endpwent() XSI_SYSTEM_DATABASE

getpwent() XSI_SYSTEM_DATABASE

setpwent() XSI_SYSTEM_DATABASE

closelog() XSI_SYSTEM_LOGGING

openlog() XSI_SYSTEM_LOGGING

setlogmask() XSI_SYSTEM_LOGGING

syslog() XSI_SYSTEM_LOGGING

pthread_mutexattr_gettype() INCL POSIX_THREADS_EXT

pthread_mutexattr_settype() INCL POSIX_THREADS_EXT

pthread_attr_getguardsize() INCL INCL POSIX_THREADS_EXT

pthread_attr_setguardsize() INCL INCL POSIX_THREADS_EXT

pthread_getconcurrency() INCL INCL INCL XSI_THREADS_EXT

pthread_setconcurrency() INCL INCL INCL XSI_THREADS_EXT

getitimer() XSI_TIMERS

setitimer() XSI_TIMERS

endgrent() XSI_USER_GROUPS

endutxent() XSI_USER_GROUPS

getgrent() XSI_USER_GROUPS

getutxent() XSI_USER_GROUPS

getutxid() XSI_USER_GROUPS

getutxline() XSI_USER_GROUPS

http://www.opengroup.org/onlinepubs/9699919799/functions/sigaltstack.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sighold.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigignore.html
http://www.opengroup.org/onlinepubs/9699919799/functions/siginterrupt.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigpause.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigrelse.html
http://www.opengroup.org/onlinepubs/9699919799/functions/sigset.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gethostid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/gettimeofday.html
http://www.opengroup.org/onlinepubs/9699919799/functions/putenv.html
http://www.opengroup.org/onlinepubs/9699919799/functions/endpwent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getpwent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setpwent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/closelog.html
http://www.opengroup.org/onlinepubs/9699919799/functions/openlog.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setlogmask.html
http://www.opengroup.org/onlinepubs/9699919799/functions/syslog.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_gettype.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_settype.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_getguardsize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_attr_setguardsize.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_getconcurrency.html
http://www.opengroup.org/onlinepubs/9699919799/functions/pthread_setconcurrency.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getitimer.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setitimer.html
http://www.opengroup.org/onlinepubs/9699919799/functions/endgrent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/endutxent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getgrent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getutxent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getutxid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/getutxline.html

202 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

pututxline() XSI_USER_GROUPS

setgrent() XSI_USER_GROUPS

setregid() XSI_USER_GROUPS

setreuid() XSI_USER_GROUPS

setutxent() XSI_USER_GROUPS

wcswidth() XSI_WIDE_CHAR

wcwidth() XSI_WIDE_CHAR

alphasort() POSIX_FILE_SYSTEM_EXT

dirfd() POSIX_FILE_SYSTEM_EXT

dprintf() POSIX_DEVICE_IO_EXT

duplocale() POSIX_MULTI_CONCURRENT_

LOCALES

faccessat() POSIX_FILE_SYSTEM_FD

fchmodat() POSIX_FILE_ATTRIBUTES_FD

fchownat() POSIX_FILE_ATTRIBUTES_FD

fdopendir() POSIX_FILE_SYSTEM_FD

fexecve() POSIX_MULTI_PROCESS_FD

fmemopen() POSIX_DEVICE_IO_EXT

freelocale() POSIX_MULTI_CONCURRENT_

LOCALES

fstatat() POSIX_FILE_SYSTEM_FD

futimens() POSIX_FILE_SYSTEM_FD

getdelim() POSIX_FILE_SYSTEM_EXT

getline() POSIX_FILE_SYSTEM_EXT

isalnum_l() POSIX_MULTI_CONCURRENT_

LOCALES

isalpha_l() POSIX_MULTI_CONCURRENT_

LOCALES

isblank_l() POSIX_MULTI_CONCURRENT_

LOCALES

iscntrl_l() POSIX_MULTI_CONCURRENT_

LOCALES

http://www.opengroup.org/onlinepubs/9699919799/functions/pututxline.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setgrent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setregid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setreuid.html
http://www.opengroup.org/onlinepubs/9699919799/functions/setutxent.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcswidth.html
http://www.opengroup.org/onlinepubs/9699919799/functions/wcwidth.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/alphasort.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/dirfd.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/dprintf.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/duplocale.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/faccessat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fchmodat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fchownat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fdopendir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fexecve.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fmemopen.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/freelocale.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fstatat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/futimens.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getdelim.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getline.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isalnum_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isalpha_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isblank_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iscntrl_l.html

FACE™ Technical Standard, Edition 3.0 203

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

isdigit_l() POSIX_MULTI_CONCURRENT_

LOCALES

isgraph_l() POSIX_MULTI_CONCURRENT_

LOCALES

islower_l() POSIX_MULTI_CONCURRENT_

LOCALES

isprint_l() POSIX_MULTI_CONCURRENT_

LOCALES

ispunct_l() POSIX_MULTI_CONCURRENT_

LOCALES

isspace_l() POSIX_MULTI_CONCURRENT_

LOCALES

isupper_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswalnum_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswalpha_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswblank_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswcntrl_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswctype_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswdigit_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswgraph_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswlower_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswprint_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswpunct_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswspace_l() POSIX_MULTI_CONCURRENT_

LOCALES

iswupper_l() POSIX_MULTI_CONCURRENT_

LOCALES

http://pubs.opengroup.org/onlinepubs/9699919799/functions/isdigit_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isgraph_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/islower_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isprint_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/ispunct_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isspace_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isupper_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswalnum_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswalpha_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswblank_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswcntrl_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswctype_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswdigit_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswgraph_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswlower_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswprint_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswpunct_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswspace_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswupper_l.html

204 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

iswxdigit_l() POSIX_MULTI_CONCURRENT_

LOCALES

isxdigit_l() POSIX_MULTI_CONCURRENT_

LOCALES

linkat() POSIX_FILE_SYSTEM_FD

mbsnrtowcs() POSIX_C_LANG_WIDE_CHAR_

EXT

mkdirat() POSIX_FILE_SYSTEM_FD

mkdtemp() POSIX_FILE_SYSTEM_EXT

mkfifoat() POSIX_FIFO_FD

mknodat() POSIX_FIFO_FD

newlocale() POSIX_MULTI_CONCURRENT_

LOCALES

nl_langinfo_l() POSIX_I18N

open_memstream() POSIX_DEVICE_IO_EXT

open_wmemstream() POSIX_C_LANG_WIDE_CHAR

openat() POSIX_FILE_SYSTEM_FD

psiginfo() POSIX_SIGNALS_EXT

psignal() POSIX_SIGNALS_EXT

pthread_mutex_consistent() _POSIX_ROBUST_MUTEXES

pthread_mutexattr_getrobust() _POSIX_ROBUST_MUTEXES

pthread_mutexattr_setrobust() _POSIX_ROBUST_MUTEXES

readlinkat() POSIX_SYMBOLIC_LINKS_FD

renameat() POSIX_FILE_SYSTEM_FD

scandir() POSIX_FILE_SYSTEM_EXT

stpcpy() POSIX_C_LIB_EXT

stpncpy() POSIX_C_LIB_EXT

strcasecmp_l() POSIX_MULTI_CONCURRENT_

LOCALES

strcoll_l() POSIX_MULTI_CONCURRENT_

LOCALES

strerror_l() POSIX_MULTI_CONCURRENT_

LOCALES

http://pubs.opengroup.org/onlinepubs/9699919799/functions/iswxdigit_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/isxdigit_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/linkat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mbsnrtowcs.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mkdirat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mkdtemp.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mkfifoat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/mknodat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/newlocale.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/nl_langinfo_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/open_memstream.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/open_wmemstream.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/openat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/psiginfo.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/psignal.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_consistent.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_getrobust.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutexattr_setrobust.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/readlinkat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/renameat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/scandir.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/stpcpy.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/stpncpy.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strcasecmp_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strcoll_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strerror_l.html

FACE™ Technical Standard, Edition 3.0 205

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

strfmon_l() POSIX_MULTI_CONCURRENT_

LOCALES

strftime_l() POSIX_MULTI_CONCURRENT_

LOCALES

strncasecmp_l() POSIX_MULTI_CONCURRENT_

LOCALES

strndup() POSIX_C_LIB_EXT

strnlen() POSIX_C_LIB_EXT

strsignal() POSIX_SIGNALS_EXT

strxfrm_l() POSIX_MULTI_CONCURRENT_

LOCALES

symlinkat() POSIX_SYMBOLIC_LINKS_FD

tolower_l() POSIX_MULTI_CONCURRENT_

LOCALES

toupper_l() POSIX_MULTI_CONCURRENT_

LOCALES

towctrans_l() POSIX_MULTI_CONCURRENT_

LOCALES

towlower_l() POSIX_MULTI_CONCURRENT_

LOCALES

towupper_l() POSIX_MULTI_CONCURRENT_

LOCALES

unlinkat() POSIX_FILE_SYSTEM_FD

uselocale()

 POSIX_MULTI_CONCURRENT_

LOCALES

utimensat() POSIX_FILE_SYSTEM_FD

vdprintf() POSIX_DEVICE_IO_EXT

wcpcpy() POSIX_C_LANG_WIDE_CHAR_

EXT

wcpncpy() POSIX_C_LANG_WIDE_CHAR_

EXT

wcscasecmp() POSIX_C_LANG_WIDE_CHAR_

EXT

wcscasecmp_l() POSIX_MULTI_CONCURRENT_

LOCALES

http://pubs.opengroup.org/onlinepubs/9699919799/functions/strfmon_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strftime_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strncasecmp_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strndup.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strnlen.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strsignal.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/strxfrm_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/symlinkat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/tolower_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/toupper_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/towctrans_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/towlower_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/towupper_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/unlinkat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/uselocale.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/utimensat.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/vdprintf.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcpcpy.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcpncpy.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcscasecmp.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcscasecmp_l.html

206 Open Group Standard (2017)

IEEE Std 1003.1-2008 API S
ec

u
ri

ty

 S
a

fe
ty

 B
a

se

 S
a

fe
ty

 E
x

te
n

d
ed

 G
en

er
a

l
P

u
rp

o
se

In
te

r
-U

o
C

POSIX Functionality Categories

wcscoll_l() POSIX_MULTI_CONCURRENT_

LOCALES

wcsdup() POSIX_C_LANG_WIDE_CHAR_

EXT

wcsncasecmp() POSIX_C_LANG_WIDE_CHAR_

EXT

wcsncasemcp_l() POSIX_MULTI_CONCURRENT_

LOCALES

wcsnlen() POSIX_C_LANG_WIDE_CHAR_

EXT

wcsnrtombs() POSIX_C_LANG_WIDE_CHAR_

EXT

wcsxfrm_l() POSIX_MULTI_CONCURRENT_

LOCALES

wctrans_l() POSIX_MULTI_CONCURRENT_

LOCALES

wctype_l() POSIX_MULTI_CONCURRENT_

LOCALES

A.2 POSIX API Rules

Safety Profile for POSIX Substitutions

In order to limit the amount of APIs certified within the Safety Profile API, substitutions were

made. The substituted APIs perform an equivalent operation. The following list details which

APIs were substituted:

 ctime() was substituted by ctime_r()

 gmtime() was substituted by gmtime_r()

 asctime() was substituted by asctime_r()

 localtime() was substituted by localtime_r()

 rand() was substituted by rand_r()

 srand() was substituted by rand_r()

 sprintf() was substituted by snprintf()

 strerror() was substituted by strerror_r()

http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcscoll_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcsdup.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcsncasecmp.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcsncasecmp_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcsnlen.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcsnrtombs.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wcsxfrm_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wctrans_l.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/wctype_l.html

FACE™ Technical Standard, Edition 3.0 207

 rewind() was substituted by fseek()

 strtok() was substituted by strtok_r()

 setjmp() was substituted by sigsetjmp()

 longjmp() was substituted by siglongjmp()

 sigprocmask() was substituted by pthread_sigmask()

 fdatasync() was substituted by fsync()

 vsprintf() was substituted by vsnprintf()

 printf() was substituted by fprintf()

 signal() was substituted by sigaction()

A.3 POSIX Enumeration Rules

Some POSIX APIs include enumeration constants that are used to configure API and operating

environment-related behaviors. This section identifies the availability of these constants on a per

FACE OSS Profile basis. In many cases, support for the constant is based on corresponding

APIs being included in a FACE OSS Profile or not. Enumeration constants identified in the

POSIX API definitions and included in but not defined in are also included.

Explanation for POSIX Enumeration Rules Table Format

INCL Included in the Profile indicated at top of column

Blank Excluded from the Profile indicated at top of column

Note: Blank items may be included in future editions of the FACE Technical Standard.

The enumerations for the POSIX thread detach state enumeration constants are supported in the

following FACE Profiles:

Table 21: POSIX Thread Detach State Values

Enumeration Security Safety Base

Safety

Extended

General

Purpose

PTHREAD_CREATE_JOINABLE INCL INCL

PTHREAD_CREATE_DETACHED INCL INCL

The enumerations for the POSIX thread inherit scheduler enumeration constants are supported in

the following FACE Profiles:

208 Open Group Standard (2017)

Table 22: POSIX Thread Inherit Scheduler Values

Enumeration Security Safety Base

Safety

Extended

General

Purpose

PTHREAD_INHERIT_SCHED INCL INCL INCL INCL

PTHREAD_EXPLICIT_SCHED INCL INCL INCL INCL

The enumerations for the POSIX thread inherit scheduler enumeration constants are supported in

the following FACE Profiles:

Table 23: POSIX Thread Scheduler Policy Values

Enumeration Security Safety Base

Safety

Extended

General

Purpose

SCHED_FIFO INCL INCL INCL INCL

SCHED_RR INCL INCL INCL INCL

SCHED_SPORADIC INCL

SCHED_OTHER

The enumerations for the POSIX thread inherit scope enumeration constants are supported in the

following FACE Profiles:

Table 24: POSIX Thread Scope Values

Attribute Security Safety Base

Safety

Extended

General

Purpose

PTHREAD_SCOPE_SYSTEM INCL INCL

PTHREAD_SCOPE_PROCESS INCL INCL INCL INCL

The enumerations for POSIX synchronization object visibility constants are supported in the

following FACE Profiles:

Table 25: POSIX Mutex Scope Values

Attribute Security Safety Base

Safety

Extended

General

Purpose

PTHREAD_PROCESS_SHARED INCL

PTHREAD_PROCESS_PRIVATE INCL

The enumerations for POSIX mutex type constants are supported in the following FACE

Profiles:

FACE™ Technical Standard, Edition 3.0 209

Table 26: POSIX Mutex Type Attribute Values

Attribute Security Safety Base

Safety

Extended

General

Purpose

PTHREAD_MUTEX_DEFAULT INCL

PTHREAD_MUTEX_ERRORCHECK INCL

PTHREAD_MUTEX_NORMAL INCL

PTHREAD_MUTEX_RECURSIVE INCL

PTHREAD_MUTEX_ROBUST

PTHREAD_MUTEX_STALLED

The enumerations for POSIX mutex protocol constants are supported in the following FACE

Profiles:

Table 27: POSIX Mutex Protocol Values

Attribute Security Safety Base

Safety

Extended

General

Purpose

PTHREAD_PRIO_INHERIT INCL

PTHREAD_PRIO_NONE INCL

PTHREAD_PRIO_PROTECT INCL INCL INCL INCL

The enumerations for POSIX robust mutex constants are supported in the following FACE

Profiles:

Table 28: POSIX Mutex Robustness Values

Attribute Security Safety Base

Safety

Extended

General

Purpose

PTHREAD_MUTEX_STALLED

PTHREAD_MUTEX_ROBUST

The enumerations for POSIX clock and timer source constants are supported in the following

FACE Profiles:

210 Open Group Standard (2017)

Table 29: POSIX Clock and Timer Source Values and FACE Profiles

POSIX.1-2013 Method Security Safety Base

Safety

Extended

General

Purpose

CLOCK_MONOTONIC INCL INCL INCL INCL

CLOCK_PROCESS_CPUTIME_ID INCL

CLOCK_REALTIME INCL INCL INCL INCL

CLOCK_THREAD_CPUTIME_ID INCL INCL INCL INCL

TIMER_ABSTIME INCL INCL INCL INCL

Note: Only CLOCK_MONOTONIC and CLOCK_REALTIME are available for use with

POSIX condition variables.

The enumerations for setting and obtaining socket options are supported in the following FACE

Profiles:

Table 30: POSIX Set Socket (Socket-Level) Option Values

POSIX.1-2013 Option Value Security Safety Base

Safety

Extended

General

Purpose

SO_ACCEPTCONN

SO_BROADCAST

SO_DEBUG

SO_DONTROUTE

SO_ERROR

SO_KEEPALIVE

SO_LINGER

SO_OOBINLINE

SO_RCVBUF INCL INCL INCL INCL

SO_RCVLOWAT

SO_RCVTIMEO

SO_REUSEADDR INCL INCL INCL INCL

SO_SNDBUF INCL INCL INCL INCL

SO_SNDLOWAT

FACE™ Technical Standard, Edition 3.0 211

POSIX.1-2013 Option Value Security Safety Base

Safety

Extended

General

Purpose

SO_SNDTIMEO

SO_TYPE

IP_MULTICAST_IF INCL INCL INCL INCL

IP_MULTICAST_TTL INCL INCL INCL INCL

IP_MULTICAST_LOOP INCL INCL INCL INCL

IP_ADD_MEMBERSHIP INCL INCL INCL INCL

IP_DROP_MEMBERSHIP INCL INCL INCL INCL

Note: The IP_xxx constants are not defined by POSIX but commonly supported and

explicitly required by the FACE Technical Standard.

Table 31: POSIX Set Socket (Use over Internet Protocols) Option Values

POSIX.1-2013 Option Value Security Safety Base

Safety

Extended

General

Purpose

SOCK_STREAM INCL INCL

SOCK_DGRAM INCL INCL INCL INCL

SOCK_RAW INCL

SOCK_SEQPACKET INCL

The following IPv6-related set socket options are supported in the following FACE Profiles:

Table 32: POSIX Set Socket (Use over IPv6 Internet Protocols) Option Values

POSIX.1-2013 Option Value Security Safety Base

Safety

Extended

General

Purpose

IPV6_JOIN_GROUP

IPV6_LEAVE_GROUP

IPV6_MULTICAST_HOPS

IPV6_MULTICAST_IF INCL INCL INCL INCL

IPV6_MULTICAST_LOOP INCL INCL INCL INCL

IPV6_UNICAST_HOPS

212 Open Group Standard (2017)

POSIX.1-2013 Option Value Security Safety Base

Safety

Extended

General

Purpose

IPV6_V6ONLY

The POSIX method sigaction() is included all FACE Profiles but the associated constants are

supported in the FACE OSS Profiles as follows:

Table 33: POSIX sigaction() Flags

POSIX.1-2013 Option Value Security Safety Base

Safety

Extended

General

Purpose

SA_NOCLDSTOP INCL

SA_ONSTACK

SA_RESETHAND INCL INCL INCL INCL

SA_RESTART INCL

SA_SIGINFO INCL INCL INCL INCL

SA_NOCLDWAIT

SA_NODEFER

The following constants are associated with the process spawn attribute set:

Table 34: POSIX Spawn Attribute Flags

Attribute Security Safety Base

Safety

Extended

General

Purpose

POSIX_SPAWN_RESETIDS INCL INCL

POSIX_SPAWN_SETPGROUP INCL

POSIX_SPAWN_SETSIGDEF INCL INCL

POSIX_SPAWN_SETSIGMASK INCL INCL

POSIX_SPAWN_SETSCHEDPARAM INCL INCL

POSIX_SPAWN_SETSCHEDULER INCL INCL

FACE™ Technical Standard, Edition 3.0 213

The following constants are associated with the process trace attribute set:

Table 35: POSIX Trace Attribute Flags

Attribute Security Safety Base

Safety

Extended

General

Purpose

POSIX_TRACE_ALL_EVENTS

POSIX_TRACE_APPEND

POSIX_TRACE_CLOSE_FOR_CHILD

POSIX_TRACE_FILTER

POSIX_TRACE_FLUSH

POSIX_TRACE_FLUSH_START

POSIX_TRACE_FLUSH_STOP

POSIX_TRACE_FLUSHING

POSIX_TRACE_FULL

POSIX_TRACE_LOOP

POSIX_TRACE_NO_OVERRUN

POSIX_TRACE_NOT_FLUSHING

POSIX_TRACE_NOT_FULL

POSIX_TRACE_INHERITED

POSIX_TRACE_NOT_TRUNCATED

POSIX_TRACE_OVERFLOW

POSIX_TRACE_OVERRUN

POSIX_TRACE_RESUME

POSIX_TRACE_RUNNING

POSIX_TRACE_START

POSIX_TRACE_STOP

POSIX_TRACE_SUSPENDED

POSIX_TRACE_SYSTEM_EVENTS

POSIX_TRACE_TRUNCATED_READ

214 Open Group Standard (2017)

Attribute Security Safety Base

Safety

Extended

General

Purpose

POSIX_TRACE_TRUNCATED_RECORD

POSIX_TRACE_UNNAMED_USER_EVENT

POSIX_TRACE_UNTIL_FULL

POSIX_TRACE_WOPID_EVENTS

A.4 Internet Networking Standards

This section identifies the IP-based networking standards and profiles required to promote

interoperability between IP-based network software components. The goal of this section is to

identify a minimum set of IETF RFC networking standards required for interoperability between

UoCs.

FACE Reference Architecture-based implementations can include IP-based network interfaces

connected to external environments. Interoperability with the external environments can require

additional RFCs for interoperability. Such interoperability can include consideration of:

 DoD Joint Technical Architecture

 DoD IPv6 Standard Profiles for IPv6-capable Products

 A Profile for IPv6 in the U.S. Government

 ARINC Report 664: Aircraft Data Network

Note: The DoD standards above define overlapping and somewhat inconsistent groups of

mandatory requirements for network standards. The defined standards divide into IPv4

requirements (which is the basis for ARINC 664), and IPv6 requirements providing a

natural separation of the requirements into two independent network profiles. IPv4

networks represent the majority of the existing embedded network platforms currently

in service, while IPv6 networks represent the emerging standards for future platforms.

The decision to support an IPv4 only or an IPv6 only network is an implementation decision.

Table 36: Basic Internetwork Capabilities

Standard Description

RFC 0791 Internet Protocol (IP)

RFC 0768 User Datagram Protocol

RFC 1112 Host Extensions for IP Multicasting

FACE™ Technical Standard, Edition 3.0 215

Table 37: TCP Capabilities

Standard Description

RFC 0793 Transmission Control Protocol

RFC 3390 Increasing TCP’s Initial Window

Table 38: IPv6 Capabilities

Standard Description

RFC 2460 IPv6 Specification

Table 39: IPv4/IPv6 Transition Mechanisms

Standard Description

RFC 4213 Basic Transition Mechanisms for IPv6 Hosts and Routers

A.5 Obsolete or Deprecated POSIX APIs

IEEE Std 1003.1-2008 describes some of the APIs listed in Table 20 as obsolete or deprecated.

Such APIs are candidates for removal from Table 20 in future major revisions of the FACE

Technical Standard. The following obsolete or deprecated methods are included in one or more

FACE OSS Profiles:

 pthread_getconcurrency()

 pthread_setconcurrency()

A.6 ARINC 653 Inter-Partition Capabilities

The ARINC 653 standard defines the following capabilities for use for inter-partition (i.e., inter-

UoC) communications:

 Sampling ports

 Queuing ports

These capabilities can also be utilized for intra-partition communications (along with other

capabilities restricted to intra-partition use only). The inter-partition use of these capabilities is

restricted for use only by the Transport Services and I/O Services.

216 Open Group Standard (2017)

B FACE API Common Elements

B.1 Introduction

The FACE Technical Standard defines multiple APIs and those APIs are designed to have a

common appearance. Elements such as the return status codes from FACE services used by

more than one API are described in this appendix.

Note: The code in this document is formatted to align with the formatting constraints of the

printed document.

B.2 FACE API Common Elements Type Definitions

FACE/common.idl

//! Source file: FACE/common.idl

#ifndef __FACE_COMMON

#define __FACE_COMMON

module FACE {

 //! This enumeration defines the possible set of status codes which may be

 //! returned by a method defined in the FACE API.

 //! The first set of codes (through TIMED_OUT) is constrained to match the

 //! set defined in the ARINC 653 standard.

 enum RETURN_CODE_TYPE {

 NO_ERROR, //! request valid and operation performed

 NO_ACTION, //! status of system unaffected by request

 NOT_AVAILABLE, //! no message was available

 INVALID_PARAM, //! invalid parameter specified in request

 INVALID_CONFIG, //! parameter incompatible with configuration

 INVALID_MODE, //! request incompatible with current mode

 TIMED_OUT, //! the time expired before the request could be filled

 ADDR_IN_USE, //! address currently in use

 PERMISSION_DENIED, //! no permission to send or connecting to wrong

 //! partition

 MESSAGE_STALE, //! current time - timestamp exceeds configured limits

 IN_PROGRESS, //! asynchronous connection in progress

 CONNECTION_CLOSED, //! connection was closed

 DATA_BUFFER_TOO_SMALL, //! Data Buffer was too small for message

 DATA_OVERFLOW //! A loss of messages due to data buffer overflow

 };

 //! This type is used to represent 64-bit signed integer with a

 //! 1 nanosecond resolution.

 typedef long long SYSTEM_TIME_TYPE;

 //! This type is used to represent an infinitely long time value.

 //! It is often used to specify that the caller is willing to wait

 //! forever for an operation to complete and does not wish to timeout.

 const SYSTEM_TIME_TYPE INF_TIME_VALUE = -1;

 //! This type is used to represent an unbounded string of characters

 typedef string UNBOUNDED_STRING_TYPE;

 //! This type is used to represent a bounded string of characters.

FACE™ Technical Standard, Edition 3.0 217

 typedef string<256> STRING_TYPE;

 //! This string is used to specify the location of the configuration

 //! resource in both the IOSS and TSS initialize functions. This may be local,

 //! a file name reference, or a reference to a configuration service.

 typedef STRING_TYPE CONFIGURATION_RESOURCE;

 //! This type is used to represent a system address.

 native SYSTEM_ADDRESS_TYPE;

 //! This type has a one nanosecond resolution.

 typedef SYSTEM_TIME_TYPE TIMEOUT_TYPE;

 //! This type is used to represent Globally Unique Identifiers.

 typedef long long GUID_TYPE;

};

#endif // __FACE_COMMON

218 Open Group Standard (2017)

C I/O Services Interface

C.1 Introduction

The IOS Interface includes nine supported I/O bus architectures. An I/O Service for a supported

I/O bus architecture addresses both the common declarations and the declarations specific for

that bus architecture. Each I/O Service provides a normalized interface for PSSS UoCs to

communicate with I/O devices of the same bus architecture.

Declarations are provided using an IDL syntax that is mapped to a Programming Language, as

described in Section 3.14.

Note: The code in this document is formatted to align with the formatting constraints of the

printed document.

This appendix also describes the manner in which extended I/O bus architectures declarations

can be provided with an IOS UoC. Extended declarations are supported to address undefined

capabilities of supported I/O bus architectures. They are also used to implement an unsupported

I/O bus architecture consistent with the I/O Services Interface.

C.2 Common Declarations

This section describes data types and functions that are common to the I/O Service for each

supported I/O bus architecture. The declarations are in FACE/IOS.idl.

// Source file: FACE/IOS.idl

#ifndef __FACE_IOS

#define __FACE_IOS

#include <FACE/common.idl>

module FACE {

 module IOSS {

 // The status of the I/O device bus, separate from the status of a

 // single I/O connection or of a device attached to that bus.

 //

 // NOTE: Bus-specific status constants are defined in their respective

 // namespaces.

 typedef unsigned short BUS_STATUS_TYPE;

 // I/O parameters are used to programmatically query or change

 // properties of an I/O connection or its underlying bus after

 // initialization. This may be a necessary part of PSSS UoC logic,

 // such as auto-negotiating serial baud rate, and is fundamentally

 // different from the FACE Configuration Interface that maps to an

 // underlying and existent configuration resource.

 //

 // Each I/O Service defines the specific I/O parameters it supports

 // based on the I/O connection analogy and the I/O bus architecture.

 // The declarations here are the basis of those specific definitions.

 // Used to declare constants to represent supported I/O parameters.

FACE™ Technical Standard, Edition 3.0 219

 //

 // NOTE: Bus-specific parameter IDs are defined in their namespaces.

 typedef unsigned short IO_PARAMETER_ID_TYPE;

 // Used by I/O functions to specify the I/O connection addressed

 // by the handle.

 typedef long long CONNECTION_HANDLE_TYPE;

 // INVALID_CONNECTION_HANDLE and IGNORED_CONNECTION_HANDLE as sentinel

 // values.

 const CONNECTION_HANDLE_TYPE INVALID_CONNECTION_HANDLE = -1;

 const CONNECTION_HANDLE_TYPE IGNORED_CONNECTION_HANDLE = 0;

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 // All declarations are in this template module so that the

 // instantiated module for each I/O Service has a fully qualified

 // type that is distinct. This improves type safety in the resulting

 // language mappings.

 // The unique name of the I/O connection. It is passed to Open(I/O)

 // and typically is used to assign values specified in the

 // configuration resource given to Initialize(I/O).

 typedef STRING_TYPE CONNECTION_NAME_TYPE;

 // Enumeration of the status condition of the I/O connection.

 enum IO_CONNECTION_STATUS_TYPE {

 NOT_OPEN, // initial state prior to opening the connection

 CONNECTING,// transient state where attempt is being made to open

 // the connection

 READY, // connection ready for service; it can now accept data

 // r/w operations

 BUSY, // connection has congestion and cannot accept more data

 DEGRADED // connection not fully operational; there is some kind

 // of failure

 };

 // This status represents the health of an I/O connection and

 // availability of messages. It does not represent the status of the

 // I/O device associated with the connection.

 struct CONNECTION_STATUS_TYPE {

 SYSTEM_TIME_TYPE last_message_time;

 boolean message_available;

 IO_CONNECTION_STATUS_TYPE connection_status;

 };

 // List of possible types for an I/O parameter value.

 enum IO_PARAMETER_VALUE_TYPES_TYPE {

 FACE_SHORT,

 FACE_LONG,

 FACE_LONGLONG,

 FACE_USHORT,

 FACE_ULONG,

 FACE_ULONGLONG,

 FACE_FLOAT,

 FACE_DOUBLE,

 FACE_LONGDOUBLE,

 FACE_CHAR,

 FACE_BOOLEAN,

 FACE_OCTET

 };

 // The value for an I/O parameter.

 //

 // NOTE: Bus-specific parameter values are defined in their

 // namespaces.

 union IO_PARAMETER_VALUE_TYPE switch (IO_PARAMETER_VALUE_TYPES_TYPE) {

 case FACE_SHORT: short short_value;

 case FACE_LONG: long long_value;

 case FACE_LONGLONG: long long longlong_value;

 case FACE_USHORT: unsigned short ushort_value;

 case FACE_ULONG: unsigned long ulong_value;

220 Open Group Standard (2017)

 case FACE_ULONGLONG: unsigned long long ulonglong_value;

 case FACE_FLOAT: float float_value;

 case FACE_DOUBLE: double double_value;

 case FACE_LONGDOUBLE: long double longdouble_value;

 case FACE_CHAR: char char_value;

 case FACE_BOOLEAN: boolean boolean_value;

 case FACE_OCTET: octet octet_value;

 };

 // Represent a single (ID,value) pair and a list of pairs.

 struct IO_PARAMETER {

 IO_PARAMETER_ID_TYPE id;

 IO_PARAMETER_VALUE_TYPE value;

 };

 typedef sequence<IO_PARAMETER> IO_PARAMETER_LIST;

 // Used to pass configuration properties across the I/O Service

 // Interface.

 struct IO_PARAMETER_TRANSACTION_TYPE {

 GUID_TYPE guid; // used to differentiate transactions

 IO_PARAMETER_LIST items;

 };

 // The interface is designed to operate with a local or remote

 // implementation. Thus the timeout parameter on the interfaces allow

 // the user call to block while the request may be remotely processed.

 // A value of NO_WAIT indicates the request should be made but there

 // should be no waiting for a response before returning to the caller.

 // In such a case the action may not occur immediately. A value of

 // WAIT_FOREVER indicates waiting indefinitely.

 const TIMEOUT_TYPE NO_WAIT = 0;

 const TIMEOUT_TYPE WAIT_FOREVER = -1;

 // Notification events are generated when the PSSS UoC has registered

 // a handler callback (see Register_Notification_Event_Handler(I/O)).

 // Enumeration of the type of the notification event.

 enum NOTIFICATION_EVENT_TYPE {

 DATA_READ_EVENT, // Data is available via Read()

 CONNECTION_CONFIG_CHANGE_EVENT, // Use Get_Connection_Configuration()

 // for new parameters

 CONNECTION_STATUS_CHANGE_EVENT, // Use Get_Connection_Status()

 BUS_CONFIG_CHANGE_EVENT, // Use Get_Bus_Configuration() for

 // new parameters

 BUS_STATUS_CHANGE_EVENT // Use Get_Bus_Status()

 };

 // Defines the function prototype for a notification callback.

 //

 // NOTE: 'handle' is IGNORED_CONNECTION_HANDLE when

 // 'notification_event' is a bus event.

 interface IO_Callback {

 void Process_Notification_Event (

 in CONNECTION_HANDLE_TYPE handle,

 in NOTIFICATION_EVENT_TYPE notification_event);

 }; // interface IO_Callback

 interface IO_Service {

 // The Initialize(I/O) function allows the PSSS UoC to provide a

 // configuration resource to use when initializing an I/O Service.

 void Initialize (

 in CONFIGURATION_RESOURCE config_resource,

 out RETURN_CODE_TYPE return_code);

 // The Open_Connection(I/O) function is used by the PSSS UoC to

 // create a connection to an I/O device. A unique handle for the

 // connection is returned on success, or INVALID_CONNECTION_HANDLE.

 void Open_Connection (

 in CONNECTION_NAME_TYPE name,

 in TIMEOUT_TYPE timeout,

 out CONNECTION_HANDLE_TYPE handle,

FACE™ Technical Standard, Edition 3.0 221

 out RETURN_CODE_TYPE return_code);

 // The Close_Connection(I/O) function is used by the PSSS UoC to

 // close a connection and release the addressed handle.

 void Close_Connection (

 in CONNECTION_HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 // This structure defines the data payload format for reads.

 // received_time is the time stamp most closely associated with the

 // last byte going into the buffer.

 // If received_time is set to IGNORE_RECEIVED_TIME, it should be

 // ignored.

 const SYSTEM_TIME_TYPE IGNORE_RECEIVED_TIME = 0;

 struct READ_PAYLOAD_TYPE {

 SYSTEM_TIME_TYPE received_time;

 PAYLOAD_DATA_MSG_TYPE payload;

 };

 // The Read(I/O) function allows the PSSS UoC to synchronously receive

 // (poll for) payload data. It is also called by the PSSS UoC to

 // asynchronously receive payload data when a registered notification

 // callback receives a DATA_READ_EVENT.

 void Read (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 inout READ_PAYLOAD_TYPE payload,

 out RETURN_CODE_TYPE return_code);

 // This structure defines the data payload format for writes.

 struct WRITE_PAYLOAD_TYPE {

 PAYLOAD_DATA_MSG_TYPE payload;

 };

 // The Write(I/O) operation call allows the PSSS UoC to

 // synchronously send payload data.

 void Write (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 in WRITE_PAYLOAD_TYPE payload,

 out RETURN_CODE_TYPE return_code);

 // The Configure_Connection_Parameters(I/O) function allows the

 // PSSS UoC to assign I/O parameters for a connection.

 void Configure_Connection_Parameters (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 in IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 // The Get_Connection_Configuration(I/O) function allows the PSSS

 // UoC to query I/O parameters for a connection.

 void Get_Connection_Configuration (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 inout IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 // The Configure_Bus_Parameters(I/O) function allows the PSSS UoC

 // to assign I/O parameters for the I/O bus underlying an

 // I/O connection.

 void Configure_Bus_Parameters (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 in IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 // The Get_Bus_Configuration(I/O) function allows the PSSS UoC to

 // query I/O parameters for the I/O bus underlying an I/O connection.

 void Get_Bus_Configuration (

 in CONNECTION_HANDLE_TYPE handle,

222 Open Group Standard (2017)

 in TIMEOUT_TYPE timeout,

 inout IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 // The Get_Connection_Status(I/O) function allows the PSSS UoC to

 // query for connection status information.

 void Get_Connection_Status (

 in CONNECTION_HANDLE_TYPE handle,

 out CONNECTION_STATUS_TYPE status,

 out RETURN_CODE_TYPE return_code);

 // The Get_Bus_Status(I/O) function allows the PSSS UoC to query

 // for status information of the bus underlying an I/O connection.

 void Get_Bus_Status (

 in CONNECTION_HANDLE_TYPE handle,

 out BUS_STATUS_TYPE status,

 out RETURN_CODE_TYPE return_code);

 // The Register_Notification_Event(I/O) function is used by

 // the PSSS UoC to register a callback function that is called by

 // the I/O Service when an event occurs on the given connection.

 void Register_Notification_Event (

 in CONNECTION_HANDLE_TYPE handle,

 inout IO_Callback io_callback,

 out RETURN_CODE_TYPE return_code);

 // The Unregister_Notification_Event(I/O) function is used

 // by the PSSS UoC to unregister the callback previously associated

 // with the connection.

 void Unregister_Notification_Event (

 in CONNECTION_HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOSS

}; // module FACE

#endif // __FACE_IOS

C.2.1 Initialize(I/O) Function

The Initialize(I/O) function allows the PSSS UoC to provide a configuration resource to use

when initializing an I/O Service. An I/O Service needs to be initialized before any PSSS UoC

uses it.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Initialize(I/O) function allows the PSSS UoC to provide a

 // configuration resource to use when initializing an I/O Service.

 void Initialize (

 in CONFIGURATION_RESOURCE config_resource,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 config_resource – specifies the name of the configuration for the I/O Service

 return_code – upon return, contains a status code indicating success or failure

FACE™ Technical Standard, Edition 3.0 223

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Initialize(I/O) is one of the following:

 NO_ERROR to indicate the I/O Service was successfully initialized according to the

configuration data

 NO_ACTION to indicate the I/O Service has been initialized successfully previously

 NOT_AVAILABLE to indicate config_resource is not accessible

 INVALID_CONFIG to indicate config_resource has an error

 IN_PROGRESS to indicate the operation is still in progress and the I/O Service has not

yet transitioned to a normal state

Note: To support minimal blocking at startup, the function may return before it transitions

from an initial state to a normal state. Subsequent calls return IN_PROGRESS until it

transitions out of its initial state to either its normal state or an error state. Once the

transition occurs, the next call returns NO_ERROR for success or either

NOT_AVAILABLE or INVALID_CONFIG dependent upon the error condition.

C.2.2 Open_Connection(I/O) Function

The Open_Connection(I/O) function is used by the PSSS UoC to create a connection to an I/O

device. A handle unique to the specified name for the connection is returned on success, and

INVALID_CONNECTION_HANDLE is returned on failure.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Open_Connection(I/O) function is used by the PSSS UoC to

 // create a connection to an I/O device. A unique handle for the

 // connection is returned on success, or INVALID_CONNECTION_HANDLE.

 void Open_Connection (

 in CONNECTION_NAME_TYPE name,

 in TIMEOUT_TYPE timeout,

 out CONNECTION_HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 name – specifies the name of the I/O connection to be opened

 timeout – specifies the upper limit of time the caller may be blocked when opening a

connection, where NO_WAIT means return without blocking and WAIT_FOREVER

means blocking until the operation completes

 handle – upon return, contains the value to be used on subsequent operations on this

connection

 return_code – upon return, contains a status code indicating success or failure

224 Open Group Standard (2017)

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Open_Connection(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_CONFIG to indicate that name is not valid, not configured, or an underlying

operating system resource is not present

 TIMED_OUT to indicate that opening a connection took longer than the specified timeout

 INVALID_PARAM to indicate that the timeout parameter is out of range

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.3 Close_Connection(I/O) Function

The Close_Connection(I/O) function releases the connection to the I/O device and erases any

information being stored about the connection.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Close_Connection(I/O) function is used by the PSSS UoC to

 // close a connection and release the addressed handle.

 void Close_Connection (

 in CONNECTION_HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to close

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Close_Connection(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 CONNECTION_CLOSED to indicate that handle refers to an existing connection that is

closed

 INVALID_MODE to indicate that the connection was configured in a manner that does

not allow it to be closed

 NO_ACTION to indicate that an underlying operating system API call failed

FACE™ Technical Standard, Edition 3.0 225

C.2.4 Read(I/O) Function

The Read(I/O) function allows the PSSS UoC to synchronously receive (poll for) payload data.

It is also called by the PSSS UoC to asynchronously receive payload data when a registered

notification callback receives a DATA_READ_EVENT.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // This structure defines the data payload format for reads.

 // received_time is the time stamp most closely associated with the

 // last byte going into the buffer.

 // If received_time is set to IGNORE_RECEIVED_TIME, it should be

 // ignored.

 const SYSTEM_TIME_TYPE IGNORE_RECEIVED_TIME = 0;

 struct READ_PAYLOAD_TYPE {

 SYSTEM_TIME_TYPE received_time;

 PAYLOAD_DATA_MSG_TYPE payload;

 };

 // The Read(I/O) function allows the PSSS UoC to synchronously receive

 // (poll for) payload data. It is also called by the PSSS UoC to

 // asynchronously receive payload data when a registered notification

 // callback receives a DATA_READ_EVENT.

 void Read (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 inout READ_PAYLOAD_TYPE payload,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to read

 timeout – specifies the maximum length of time the caller may be blocked, where

NO_WAIT means return without blocking and WAIT_FOREVER means blocking until

the operation completes

 payload – specifies the payload data, as well as its received time

 return_code – upon return, contains a status code indicating success or failure

The fields of READ_PAYLOAD_TYPE are as follows:

 received_time – a timestamp that is assigned by the I/O Service correlated most closely to

the system time the last field of payload was assigned before return

 payload – a structured representation of the payload data, defined by the parameterized

type BUS_CONTEXT::PAYLOAD_TYPE. Each I/O Service declares its own

PAYLOAD_TYPE that is bound to this declaration; through this mechanism the payload

is not represented as a byte sequence

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

226 Open Group Standard (2017)

The return code value returned from Read(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 NOT_AVAILABLE to indicate there is no data and timeout is NO_WAIT

 TIMED_OUT to indicate the operation took longer than the specified timeout

 DATA_OVERFLOW to indicate the underlying read buffer has dropped received

messages

 INVALID_MODE to indicate that the connection is configured in a manner that does not

allow reading

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 CONNECTION_CLOSED to indicate that handle refers to an existing connection that is

closed

 INVALID_PARAM to indicate that the timeout parameter is out of range

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.5 Write(I/O) Function

The Write(I/O) function allows the PSSS UoC to synchronously send payload data.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // This structure defines the data payload format for writes.

 struct WRITE_PAYLOAD_TYPE {

 PAYLOAD_DATA_MSG_TYPE payload;

 };

 // The Write(I/O) operation call allows the PSSS UoC to

 // synchronously send payload data.

 void Write (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 in WRITE_PAYLOAD_TYPE payload,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to read

 timeout – specifies the maximum length of time the caller may be blocked, where

NO_WAIT means return without blocking and WAIT_FOREVER means blocking until

the operation completes

 payload – specifies the payload data, as well as its logical destination and received time

 return_code – upon return, contains a status code indicating success or failure

FACE™ Technical Standard, Edition 3.0 227

The fields of WRITE_PAYLOAD_TYPE are as follows:

 payload – a structured representation of the payload data, defined by the parameterized

type BUS_CONTEXT::PAYLOAD_TYPE. Each I/O Service declares its own

PAYLOAD_TYPE that is bound to this declaration; through this mechanism the payload

is not represented as a byte sequence

The payload.message_length bytes of memory specified by payload.data_buffer_address

consists of all data in the I/O Service Message Instance.

The payload.timestamp is recorded for use in the status call when required.

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Write(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 TIMED_OUT to indicate the operation took longer than the specified timeout

 DATA_OVERFLOW to indicate the underlying write buffer is full and payload is not

sent

 INVALID_MODE to indicate that the connection is configured in a manner that does not

allow writing

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 CONNECTION_CLOSED to indicate that handle refers to an existing connection that is

closed

 INVALID_PARAM to indicate that the timeout parameter is out of range

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.6 Configure_Connection_Parameters(I/O) Function

The Configure_Connection_Parameters(I/O) function allows the PSSS UoC to assign

configuration properties for a connection. The PSSS UoC can specify a subset of the defined I/O

parameters. I/O parameters can be reconfigured by a subsequent call.

The I/O Service processes all I/O parameters as one transaction that succeeds or fails. If the

transaction fails, the I/O parameter values are unchanged upon return.

The I/O Service dispatches a CONNECTION_CONFIG_CHANGE_EVENT to each PSSS UoC

with a registered notification callback on that connection.

If the operation results in a connection status change, then the I/O Service dispatches a

CONNECTION_STATUS_CHANGE_EVENT to each PSSS UoC with a registered notification

callback on that connection.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Configure_Connection_Parameters(I/O) function allows the

228 Open Group Standard (2017)

 // PSSS UoC to assign I/O parameters for a connection.

 void Configure_Connection_Parameters (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 in IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to be operated upon

 timeout – specifies the maximum length of time the caller may be blocked, where

NO_WAIT means return without blocking and WAIT_FOREVER means blocking until

the operation completes

 parameters – specifies one or more configuration properties to be assigned

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Configure_Connection_Parameters(I/O) is one of the

following:

 NO_ERROR to indicate successful completion of the operation

 TIMED_OUT to indicate the operation took longer than the specified timeout

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 CONNECTION_CLOSED to indicate that handle refers to an existing connection that is

closed

 INVALID_PARAM to indicate that the timeout parameter is out of range

 INVALID_PARAM to indicate that an I/O parameter ID in parameters is unknown

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.7 Get_Connection_Configuration(I/O) Function

The Get_Connection_Configuration(I/O) function allows the PSSS UoC to query a connection

for configuration information. The PSSS UoC can specify a subset of the defined I/O

parameters.

The I/O Service supports this operation after the connection is closed.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Get_Connection_Configuration(I/O) function allows the PSSS

 // UoC to query I/O parameters for a connection.

 void Get_Connection_Configuration (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

FACE™ Technical Standard, Edition 3.0 229

 inout IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to be operated upon

 timeout – specifies the maximum length of time the caller may be blocked, where

NO_WAIT means return without blocking and WAIT_FOREVER means blocking until

the operation completes

 parameters – upon return, contains the current value of specified I/O properties

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Get_Connection_Configuration(I/O) is one of the

following:

 NO_ERROR to indicate successful completion of the operation

 TIMED_OUT to indicate the operation took longer than the specified timeout

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 INVALID_PARAM to indicate that the timeout parameter is out of range

 INVALID_PARAM to indicate that an I/O parameter ID in parameters is unknown

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.8 Configure_Bus_Parameters(I/O) Function

The Configure_Bus_Parameters(I/O) function allows the PSSS UoC to assign configuration

properties for an I/O bus, given an I/O connection associated with that bus. This technique for

selecting an I/O bus maintains consistency with other functions of the I/O Services Interface,

supports multiple instances of the same I/O bus, and avoids using a sentinel connection ID value.

Configuring the bus may impact open connections on that bus. The PSSS UoC can specify a

subset of the defined I/O parameters. I/O parameters can be reconfigured by a subsequent call.

The I/O Service processes all I/O parameters as one transaction that succeeds or fails. If the

transaction fails, the I/O parameter values are unchanged upon return.

The I/O Service supports this operation when called with a closed I/O connection.

The I/O Service dispatches a BUS_CONFIG_CHANGE_EVENT to each PSSS UoC with a

registered notification callback on an open connection of the configured bus.

If the operation results in a bus status change of the configured bus, then the I/O Service

dispatches a BUS_STATUS_CHANGE_EVENT to each PSSS UoC with a registered

notification callback on an open connection of the configured bus.

230 Open Group Standard (2017)

If the operation results in a connection parameter change on an open connection of the

configured bus, then the I/O Service dispatches a

CONNECTION_CONFIG_CHANGE_EVENT to each PSSS UoC with a registered notification

callback on that connection.

If the operation results in a connection status change on an open connection of the configured

bus, then the I/O Service dispatches a CONNECTION_STATUS_CHANGE_EVENT to each

PSSS UoC with a registered notification callback on that connection.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Configure_Bus_Parameters(I/O) function allows the PSSS UoC

 // to assign I/O parameters for the I/O bus underlying an

 // I/O connection.

 void Configure_Bus_Parameters (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 in IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies an I/O connection as the means to select its underlying bus

 timeout – specifies the maximum length of time the caller may be blocked, where

NO_WAIT means return without blocking and WAIT_FOREVER means blocking until

the operation completes

 parameters – specifies one or more configuration properties to be assigned

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Configure_Bus_Parameters(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 TIMED_OUT to indicate the operation took longer than the specified timeout

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 INVALID_PARAM to indicate that the timeout parameter is out of range

 INVALID_PARAM to indicate that an I/O parameter ID in parameters is unknown

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.9 Get_Bus_Configuration(I/O) Function

The Get_Bus_Configuration(I/O) function allows the PSSS UoC to query configuration

properties for an I/O bus, given an I/O connection associated with that bus. This technique for

selecting an I/O bus maintains consistency with other functions of the I/O Services Interface,

FACE™ Technical Standard, Edition 3.0 231

supports multiple instances of the same I/O bus, and avoids using a sentinel connection ID value.

The PSSS UoC can specify a subset of the defined I/O parameters.

The I/O Service supports this operation when called with a closed I/O connection.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Get_Bus_Configuration(I/O) function allows the PSSS UoC to

 // query I/O parameters for the I/O bus underlying an I/O connection.

 void Get_Bus_Configuration (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 inout IO_PARAMETER_TRANSACTION_TYPE parameters,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies an I/O connection as the means to select its underlying bus

 timeout – specifies the maximum length of time the caller may be blocked, where

NO_WAIT means return without blocking and WAIT_FOREVER means blocking until

the operation completes

 parameters – upon return, contains the current value of specified I/O properties

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Get_Bus_Configuration(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 TIMED_OUT to indicate the operation took longer than the specified timeout

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 INVALID_PARAM to indicate that the timeout parameter is out of range

 INVALID_PARAM to indicate that an I/O parameter ID in parameters is unknown

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.10 Get_Connection_Status(I/O) Function

The Get_Connection_Status(I/O) function allows the PSSS UoC to query for connection status

information.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Get_Connection_Status(I/O) function allows the PSSS UoC to

 // query for connection status information.

 void Get_Connection_Status (

232 Open Group Standard (2017)

 in CONNECTION_HANDLE_TYPE handle,

 out CONNECTION_STATUS_TYPE status,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to be operated upon

 status – upon return, contains the status of the connection

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Get_Connection_Status(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 CONNECTION_CLOSED to indicate that handle refers to an existing connection that is

closed

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.11 Get_Bus_Status(I/O) Function

The Get_Bus_Status(I/O) function allows the PSSS UoC to query configuration properties for an

I/O bus, given an I/O connection associated with that bus. This technique for selecting an I/O

bus maintains consistency with other functions of the I/O Services Interface, supports multiple

instances of the same I/O bus, and avoids using a sentinel connection ID value.

The I/O Service supports this operation when called with a closed I/O connection.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Get_Bus_Status(I/O) function allows the PSSS UoC to query

 // for status information of the bus underlying an I/O connection.

 void Get_Bus_Status (

 in CONNECTION_HANDLE_TYPE handle,

 out BUS_STATUS_TYPE status,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies an I/O connection as the means to select its underlying bus

 status – upon return, contains the status of the bus; each I/O Service declares its own bus

status constants

 return_code – upon return, contains a status code indicating success or failure

FACE™ Technical Standard, Edition 3.0 233

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Get_Bus_Status(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 NO_ACTION to indicate that an underlying operating system API call failed

C.2.12 Register_Notification_Event(I/O) Function

The Register_Notification_Event(I/O) function can be used by the PSSS UoC to register a

callback function that is called by the I/O Service when an event occurs on the given connection.

Notification events can be used to implement asynchronous read operations. They also can

notify the PSSS UoC that the configuration or status has changed for the I/O connection or its

underlying I/O bus.

A PSSS UoC is not required to process notification events of any type, and in such case would

not call Register_Notification_Event(I/O).

A PSSS UoC is not required to process every notification event type, and in such case would

implement callback behavior for the events of interest and allow the other events to fall through.

The I/O Service maintains only one notification callback per handle. A subsequent call to

Register_Notification_Event(I/O) replaces the registered callback function. The I/O Service

invokes the same registered callback function for every event on the connection as long as the

connection is open or until Unregister_Notification_Event(I/O) is called.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Register_Notification_Event(I/O) function is used by

 // the PSSS UoC to register a callback function that is called by

 // the I/O Service when an event occurs on the given connection.

 void Register_Notification_Event (

 in CONNECTION_HANDLE_TYPE handle,

 inout IO_Callback io_callback,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to be operated upon

 io_callback – specifies the interface to be registered

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

234 Open Group Standard (2017)

The return code value returned from Register_Notification_Event(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 NO_ACTION to indicate that the I/O Service does not support event notification for

handle

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 CONNECTION_CLOSED to indicate that handle refers to an existing connection that is

closed

C.2.13 Unregister_Notification_Event(I/O) Function

The Unregister_Notification_Event(I/O) function is used by the PSSS UoC to unregister the

callback previously associated with the connection.

The I/O Service supports this operation when called with a closed I/O connection.

module FACE {

 module IOS {

 module IO_Service_Module<struct PAYLOAD_DATA_MSG_TYPE> {

 interface IO_Service {

 // The Unregister_Notification_Event(I/O) function is used

 // by the PSSS UoC to unregister the callback previously associated

 // with the connection.

 void Unregister_Notification_Event (

 in CONNECTION_HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 }; // interface IO_Service

 }; // module IO_Service_Module<>

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to be operated upon

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Unregister_Notification_Event(I/O) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_PARAM to indicate that handle does not refer to an existing connection

 NO_ACTION to indicate that there was not a handler registered to this connection

C.3 Supported I/O Bus Architecture Declarations

C.3.1 Generic I/O Service Declarations

FACE/IOS_Generic.idl

// Source file: FACE/IOS_Generic.idl

#ifndef __FACE_IOS_GENERIC

FACE™ Technical Standard, Edition 3.0 235

#define __FACE_IOS_GENERIC

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the Generic I/O Service.

 module Generic {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 const unsigned short MAX_BYTE_COUNT = 65535;

 typedef sequence<octet, MAX_BYTE_COUNT> BYTE_SEQUENCE;

 struct ReadWriteBuffer {

 BYTE_SEQUENCE data;

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 const IO_PARAMETER_ID_TYPE ADDRESS = 0; // FACE_ULONGLONG

 // Minimum value

 const IO_PARAMETER_ID_TYPE MIN_VALUE = 1; // FACE_ULONGLONG

 // Maximum value

 const IO_PARAMETER_ID_TYPE MAX_VALUE = 2; // FACE_ULONGLONG

 // Initial value

 const IO_PARAMETER_ID_TYPE INIT_VALUE = 3; // FACE_ULONGLONG

 // Data buffer precision

 const IO_PARAMETER_ID_TYPE PRECISION = 4; // FACE_LONGDOUBLE

 // Declarations for the defined bus status types for the I/O Service.

 //

 // Note there are no defined bus status types for the Generic

 // I/O Service.

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<Generic::ReadWriteBuffer> Generic;

 };

};

#endif // __FACE_IOS_GENERIC

C.3.2 Analog I/O Service Declarations

FACE/IOS_Analog.idl

// Source file: FACE/IOS_Analog.idl

#ifndef __FACE_IOS_ANALOG

#define __FACE_IOS_ANALOG

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the Analog I/O Service.

 module Analog {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 struct ReadWriteBuffer {

 long data;

 };

 // Declarations for the defined configuration parameters of the

236 Open Group Standard (2017)

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 // Minimum value

 const IO_PARAMETER_ID_TYPE MIN_VALUE = 0; // FACE_LONG

 // Maximum value

 const IO_PARAMETER_ID_TYPE MAX_VALUE = 1; // FACE_LONG

 // Initial value

 const IO_PARAMETER_ID_TYPE INIT_VALUE = 2; // FACE_LONG

 // Data buffer precision - value type: long double

 const IO_PARAMETER_ID_TYPE PRECISION = 3; // FACE_DOUBLE

 // Direction - FALSE = in; TRUE = out

 const IO_PARAMETER_ID_TYPE DIRECTION = 4; // FACE_BOOLEAN

 // Voltage gain

 const IO_PARAMETER_ID_TYPE GAIN = 5; // FACE_LONGDOUBLE

 // Voltage offset

 const IO_PARAMETER_ID_TYPE OFFSET = 6; // FACE_LONGDOUBLE

 // Declarations for the defined bus status types for the I/O Service.

 //

 // Note there are no defined bus status types for the Analog

 // I/O Service.

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<Analog::ReadWriteBuffer> Analog;

 };

};

#endif // __FACE_IOS_ANALOG

C.3.3 ARINC 429 I/O Service Declarations

FACE/IOS_ARINC429.idl

// Source file: FACE/IOS_Arinc429.idl

#ifndef __FACE_IOS_ARINC429

#define __FACE_IOS_ARINC429

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the ARCINC-429 I/O Service.

 module ARINC429 {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 const unsigned short MAX_NUM_LABELS = 65535;

 typedef sequence<long, MAX_NUM_LABELS> LABEL_SEQUENCE;

 struct ReadWriteBuffer {

 LABEL_SEQUENCE label_payload;

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 typedef unsigned short PARITY_TYPE;

 const PARITY_TYPE PARITY_NONE = 0;

 const PARITY_TYPE PARITY_ODD = 1;

 const PARITY_TYPE PARITY_EVEN = 2;

 const PARITY_TYPE PARITY_MARK = 3;

 const PARITY_TYPE PARITY_SPACE = 4;

 // Channel direction - FALSE = TX; TRUE = RX

FACE™ Technical Standard, Edition 3.0 237

 const IO_PARAMETER_ID_TYPE DIRECTION = 0; // FACE_BOOLEAN

 // Channel parity (PARITY_TYPE)

 const IO_PARAMETER_ID_TYPE PARITY = 1; // FACE_USHORT

 // Channel speed - FALSE = High; TRUE = Low

 const IO_PARAMETER_ID_TYPE CHANNEL_SPEED = 2; // FACE_BOOLEAN

 // Declarations for the defined bus status types for the I/O Service.

 const BUS_STATUS_TYPE HW_OPERATIONAL = 0;

 const BUS_STATUS_TYPE HW_FIFO_OVERFLOW = 1;

 const BUS_STATUS_TYPE SW_CIRCULAR_BUFF_OVERFLOW = 2;

 const BUS_STATUS_TYPE HW_ADDRESS_ERROR = 3;

 const BUS_STATUS_TYPE HW_SEQUENCE_ERROR = 4;

 const BUS_STATUS_TYPE HW_PARITY_ERROR = 5;

 const BUS_STATUS_TYPE CLOCK_LOSS = 6;

 const BUS_STATUS_TYPE UNKNOWN_ERROR = 7;

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<ARINC429::ReadWriteBuffer> ARINC429;

 };

};

#endif // __FACE_IOS_ARINC429

C.3.4 Discrete I/O Service Declarations

FACE/IOS_Discrete.idl

// Source file: FACE/IOS_Discrete.idl

#ifndef __FACE_IOS_DISCRETE

#define __FACE_IOS_DISCRETE

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the Discrete I/O Service.

 module Discrete {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 typedef unsigned short DISCRETE_STATE_TYPE;

 const DISCRETE_STATE_TYPE LOW = 0;

 const DISCRETE_STATE_TYPE HIGH = 1;

 const DISCRETE_STATE_TYPE OPEN = 2;

 const DISCRETE_STATE_TYPE UNDETERMINED = 3;

 struct ReadWriteBuffer {

 DISCRETE_STATE_TYPE state; // state of the discrete

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 // Maximum number of discrete inputs

 const IO_PARAMETER_ID_TYPE MAX_INPUTS = 0; // FACE_LONGLONG

 // Maximum number of discrete outputs

 const IO_PARAMETER_ID_TYPE MAX_OUTPUTS = 1; // FACE_LONGLONG

 // Channel direction (in or out) - FALSE = in; TRUE = out

 const IO_PARAMETER_ID_TYPE DIRECTION = 2; // FACE_BOOLEAN

 // Initial value

 const IO_PARAMETER_ID_TYPE INITIAL_OUTPUT_VALUE = 3; // FACE_BOOLEAN

 // Declarations for the defined bus status types for the I/O Service.

 //

 // Note there are no defined bus status types for the Discrete

238 Open Group Standard (2017)

 // I/O Service.

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<Discrete::ReadWriteBuffer> Discrete;

 };

};

#endif // __FACE_IOS_DISCRETE

C.3.5 High Precision Synchro I/O Service Declarations

FACE/IOS_PrecisionSynchro.idl

// Source file: FACE/IOS_PrecisionSynchro.idl

#ifndef __FACE_IOS_PRECISIONSYNCHRO

#define __FACE_IOS_PRECISIONSYNCHRO

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the Precision Synchro I/O Service.

 module PrecisionSynchro {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 enum ANGLE_INTENT_TYPE {

 USE_ANGLE, // move to given angle at given velocity

 DISREGARD_ANGLE // disregard given angle and simply turn at given

 // velocity

 };

 struct ReadWriteBuffer {

 ANGLE_INTENT_TYPE angle_intent;

 long long angle;

 long long velocity;

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 // Minimum value

 const IO_PARAMETER_ID_TYPE MIN_VALUE = 0; // FACE_LONGLONG

 // Maximum value

 const IO_PARAMETER_ID_TYPE MAX_VALUE = 1; // FACE_LONGLONG

 // Initial value

 const IO_PARAMETER_ID_TYPE INIT_VALUE = 2; // FACE_LONGLONG

 // Data buffer precision

 const IO_PARAMETER_ID_TYPE PRECISION = 3; // FACE_LONGDOUBLE

 // Declarations for the defined bus status types for the I/O Service.

 //

 // Note there are no defined bus status types for the PrecisionSynchro

 // I/O Service.

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<PrecisionSynchro::ReadWriteBuffer>

 PrecisionSynchro;

 };

};

#endif // __FACE_IOS_PRECISIONSYNCHRO

FACE™ Technical Standard, Edition 3.0 239

C.3.6 I2C I/O Service Declarations

FACE/IOS_I2C.idl

// Source file: FACE/IOS_I2C.idl

#ifndef __FACE_IOS_I2C

#define __FACE_IOS_I2C

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the I2C I/O Service.

 module I2C {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 typedef unsigned short SLAVE_ADDRESS_TYPE;

 typedef unsigned short SLAVE_ADDRESS_SIZE_TYPE;

 typedef SYSTEM_ADDRESS_TYPE MESSAGE_ADDR_TYPE;

 const SLAVE_ADDRESS_SIZE_TYPE SLAVE_ADDRESS_SIZE_7 = 0;

 const SLAVE_ADDRESS_SIZE_TYPE SLAVE_ADDRESS_SIZE_10 = 1;

 const SLAVE_ADDRESS_SIZE_TYPE SLAVE_ADDRESS_SIZE_16 = 2;

 // For slave read operation, if the slave buffer address is different

 // than the slave RX Buffer address then the slave RX Buffer address

 // is reset.

 //

 // For slave write operation, if the slave buffer address is different

 // than the slave TX Buffer address then the slave TX Buffer address

 // is reset.

 struct MASTER_COMMAND_TYPE {

 SLAVE_ADDRESS_SIZE_TYPE slave_address_size;

 SLAVE_ADDRESS_TYPE slave_address;

 unsigned short message_length;

 MESSAGE_ADDR_TYPE data_buffer_address;

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 // Master or slave - FALSE = slave; TRUE = master

 const IO_PARAMETER_ID_TYPE IS_MASTER = 0; // FACE_BOOLEAN

 // Baud

 const IO_PARAMETER_ID_TYPE BAUD = 1; // FACE_LONG

 // Slave address - value type: SLAVE_ADDRESS_TYPE

 const IO_PARAMETER_ID_TYPE MY_ADDRESS = 2; // FACE_USHORT

 // Slave RX buffer address - value type: MESSAGE_ADDR_TYPE

 const IO_PARAMETER_ID_TYPE RX_BUFFER_ADDRESS = 3;

 // Slave RX buffer length

 const IO_PARAMETER_ID_TYPE RX_BUFFER_LENGTH = 4; // FACE_ULONG

 // Slave TX buffer address - value type: MESSAGE_ADDR_TYPE

 const IO_PARAMETER_ID_TYPE TX_BUFFER_ADDRESS = 5;

 // Slave TX buffer length

 const IO_PARAMETER_ID_TYPE TX_BUFFER_LENGTH = 6; // FACE_ULONG

 // Declarations for the defined bus status types for the I/O Service.

 const BUS_STATUS_TYPE DEVICE_OPERATIONAL = 0;

 const BUS_STATUS_TYPE OVERRUN_ERROR = 1;

 const BUS_STATUS_TYPE PARITY_ERROR = 2;

 const BUS_STATUS_TYPE FRAMING_ERROR = 3;

 const BUS_STATUS_TYPE ADDRESS_ERROR = 4;

 };

 // Instantiate the template module into the namespace for the I/O

240 Open Group Standard (2017)

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<I2C::MASTER_COMMAND_TYPE> I2C;

 // Extend the I2C I/O Service interface for atomic combined read/write.

 module I2C {

 enum COMMAND_KIND_TYPE {

 READ,

 WRITE

 };

 struct ATOMIC_IO_DEF_ENTRY_TYPE {

 COMMAND_KIND_TYPE cmd;

 MASTER_COMMAND_TYPE master_command;

 };

 typedef sequence <ATOMIC_IO_DEF_ENTRY_TYPE> MASTER_COMMANDS_TYPE;

 // The Perform_Combined_Commands function allows the PSSS UoC to

 // request a set of write and/or read commands be performed by a

 // master.

 interface Combined_RW_IO_Service : I2C::IO_Service {

 void Perform_Combined_Commands (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 inout MASTER_COMMANDS_TYPE payload,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

#endif // __FACE_IOS_I2C

C.3.7 Perform_Combined_Commands(I2C) Function

The Perform_Combined_Commands(I2C) function is used by the PSSS UoC to request that the

I2C master perform a set of write and/or read commands as one transaction.

module FACE {

 module IOS {

 module I2C {

 // The Perform_Combined_Commands function allows the PSSS UoC to

 // request a set of write and/or read commands be performed by a

 // master.

 interface Combined_IO_Service : I2C::IO_Service {

 void Perform_Combined_Commands (

 in CONNECTION_HANDLE_TYPE handle,

 in TIMEOUT_TYPE timeout,

 inout MASTER_COMMANDS_TYPE payload,

 out RETURN_CODE_TYPE return_code);

 }; // interface Combined_IO_Service

 }; // module I2C

 }; // module IOS

}; // module FACE

The parameters to this function are as follows:

 handle – specifies the connection to be operated upon

 timeout – specifies the maximum length of time the caller may be blocked, where

NO_WAIT means return without blocking and WAIT_FOREVER means blocking until

the operation completes

 payload – contains the set of write and/or read commands

 return_code – upon return, contains a status code indicating success or failure

FACE™ Technical Standard, Edition 3.0 241

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason.

The return code value returned from Perform_Combined_Commands(I2C) is one of the

following:

 NO_ERROR to indicate successful completion of the operation

 NOT_AVAILABLE when payload commands are not transactionally completed in

accordance with the I2C protocol for combined read/write commands, or for hardware

failures

 TIMED_OUT to indicate the operation took longer than the specified timeout

 INVALID_MODE to indicate that the connection is configured in a manner that does not

allow commands described by payload

 INVALID_PARAM to indicate that handle does not refer to an existing connection, or

that the timeout parameter is out of range

 CONNECTION_CLOSED to indicate that handle refers to an existing connection that is

closed

 NO_ACTION to indicate that an underlying operating system API call failed

C.3.8 MIL-STD-1553 I/O Service Declarations

FACE/IOS_M1553.idl

// Source file: FACE/IOS_M1553.idl

#ifndef __FACE_IOS_M1553

#define __FACE_IOS_M1553

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the MIL-STD-1553 I/O Service.

 module M1553 {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 enum TRANSMISSION_TYPE {

 TRANSMIT,

 RECEIVE

 };

 typedef unsigned short WORD_TYPE;

 const WORD_TYPE CMD = 0;

 const WORD_TYPE STATUS = 1;

 const WORD_TYPE DATA = 2;

 const octet MAX_WORD_COUNT = 31;

 typedef sequence<WORD_TYPE, MAX_WORD_COUNT> DATA_BUFFER_TYPE;

 struct ReadWriteBuffer {

 octet bus_id; // identify the MIL-STD-1553 bus

 // (valid values: 0 - 31)

 octet rt_number_1; // remote Terminal Address

 // (valid values: 0 - 31)

 octet sa_number_1; // sub Address Number

 // (valid values: 0 - 31)

 octet rt_number_2; // remote Terminal Address used for RT-to-RT

242 Open Group Standard (2017)

 // (value values: 0 - 31)

 octet sa_number_2; // sub Address Number used for RT-to-RT

 // (value values: 0 - 31)

 TRANSMISSION_TYPE t_r;

 DATA_BUFFER_TYPE data;

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 typedef unsigned short CHANNEL_MODE_TYPE;

 const CHANNEL_MODE_TYPE BC = 0; // Bus Controller

 const CHANNEL_MODE_TYPE BBC = 1; // Backup Bus Controller

 const CHANNEL_MODE_TYPE RT = 2; // Remote Terminal

 const CHANNEL_MODE_TYPE BM = 3; // Bus Monitor

 // Channel number; each channel may consist of one or more

 // redundant buses

 const IO_PARAMETER_ID_TYPE CHANNEL_NUM = 0; // FACE_LONGLONG

 // Channel mode (CHANNEL_MODE_TYPE)

 const IO_PARAMETER_ID_TYPE CHANNEL_MODE = 1; // FACE_USHORT

 // Release bus control state

 const IO_PARAMETER_ID_TYPE

 RELEASE_BUS_CONTROL_STATE = 2; // FACE_BOOLEAN

 // Configured terminal address

 const IO_PARAMETER_ID_TYPE

 CONFIGURED_TERMINAL_ADDRESS = 3; // FACE_ULONG

 // Declarations for the defined bus status types for the I/O Service.

 const BUS_STATUS_TYPE BC_IO_NO_RESPONSE = 0;

 const BUS_STATUS_TYPE BC_IO_LOOP_TEST_FAIL = 1;

 const BUS_STATUS_TYPE BC_IO_MSG_RETRIED = 2;

 const BUS_STATUS_TYPE BC_IO_BAD_DATA_BLOCK = 3;

 const BUS_STATUS_TYPE BC_IO_ADDRESS_ERROR = 4;

 const BUS_STATUS_TYPE BC_IO_WORD_COUNT_ERROR = 5;

 const BUS_STATUS_TYPE BC_IO_SYNC_ERROR = 6;

 const BUS_STATUS_TYPE BC_IO_INVALID_WORD = 7;

 const BUS_STATUS_TYPE RT_IO_TERMINAL_FLAG = 8;

 const BUS_STATUS_TYPE RT_IO_SUBSYSTEM_FLAG = 9;

 const BUS_STATUS_TYPE RT_IO_SERVICE_REQUEST = 10;

 const BUS_STATUS_TYPE RT_IO_BUSY = 11;

 const BUS_STATUS_TYPE RT_IO_DYNAMIC_BC = 12;

 const BUS_STATUS_TYPE RT_IO_NO_RESPONSE = 13;

 const BUS_STATUS_TYPE RT_IO_LOOP_TEST_FAIL = 14;

 const BUS_STATUS_TYPE RT_IO_ILLEGAL_COMMAND_WORD = 15;

 const BUS_STATUS_TYPE RT_IO_WORD_COUNT_ERROR = 16;

 const BUS_STATUS_TYPE RT_IO_SYNC_ERROR = 17;

 const BUS_STATUS_TYPE RT_IO_INVALID_WORD = 18;

 const BUS_STATUS_TYPE RT_IO_RT_RT_GAP_SYNC_ADDR_ERROR = 19;

 const BUS_STATUS_TYPE RT_IO_RT_RT_2ND_CMD_ERROR = 20;

 const BUS_STATUS_TYPE RT_IO_COMMAND_WORD_ERROR = 21;

 const BUS_STATUS_TYPE BM_IO_NO_RESPONSE = 22;

 const BUS_STATUS_TYPE BM_IO_WORD_COUNT_ERROR = 23;

 const BUS_STATUS_TYPE BM_IO_SYNC_ERROR = 24;

 const BUS_STATUS_TYPE BM_IO_INVALID_WORD = 25;

 const BUS_STATUS_TYPE BM_IO_RT_RT_GAP_SYNC_ADDR_ERROR = 26;

 const BUS_STATUS_TYPE BM_IO_RT_RT_2ND_CMD_ERROR = 27;

 const BUS_STATUS_TYPE BM_IO_COMMAND_WORD_ERROR = 28;

 const BUS_STATUS_TYPE BM_IO_BAD_DATA_BLOCK = 29;

 const BUS_STATUS_TYPE BM_IO_MESSAGE_ERROR = 30;

 const BUS_STATUS_TYPE BM_IO_INSTRUMENTATION = 31;

 const BUS_STATUS_TYPE BM_IO_SERVICE_REQUEST = 32;

 const BUS_STATUS_TYPE BM_IO_RESERVED_BITS = 33;

 const BUS_STATUS_TYPE BM_IO_BROADCAST_RCVD = 34;

 const BUS_STATUS_TYPE BM_IO_BUSY = 35;

 const BUS_STATUS_TYPE BM_IO_SF = 36;

 const BUS_STATUS_TYPE BM_IO_DYNAMIC_BC = 37;

 const BUS_STATUS_TYPE BM_IO_TF = 38;

 const BUS_STATUS_TYPE DRIVER_READY = 39;

 const BUS_STATUS_TYPE DRIVER_ERROR = 40;

FACE™ Technical Standard, Edition 3.0 243

 const BUS_STATUS_TYPE UNKNOWN_ERROR = 41;

 const BUS_STATUS_TYPE RX_SUCCESS = 42;

 const BUS_STATUS_TYPE TX_SUCCESS = 43;

 const BUS_STATUS_TYPE RXMODE_SUCCESS = 44;

 const BUS_STATUS_TYPE TXMODE_SUCCESS = 45;

 const BUS_STATUS_TYPE RT_TO_RT_SUCCESS = 46;

 const BUS_STATUS_TYPE BC_IO_GO = 47;

 const BUS_STATUS_TYPE BC_IO_NOGO_A = 48;

 const BUS_STATUS_TYPE BC_IO_NOGO_B = 49;

 const BUS_STATUS_TYPE BC_IO_NOGO_T = 50;

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<M1553::ReadWriteBuffer> M1553;

 };

};

#endif // __FACE_IOS_M1553

C.3.9 Serial I/O Service Declarations

FACE/IOS_Serial.idl

// Source file: FACE/IOS_Serial.idl

#ifndef __FACE_IOS_SERIAL

#define __FACE_IOS_SERIAL

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the Serial I/O Service.

 module Serial {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 const unsigned short MAX_BYTE_COUNT = 65535;

 typedef sequence<octet, MAX_BYTE_COUNT> DATA_BUFFER_TYPE;

 struct ReadWriteBuffer {

 octet channel; // channel on which the message

 // is transmitted or received

 DATA_BUFFER_TYPE data; // serial data

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 typedef short OPERATIONAL_MODE_TYPE;

 const OPERATIONAL_MODE_TYPE RS_232 = 0;

 const OPERATIONAL_MODE_TYPE RS_422 = 1;

 const OPERATIONAL_MODE_TYPE RS_485 = 2;

 typedef unsigned short FLOW_CONTROL_TYPE;

 const FLOW_CONTROL_TYPE NONE = 0;

 const FLOW_CONTROL_TYPE XON_XOFF = 1;

 const FLOW_CONTROL_TYPE RTS_CTS = 2;

 const FLOW_CONTROL_TYPE DSR_DTR = 3;

 typedef unsigned short PARITY_TYPE;

 const PARITY_TYPE PARITY_NONE = 0;

 const PARITY_TYPE PARITY_ODD = 1;

 const PARITY_TYPE PARITY_EVEN = 2;

 const PARITY_TYPE PARITY_MARK = 3;

 const PARITY_TYPE PARITY_SPACE = 4;

244 Open Group Standard (2017)

 // Physical serial port number

 const IO_PARAMETER_ID_TYPE CHANNEL_NUM = 0; // FACE_OCTET

 // Serial port operational mode (OPERATIONAL_MODE_TYPE)

 const IO_PARAMETER_ID_TYPE MODE = 1; // FACE_SHORT

 // Baud rate for serial port

 const IO_PARAMETER_ID_TYPE BAUD_RATE = 2; // FACE_LONG

 // Number of data bits to be configured

 const IO_PARAMETER_ID_TYPE DATA_BITS = 3; // FACE_SHORT

 // Number of stop bits for serial port

 const IO_PARAMETER_ID_TYPE STOP_BITS = 4; // FACE_SHORT

 // Parity for serial port (PARITY_TYPE)

 const IO_PARAMETER_ID_TYPE PARITY = 5; // FACE_USHORT

 // Flow control (FLOW_CONTROL_TYPE)

 const IO_PARAMETER_ID_TYPE FLOW_CONTROL = 6; // FACE_USHORT

 // Declarations for the defined bus status types for the I/O Service.

 const BUS_STATUS_TYPE DEVICE_OPERATIONAL = 0;

 const BUS_STATUS_TYPE OVERRUN_ERROR = 1;

 const BUS_STATUS_TYPE PARITY_ERROR = 2;

 const BUS_STATUS_TYPE FRAMING_ERROR = 3;

 const BUS_STATUS_TYPE BREAK_ERROR = 4;

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<Serial::ReadWriteBuffer> Serial;

 };

};

#endif // __FACE_IOS_SERIAL

C.3.10 Synchro I/O Service Declarations

FACE/IOS_Synchro.idl

// Source file: FACE/IOS_Synchro.idl

#ifndef __FACE_IOS_SYNCHRO

#define __FACE_IOS_SYNCHRO

#include <FACE/IOS.idl>

module FACE {

 module IOSS {

 // Declarations for the Synchro I/O Service.

 module Synchro {

 // Declarations for the buffer that becomes part of the 'payload'

 // parameter for the IO_Service::Read and IO_Service::Write

 // operations.

 enum ANGLE_INTENT_TYPE {

 USE_ANGLE, // move to given angle at given velocity

 DISREGARD_ANGLE // disregard given angle and simply turn at given

 // velocity

 };

 struct ReadWriteBuffer {

 ANGLE_INTENT_TYPE angle_intent;

 long angle;

 long velocity;

 };

 // Declarations for the defined configuration parameters of the

 // I/O Service. For each ID_PARAMETER_ID_TYPE, there is a comment

 // for the expected corresponding ID_PARAMETER_VALUE_TYPE.

 // Minimum value

 const IO_PARAMETER_ID_TYPE MIN_VALUE = 0; // FACE_LONG

 // Maximum value

 const IO_PARAMETER_ID_TYPE MAX_VALUE = 1; // FACE_LONG

FACE™ Technical Standard, Edition 3.0 245

 // Initial value

 const IO_PARAMETER_ID_TYPE INIT_VALUE = 2; // FACE_LONG

 // Data buffer precision

 const IO_PARAMETER_ID_TYPE PRECISION = 3; // FACE_LONGDOUBLE

 // Declarations for the defined bus status types for the I/O Service.

 //

 // Note there are no defined bus status types for the Synchro

 // I/O Service.

 };

 // Instantiate the template module into the namespace for the I/O

 // Service. This results in fully-qualified types in that namespace

 // distinct to the I/O Service.

 module IO_Service_Module<Synchro::ReadWriteBuffer> Synchro;

 };

};

#endif // __FACE_IOS_SYNCHRO

C.4 Extending I/O Bus Architecture Declarations

There are I/O Services for each of nine supported I/O bus architectures. An I/O Service includes

the common declarations from Section C.2 and the corresponding specific declarations from

Section C.3. The declarations for these I/O Services are used by a PSSS UoC to utilize supported

capabilities with supported I/O bus architectures.

There are two scenarios for extending these declarations to provide an I/O Service with

additional capabilities. The intent for these scenarios is to allow the Software Supplier of an IOS

UoC containing such an I/O Service to achieve FACE Conformance to a published standard

while using extensions to that standard.

In the first scenario, additional configurable parameters and/or status values are defined for a

supported I/O Service because its declarations are technically insufficient. In the second

scenario, a new I/O Service is declared for an unsupported I/O bus architecture. In both

scenarios, the extended declarations need to be unique from supported I/O Service declarations:

 No symbol name conflicts

 No new symbol names for the same constant integral values

 No new functions to provide the same capability of an existing function

In both scenarios, the FACE PR/CR process is used to submit a change request with the

extended declarations for consideration in a future version of the FACE Technical Standard. The

change request is analyzed to confirm the extended declarations do not conflict with the

published standard.

246 Open Group Standard (2017)

D Life Cycle Management Services Interface

D.1 Introduction

This appendix specifies the Interface for the Life Cycle Management (LCM) Services. Each

LCM Capability has a corresponding IDL module containing an IDL interface. As the LCM

Services Capabilities are independent and optional, only the interface declarations pertaining to

supported Capabilities are relevant for the providing UoC.

Declarations are provided using an IDL syntax that is mapped to a Programming Language as

described in Section 3.14.

Note: The code in this document is formatted to align with the formatting constraints of the

printed document.

D.2 Initializable Capability Interface

D.2.1 Initialize(LCM:: Initializable)

The Initialize(LCM:: Initializable) function supports the distinct execution point of initialization.

It is common in embedded systems and safety-critical systems to have a phase of execution for

resource acquisition behavior, such as memory allocation, that is prohibited in later phases. This

function is an entry point into a Managed UoC instance, providing the instance with a thread of

control to perform any appropriate behaviors at this execution point. It is intended to be called

once transactionally, meaning called until a return code other than IN_PROGRESS is returned.

Prior to this execution point the Managed UoC instance exists but may not have acquired its

resources. It is intended that a Managed UoC with relevant safety-critical requirements would

guarantee that its resources were acquired satisfactorily on successful return of this function.

Without those relevant safety-critical requirements, a Managed UoC is not prohibited from

acquiring resources at later execution points.

A Managed UoC with no designed behaviors at this execution point may still have this function

called. As the FACE Technical Standard prescribes no particular behavior, it would be

appropriate to return immediately.

module FACE {

 module LCM {

 // The Initializable module corresponds to the Initializable Capability.

 module Initializable {

 interface InitializableInstance {

 // The Initialize(LCM::Initializable) operation provides the instance

 // an opportunity to perform appropriate behaviors at the

 // corresponding execution point in its life-cycle.

 void Initialize(

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

FACE™ Technical Standard, Edition 3.0 247

 }; // interface InitializableInstance

 }; // module Initializable

 };// module LCM

}; // module FACE

The parameters to this function are as follows:

 configuration – configured parameters available at this execution point

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason. The return code value is one of the

following:

 NO_ERROR to indicate successful completion of the operation

 NO_ACTION to indicate that this behavior is not supported

 NOT_AVAILABLE to indicate that one or more resources could not be acquired

 IN_PROGRESS to indicate that a previous operation is still in progress

 INVALID_CONFIG to indicate an error or inconsistency in the configuration data, or that

the configuration data itself is not accessible

D.2.2 Finalize(LCM:: Initializable)

The Finalize(LCM:: Initializable) function supports the distinct execution point of finalization.

This function is an entry point into a Managed UoC instance, providing the instance with a

thread of control to perform any appropriate behaviors at this execution point. It is intended to be

called once transactionally, meaning called until a return code other than IN_PROGRESS is

returned.

After this execution point the Managed UoC instance exists but may have released its resources.

A Managed UoC with relevant safety-critical requirements may be designed to never release its

resources, and it would be appropriate to return immediately.

A Managed UoC designed to release its resources at the destruction execution point, with no

designed behaviors at the finalization execution point, may still have this function called. As the

FACE Technical Standard prescribes no particular behavior, it would be appropriate to return

immediately.

module FACE {

 module LCM {

 // The Initializable module corresponds to the Initializable Capability.

 module Initializable {

 interface InitializableInstance {

 // The Finalize(LCM::Initializable) operation provides the instance

 // an opportunity to perform appropriate behaviors at the

 // corresponding execution point in its life-cycle.

 void Finalize(

 out RETURN_CODE_TYPE return_code);

 }; // interface InitializableInstance

 }; // module Initializable

 };// module LCM

}; // module FACE

248 Open Group Standard (2017)

The parameters to this function are as follows:

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason. The return code value is one of the

following:

 NO_ERROR to indicate successful completion of the operation

 NO_ACTION to indicate that this behavior is not supported

 TIMED_OUT to indicate an error releasing one or more resources but the operation has

completed

 IN_PROGRESS to indicate that a previous operation is still in progress

D.3 Configurable Capability Interface

D.3.1 Configure(LCM::Configurable)

The Configure(LCM::Configurable) function supports assignment and reassignment of the

configuration parameters supported by the Managed UoC. It is intended to be called at the

distinction execution point of configuration to assign the initial value for all configuration

parameters. It may also be called at a later execution point in order to change one or more

configuration parameters.

module FACE {

 module LCM {

 // The Configurable module corresponds to the Configurable Capability.

 module Configurable {

 interface ConfigurableInstance {

 // The Configure(LCM::Configurable) operation is called to provide

 // the instance with configuration parameters at the corresponding

 // execution point in its life-cycle.

 void Configure(

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 }; // interface ConfigurableInstance

 }; // module Configurable

 };// module LCM

}; // module FACE

The parameters to this function are as follows:

 configuration – configured parameters available at this execution point; this may be a

partial set of the supported configuration parameters, and in such case the Managed UoC

can preserve the current value of unspecified parameters

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason. The return code value is one of the

following:

 NO_ERROR to indicate successful completion of the operation

FACE™ Technical Standard, Edition 3.0 249

 NO_ACTION to indicate that this behavior is not supported

 INVALID_CONFIG to indicate an error or inconsistency in the configuration data, or that

the configuration data itself is not accessible

D.4 Connectable Capability Interface

D.4.1 Framework_Connect(LCM::Connectable)

The Framework_Connect(LCM::Connectable) callback function supports the distinct execution

point of Component Framework startup. Component Frameworks commonly have a startup

phase where the various component instances each in turn become connected to the framework.

Prior to this execution point, the component instance exists but cannot use framework services.

This function is an entry point into a Managed UoC instance, providing the instance with a

thread of control to perform any appropriate behaviors at this execution point, and also serving

as notification that framework services are henceforth available to the Managed UoC instance. It

is intended to be called once transactionally, meaning called until a return code other than

IN_PROGRESS is returned, by the Component Framework.

A Managed UoC with no designed behaviors at this execution point may still have this function

called by the Component Framework. As the FACE Technical Standard prescribes no particular

behavior, it would be appropriate to return immediately.

module FACE {

 module LCM {

 // The Connectable module corresponds to the Connectable Capability.

 module Connectable {

 interface ConnectableInstance {

 // The Framework_Connect(LCM::Connectable) operation is called by a

 // Component Framework at the point during framework startup when

 // the instance is being connected. It provides the instance an

 // opportunity to perform appropriate behaviors at that point in its

 // life-cycle. The caller determines whether the operation is invoked

 // before or after the connection is completed.

 void Framework_Connect(

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 }; // interface ConnectableInstance

 }; // module Connectable

 };// module LCM

}; // module FACE

The parameters to this function are as follows:

 configuration – configured parameters available at this execution point

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason. The return code value is one of the

following:

 NO_ERROR to indicate successful completion of the operation, or that the instance is

already connected

 NO_ACTION to indicate that this behavior is not supported

250 Open Group Standard (2017)

 IN_PROGRESS to indicate that a previous operation is still in progress

 INVALID_CONFIG to indicate an error or inconsistency in the configuration data

D.4.2 Framework_Disconnect(LCM::Connectable)

The Framework_Disconnect(LCM::Connectable) function supports the distinct execution point

of Component Framework teardown. Component Frameworks commonly have a teardown phase

where the various component instances each in turn become disconnected from the framework.

Following this execution point, the component instance exists but cannot use framework

services. This function is an entry point into a Managed UoC instance, providing the instance

with a thread of control to perform any appropriate behaviors at this execution point, and also

serving as notification that framework services are henceforth unavailable to the Managed UoC

instance. It is intended to be called once transactionally, meaning called until a return code other

than IN_PROGRESS is returned, by the Component Framework.

A Managed UoC with no designed behaviors at this execution point may still have this function

called by the Component Framework. As the FACE Technical Standard prescribes no particular

behavior, it would be appropriate to return immediately.

module FACE {

 module LCM {

 // The Connectable module corresponds to the Connectable Capability.

 module Connectable {

 interface ConnectableInstance {

 // The Framework_Disconnect(LCM::Connectable) operation is called by

 // a Component Framework at the point during framework teardown when

 // the instance is being disconnected. It provides the instance an

 // opportunity to perform appropriate behaviors at that point in its

 // life-cycle. The caller determines whether the operation is invoked

 // before or after the disconnection is completed.

 void Framework_Disconnect(

 out RETURN_CODE_TYPE return_code);

 }; // interface ConnectableInstance

 }; module Connectable

 };// module LCM

}; // module FACE

The parameters to this function are as follows:

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason. The return code value is one of the

following:

 NO_ERROR to indicate successful completion of the operation, or that the instance is

already disconnected

 NO_ACTION to indicate that this behavior is not supported

 IN_PROGRESS to indicate that a previous operation is still in progress

FACE™ Technical Standard, Edition 3.0 251

D.5 Stateful Capability Interface

D.5.1 Query_State(LCM::Stateful)

The Query_State(LCM::Stateful) function returns the current state of an instance of a Managed

UoC.

module FACE {

 module LCM {

 // The Stateful module corresponds to the Stateful Capability.

 module Stateful<typename REQUESTED_STATE_VALUE_TYPE,

 typename REPORTED_STATE_VALUE_TYPE> {

 interface StatefulInstance {

 // The Query_State(LCM::Stateful) operation is called to retrieve

 // the instance's current state.

 void Query_State(

 out REPORTED_STATE_VALUE_TYPE current_state,

 out RETURN_CODE_TYPE return_code);

 }; // interface StatefulInstance

 }; // module Stateful

 };// module LCM

}; // module FACE

The parameters to this function are as follows:

 current_state – upon return, the state of the instance

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason. The return code value is one of the

following:

 NO_ERROR to indicate successful completion of the operation

 NO_ACTION to indicate that this behavior is not supported

 NOT_AVAILABLE to indicate that the state could not be returned because it was not in a

steady state

D.5.2 Request_State_Transition(LCM::Stateful)

The Request_State_Transition(LCM::Stateful) function is a request to change the state of an

instance of a Managed UoC.

module FACE {

 module LCM {

 // The Stateful module corresponds to the Stateful Capability.

 module Stateful<typename REQUESTED_STATE_VALUE_TYPE,

 typename REPORTED_STATE_VALUE_TYPE> {

 interface StatefulInstance {

 // The Request_State_Transition(LCM::Stateful) operation is called

 // to request that the instance transition to 'new_state'.

 void Request_State_Transition(

 in REQUESTED_STATE_VALUE_TYPE new_state,

 out RETURN_CODE_TYPE return_code);

 }; // interface StatefulInstance

 }; // module Stateful

 };// module LCM

}; // module FACE

252 Open Group Standard (2017)

The parameters to this function are as follows:

 new_state – the state to which the instance is requested to transition

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the function

executed successfully or failed for a specific reason. The return code value is one of the

following:

 NO_ERROR to indicate successful completion of the operation, or that the component is

already in the requested state

 NO_ACTION to indicate that this behavior is not supported

 IN_PROGRESS to indicate that a previous operation is still in progress

 NOT_AVAILABLE to indicate that the requested state transition could not be executed

because it was not in an appropriate state

D.6 Complete Declarations

This section contains the complete IDL declaration for all of the LCM Interfaces. The

declarations are in FACE/LCM.idl.

//! Source file: FACE/LCM.idl

#ifndef __FACE_LCM

#define __FACE_LCM

#include <FACE/common.idl>

module FACE {

 module LCM {

 // FACE does not define an interface to create or destroy instances. The

 // IDL language bindings address the syntax for those operations. The

 // LCM Interface assumes an existent software object that implements

 // one or more of the interfaces defined.

 // The Initializable module corresponds to the Initializable Capability.

 module Initializable {

 interface InitializableInstance {

 // The Initialize(LCM::Initializable) operation provides the instance

 // an opportunity to perform appropriate behaviors at the

 // corresponding execution point in its life-cycle.

 void Initialize(

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 // The Finalize(LCM::Initializable) operation provides the instance

 // an opportunity to perform appropriate behaviors at the

 // corresponding execution point in its life-cycle.

 void Finalize(

 out RETURN_CODE_TYPE return_code);

 }; // interface InitializableInstance

 }; // module Initializable

 // The Configurable module corresponds to the Configurable Capability.

 module Configurable {

 interface ConfigurableInstance {

FACE™ Technical Standard, Edition 3.0 253

 // The Configure(LCM::Configurable) operation is called to provide

 // the instance with configuration parameters at the corresponding

 // execution point in its life-cycle.

 void Configure(

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 }; // interface ConfigurableInstance

 }; // module Configurable

 // The Connectable module corresponds to the Connectable Capability.

 module Connectable {

 interface ConnectableInstance {

 // The Framework_Connect(LCM::Connectable) operation is called by a

 // Component Framework at the point during framework startup when

 // the instance is being connected. It provides the instance an

 // opportunity to perform appropriate behaviors at that point in its

 // life-cycle. The caller determines whether the operation is invoked

 // before or after the connection is completed.

 void Framework_Connect(

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 // The Framework_Disconnect(LCM::Connectable) operation is called by

 // a Component Framework at the point during framework teardown when

 // the instance is being disconnected. It provides the instance an

 // opportunity to perform appropriate behaviors at that point in its

 // life-cycle. The caller determines whether the operation is invoked

 // before or after the disconnection is completed.

 void Framework_Disconnect(

 out RETURN_CODE_TYPE return_code);

 }; // interface ConnectableInstance

 }; // module Connectable

 // The Stateful module corresponds to the Stateful Capability.

 module Stateful<typename REQUESTED_STATE_VALUE_TYPE,

 typename REPORTED_STATE_VALUE_TYPE> {

 interface StatefulInstance {

 // The Query_State(LCM::Stateful) operation is called to retrieve

 // the instance's current state.

 void Query_State(

 out REPORTED_STATE_VALUE_TYPE current_state,

 out RETURN_CODE_TYPE return_code);

 // The Request_State_Transition(LCM::Stateful) operation is called

 // to request that the instance transition to 'new_state'.

 void Request_State_Transition(

 in REQUESTED_STATE_VALUE_TYPE new_state,

 out RETURN_CODE_TYPE return_code);

 }; // interface StatefulInstance

 }; // module Stateful

 }; // module LCM

}; // module FACE

#endif // __FACE_LCM

254 Open Group Standard (2017)

E Transport Services Interfaces

E.1 Introduction

The TS Interface is defined by an abstraction interface allowing portable software components to

access transport mechanisms used by the TSS library. These mechanisms include queues,

sockets, sampling ports, etc. The goal of the TS Interface is to enhance portability by abstracting

multiple transport mechanism interfaces from the portable software component. The TS

Interface and TSS are described in Section 3.7 and Section 3.8, respectively.

Declarations are provided using an IDL syntax that is mapped to a Programming Language, as

described in Section 3.14.

Note: The IDL in this document is formatted to align with the formatting constraints of the

printed document.

E.2 Data Types

E.2.1 TSS Common Data Types

//! Source file: FACE/TSS_common.idl

#ifndef __FACE_TSS_COMMON

#define __FACE_TSS_COMMON

#include <FACE/common.idl>

module FACE {

 module TSS {

 //! String containing the connection name used in the TSS create_connection

 //! function.

 typedef STRING_TYPE CONNECTION_NAME_TYPE;

 //! Length of the TS Message.

 typedef long MESSAGE_SIZE_TYPE;

 //! Link to the Data Model Type Information.

 typedef GUID_TYPE MESSAGE_GUID_TYPE;

 //! UID Type is scoped to be unique within a system rather than global

 typedef long long UID_TYPE;

 //! Unique identifier for a TSS connection obtained in create_connection

 //! but used in other TSS functions.

 typedef UID_TYPE CONNECTION_ID_TYPE;

 //! Used to tie together request/reply messages.

 typedef UID_TYPE TRANSACTION_ID_TYPE;

 //QoS Key, Value struct

 struct QoS_Element{

 STRING_TYPE keyname;

 STRING_TYPE value;

 };

 typedef sequence<QoS_Element> QoS_EVENT_TYPE;

FACE™ Technical Standard, Edition 3.0 255

 // "contains instance UID, source UID, and timestamp"

 struct HEADER_TYPE {

 UID_TYPE instance_uid;

 UID_TYPE source_uid;

 SYSTEM_TIME_TYPE timestamp;

 };

 //! This type is used to represent a size in bytes.

 typedef long BYTE_SIZE_TYPE;

 //! This type is used to represent a raw data buffer.

 struct DATA_BUFFER_TYPE {

 SYSTEM_ADDRESS_TYPE buffer_address;

 BYTE_SIZE_TYPE buffer_capacity;

 };

 struct MESSAGE_TYPE {

 MESSAGE_GUID_TYPE message_guid;

 DATA_BUFFER_TYPE buffer;

 };

 };

};

#endif // __FACE_TSS_COMMON

E.3 TSS Inter-Segment Interfaces

E.3.1 Type-Specific Base Interface Specification

//! Source file: FACE/TSS_Base.idl

#ifndef __FACE_TSS_BASE

#define __FACE_TSS_BASE

#include <FACE/TSS_common.idl>

module FACE {

 module TSS {

 //! Base interface provides the common TSS functions

 interface Base {

 //! The Initialize(TS) function call allows for the PCS and PSSS

 //! UoC to trigger the initialization of the TS Interface.

 void Initialize (

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 //! The TSS provides an interface to create a connection. This interface

 //! allows the use of DDS, CORBA, ARINC 653, and POSIX connections.

 void Create_Connection (

 in CONNECTION_NAME_TYPE connection_name,

 in TIMEOUT_TYPE timeout,

 out CONNECTION_ID_TYPE connection_id,

 out MESSAGE_SIZE_TYPE max_message_size,

 out RETURN_CODE_TYPE return_code);

 void Destroy_Connection (

 in CONNECTION_ID_TYPE connection_id,

 out RETURN_CODE_TYPE return_code);

 //! The purpose of Unregister_Callback(TS) is to unregister a callback.

 void Unregister_Callback (

 in CONNECTION_ID_TYPE connection_id,

 out RETURN_CODE_TYPE return_code);

 };

 };

};

256 Open Group Standard (2017)

#endif // __FACE_TSS_BASE

E.3.1.1 Initialize(TS) Function

The Initialize(TS) function call allows for the PCS and PSSS UoC to trigger the initialization of

the TSS UoC.

/* IDL declaration */

module FACE {

 module TSS {

 //! The Initialize(TS) function call allows for the PCS and PSSS

 //! UoC to trigger the initialization of the TS Interface.

 void Initialize (

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 };

 };

};

The parameters to this method are as follows:

 configuration – specifies the name of the configuration for the TS Interface

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Initialize(TS) is one of the following:

 NO_ERROR to indicate TS was successfully initialized according to the configuration

data

 NO_ACTION to indicate TS has been initialized successfully previously

 NOT_AVAILABLE to indicate the configuration data is not accessible

 INVALID_CONFIG to indicate the configuration data has an error

 IN_PROGRESS to indicate the initialize is still in progress and the TSS has not yet

transitioned to a normal state

Note: To support minimal blocking at startup, the initialize may return before it transitions

from an initialize state to a normal state. Subsequent calls to initialize return

IN_PROGRESS until it transitions out of its initial state. Once the transition occurs,

the next call to initialize returns NO_ACTION.

E.3.1.2 Create_Connection(TS) Function

The create connection call allows for a PCS and/or PSSS UoC to establish a TSS connection

(TS-UoP Connection). The TSS may use underlying transports such as DDS, CORBA, ARINC

653, and/or POSIX function calls. The parameters for the transport’s connections are determined

through the TSS Configuration Capability.

/* IDL declaration */

module FACE {

 module TSS {

 //! Base interface provides the common TSS functions

 interface Base {

FACE™ Technical Standard, Edition 3.0 257

 //! The TSS provides an interface to create a connection. This interface

 //! allows the use of DDS, CORBA, ARINC 653, and POSIX connections.

 void Create_Connection (

 in CONNECTION_NAME_TYPE connection_name,

 in TIMEOUT_TYPE timeout,

 out CONNECTION_ID_TYPE connection_id,

 out MESSAGE_SIZE_TYPE max_message_size,

 out RETURN_CODE_TYPE return_code); };

 };

};

Note: Care should be taken when implementing the FACE::TS::Create_Connection(TS)

method to minimize blocking time.

The parameters to this method are as follows:

 connection_name –reference to a connection name in the configuration

 timeout – an upper limit on the blocking time a UoP is willing to wait for the

Create_Connection method to return control to the UoP; Create_Connection can return

earlier, but no later than the timeout provided

 connection_id – identifier for this connection which is returned by the TS Interface; the

identifier is used in subsequent interactions with the TS pertaining to this connection

 max_message_size – returned by the TS Interface indicating the selected value of the

maximum message size for this connection; for example, a PCS or PSSS UoC may need

to perform special handling, such as validation of UoC buffer sizes, UoC fragmentation,

and re-assembly of messages, etc.

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from create_connection is one of the following:

 NO_ERROR to indicate the TS-UoP connection was successfully created

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TS is not yet initialized or the underlying technology

is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range

 INVALID_CONFIG to indicate the configuration data does not match one or more

supplied parameter

 TIMED_OUT to indicate a timeout was specified and exceeded

E.3.1.3 Destroy_Connection(TS) Function

The Destroy_Connection(TS) function frees up any resources allocated to the connection. This

can be an empty function if no cleanup is required.

/* IDL declaration */

module FACE {

 module TSS {

 //! Base interface provides the common TSS functions

258 Open Group Standard (2017)

 interface Base {

 void Destroy_Connection (

 in CONNECTION_ID_TYPE connection_id,

 out RETURN_CODE_TYPE return_code);

 };

 };

};

The parameters to this method are as follows:

 connection_id – identifier for the connection to destroy

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from destroy_connection is one of the following:

 NO_ERROR to indicate the TS-UoP connection was successfully destroyed

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TS is not yet initialized or the underlying technology

is unavailable

 INVALID_PARAM to indicate connection_id supplied is null or not in range

E.3.1.4 Unregister_Callback(TS) Function

The purpose of Unregister_Callback(TS) is to provide a mechanism to unregister the callback

associated with a connection_id.

/* IDL declaration */

module FACE {

 module TS {

 //! Base interface provides the common TSS functions

 interface Base {

 //! The purpose of Unregister_Callback(TS) is to unregister a callback.

 void Unregister_Callback (

 in CONNECTION_ID_TYPE connection_id,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

The parameters to this method are as follows:

 connection_id – identifier for the connection to unregister a callback

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Unregister_Callback is one of the following:

 NO_ERROR to indicate the Unregister_Callback method was successful

 NOT_AVAILABLE to indicate the TS is not yet initialized

FACE™ Technical Standard, Edition 3.0 259

 INVALID_PARAM to indicate the connection_id supplied is null or not in range

E.3.2 Type-SpecificTyped Interface Specification

//! Source file: FACE/TSS_Typed.idl

#ifndef __FACE_TSS_TYPED

#define __FACE_TSS_TYPED

#include <FACE/TSS_common.idl>

module FACE {

 module TSS {

 //! Template provides the operations for a given data type

 //! Unique modules are instantiated to accommodate UoCs in the same memory

 //! space

 module Typed<typename DATATYPE_TYPE> {

 //! The Read_Callback interface provides a callback prototype for PCS/PSSS UoCs

 //! and is used to support receiving data without the PCS/PSSS UoC having to poll

 //! for the data. If a callback is used it is registered using the

 //! Register_Callback

 interface Read_Callback {

 void Callback_Handler (

 in CONNECTION_ID_TYPE connection_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in DATATYPE_TYPE message,

 in HEADER_TYPE header,

 in QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 };

 interface TypedTS {

 //! The purpose of Receive_Message (TS) is to provide a

 //! mechanism to receive data from another source

 void Receive_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 inout TRANSACTION_ID_TYPE transaction_id,

 inout DATATYPE_TYPE message,

 out HEADER_TYPE header,

 out QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 //! The purpose of Send_Message (TS) is to provide a mechanism

 //! to send data to a destination

 void Send_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 inout TRANSACTION_ID_TYPE transaction_id,

 in DATATYPE_TYPE message,

 out RETURN_CODE_TYPE return_code);

 //! The purpose of Register_Callback(TS) is to provide a mechanism

 //! to read data without polling.

 void Register_Callback (

 in CONNECTION_ID_TYPE connection_id,

 inout Read_Callback callback,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

#endif // __FACE_TSS_TYPED

260 Open Group Standard (2017)

E.3.2.1 Callback_Handler(RC) Function

When registered by a PCS/PSSS UoC, the Callback_Handler function provided by the

PCS/PSSS UoC is called by a TSS UoC upon receipt of data. Data is then provided by the TSS

invoking the Callback_Handler function as a callback to the PCS/PSSS UoC.

//! The Read_Callback interface is used to in coordination with the

 //! TSS register_callback function to address periodic

 //! function calls without having to poll for data.

module FACE {

 module TSS {

 interface Read_Callback {

 void Callback_Handler (

 in CONNECTION_ID_TYPE connection_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in DATATYPE_TYPE message,

 in HEADER_TYPE header,

 in QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

The parameters to this method are as follows:

 connection_id – identifier for the connection on which data was received

 transaction_id – identifier used to associate messages in the request/response message

pattern

Clients are provided with the transaction_id along with its response message when a

response message from a server is received. Servers are provided with the transaction_id

along with a request message when a request message is received. The TSS UoC encodes

clients’ identifiers within the transaction_id value.

 message – a reference to the data of interest to the PCS/PSSS UoC

 header – a reference to the header instance for this Message Instance

 qos_parameters – a reference to the QoS event values for this Message Instance

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Callback_Handler is one of the following:

 NO_ERROR to indicate the Callback_Handler method was successful

 DATA_OVERFLOW to indicate the rate of received messages sent via callback exceeds

the ability of the UoP to process those messages

E.3.2.2 Receive_Message(TS) Function

The Receive_Message(TS) function is used to receive data from another source.

/* IDL declaration */

module FACE {

 module TSS {

 module Typed<typename DATATYPE_TYPE> {

FACE™ Technical Standard, Edition 3.0 261

 interface TypedTS {

 void Receive_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 inout TRANSACTION_ID_TYPE transaction_id,

 inout DATATYPE_TYPE message,

 out HEADER_TYPE header,

 out QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

The parameters to this method are as follows:

 connection_id – identifier for the connection on which to receive data

 timeout – an upper limit on the blocking time a UoP is willing to wait for the

Receive_Message method to return control to the UoP; Receive_Message can return

earlier, but no later than the timeout provided

 transaction_id – identifier used to associate messages in the request/response message

pattern

Clients provide the transaction_id to Receive_Message to get its response from a server.

Servers are provided with the transaction_id when a request message is received. The

TSS UoC encodes clients’ identifiers within the transaction_id value.

 message – a reference to the data of interest to the PCS/PSSS UoC

 header – a reference to the header instance for this Message Instance

 qos_parameters – a reference to the QoS event values for this Message Instance

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Receive_Message is one of the following:

 NO_ERROR to indicate the Receive_Message method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TS is not yet initialized or the connection for the

underlying technology is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the connection_id does not exist

 INVALID_MODE to indicate a callback function has been registered for this connection

 TIMED_OUT to indicate a timeout was specified and exceeded

 MESSAGE_STALE to indicate the message lifespan has been exceeded

 CONNECTION_CLOSED to indicate the TS-UoP connection is not open/available

262 Open Group Standard (2017)

 DATA_BUFFER_TOO_SMALL to indicate the message received exceeds the message

size given on a single transaction

 DATA_OVERFLOW to indicate the rate of incoming messages exceeds the rate of

messages being read

E.3.2.3 Send_Message(TS) Function

The Send_Message(TS) function is used to send data to a destination.

/* IDL declaration */

module FACE {

 module TSS {

module Typed<typename DATATYPE_TYPE> {

 interface TypedTS {

 void Send_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 inout TRANSACTION_ID_TYPE transaction_id,

 in DATATYPE_TYPE message,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

The parameters to this method are as follows:

 connection_id – identifier for the connection on which to send data

 timeout – an upper limit on the blocking time a UoP is willing to wait for the

Send_Message method to return control to the UoP; Send_Message can return earlier, but

no later than the timeout provided

 transaction_id – identifier used to associate messages in the request/response message

pattern

Clients are returned the transaction_id from Send_Message when sending a request

message. Servers provide the transaction_id to Send_Message when sending a response

message. The TSS UoC encodes clients’ identifiers within the transaction_id value.

 message – a reference to the PCS/PSSS data to send

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Send_Message is one of the following:

 NO_ERROR to indicate the Send_Message method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TS is not yet initialized or the connection for the

underlying technology is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the connection_id does not exist

FACE™ Technical Standard, Edition 3.0 263

 TIMED_OUT to indicate a timeout was specified and exceeded

 CONNECTION_CLOSED to indicate the TS-UoP connection is not open/available

 DATA_OVERFLOW to indicate the rate of messages to send exceeds the ability of the

transport to send the message

E.3.2.4 Register_Callback(TS) Function

The purpose of Register_Callback(TS) is to provide a mechanism to read data without polling.

Once the PCS/PSSS UoP registers its Read_Callback interface with the TS Interface, the TSS

UoC invokes the Read_Callback method associated with the message received.

/* IDL declaration */

module FACE {

 module TSS {

 module Typed<typename DATATYPE_TYPE> {

 interface TypedTS {

 void Register_Callback (

 in CONNECTION_ID_TYPE connection_id,

 inout Read_Callback callback,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

The parameters to this method are as follows:

 connection_id – connection identifier to associate the read callback

 callback – a reference to a Callback_Handler method to handle received type-specific

messages

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Register_Callback is one of the following:

 NO_ERROR to indicate the Register_Callback method was successful

 NO_ACTION to indicate a callback has already been registered for the connection_id

given

 NOT_AVAILABLE to indicate the TS is not yet initialized

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the connection_id does not exist

 CONNECTION_CLOSED to indicate the TS-UoP connection is not open/available

E.3.3 Serialization Interface Specification

//! Source file: FACE/TSS_Serialize.idl

#ifndef __FACE_TSS_SERIALIZE

#define __FACE_TSS_SERIALIZE

#include <FACE/TSS_common.idl>

264 Open Group Standard (2017)

#include <FACE/TSS_TPM.idl>

module FACE {

 module TSS {

 interface Message_Serialization {

 void Serialize (

 in MESSAGE_TYPE message,

 in DATA_BUFFER_TYPE buffer,

 in TPM::Primitive_Marshalling marshalling_interface,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void DeSerialize (

 in DATA_BUFFER_TYPE buffer,

 out MESSAGE_TYPE message,

 in TPM::Primitive_Marshalling marshalling_interface,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 };

 interface Serialization {

 //! The TPM gets the serialization interface for the message type from the TS

 void Get_Serialization (

 in GUID_TYPE message_type_id,

 out Message_Serialization serialization,

 out RETURN_CODE_TYPE return_code);

 };

 };

};

#endif // __FACE_TSS_SERIALIZE

E.3.3.1 Serialize(TS) Function

Prototype of the serialize function for messages of a given data type. Used by the TPM to help

serialize complex message structures and implemented by a TS Interface helper function.

/* IDL declaration */

module FACE {

 module TSS {

 interface Message_Serialization {

 void Serialize (

 in MESSAGE_TYPE message,

 in DATA_BUFFER_TYPE buffer,

 in TPM::Primitive_Marshalling marshalling_interface,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 }; //end Message_Serialization

 }; //end TSS

}; //end FACE

The parameters to this method are as follows:

 message – a reference to the instance of PCS/PSSS data passed between the TS and TPM;

message is not encoded

 buffer – a reference to the buffer location to store the serialized message once serialization

completes

 marshalling_interface – a reference to the serialize functions of the base types (e.g., float,

integer) that the TPM is providing

 bytes consumed – the number of bytes within the data buffer consumed by the serialized

message

FACE™ Technical Standard, Edition 3.0 265

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from MsgSerialize(TPM) is one of the following:

 NO_ERROR to indicate serialization was successful

 NO_ACTION to indicate a failure due to unknown reasons

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range

E.3.3.2 DeSerialize(TS) Function

Prototype of the deserialize function for messages of a given data type. Used by the TPM to help

deserialize complex message structures. Implemented by a TS Interface helper function.

/* IDL declaration */

module FACE {

 module TSS {

interface Message_Serialization {

 void DeSerialize (

 in DATA_BUFFER_TYPE buffer,

 in MESSAGE_TYPE message,

 in TPM::Primitive_Marshalling marshalling_interface,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 }; //end Message_Serialization

 }; /end TSS

}; //end FACE

The parameters to this method are as follows:

 buffer – a reference to the buffer location currently holding the encoded datagram element

on which the deserialization is performed

 message – a reference to the instance of PCS/PSSS data passed between the TS and TPM;

message is not encoded

 marshalling_interface – a reference to the deserialize functions of the base types (e.g.,

float, integer) that the TPM is providing

 bytes_consumed – the number of bytes within the data buffer used to create the

deserialized message

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from DeSerialize(TPM) is one of the following:

 NO_ERROR to indicate serialization was successful

 NO_ACTION to indicate a failure due to unknown reasons

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range

266 Open Group Standard (2017)

E.3.3.3 Get_Serialization(TSS) Function

Provided by a TSS UoC, TSS_GetSerialization allows the TPM to get the location of the

message serialization helper function from the TSS. There can only be one

Get_Serialization(TSS) function for a TSS library.

module FACE {

 module TSS {

 interface Serialization {

 //! The TPM gets the serialization interface for the message type from the TS

 void Get_Serialization (

 in GUID_TYPE message_type_id,

 out Message_Serialization serialization,

 out RETURN_CODE_TYPE return_code);

 };

 }; }; //end TSS

}; //end FACE

The parameters to this method are as follows:

 message_type_id – a reference to the UUID instance for this message instance

 serialization – a reference to the Message_Serialization interface which provides the

serialize and deserialize functions for the message instance

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Get_Serialization(TPM) is one of the following:

 NO_ERROR to indicate Get_Serialization was successful

 NOT_AVAILABLE to indicate the TPM is not yet initialized

 INVALID_PARAM to indicate the message_type_id supplied is null or not in range

E.3.4 Type-Specific Extended Typed Interface Specification

//! Source file: FACE/TSS_Extended.idl

#ifndef __FACE_TSS_EXTENDED

#define __FACE_TSS_EXTENDED

#include <FACE/TSS_common.idl>

module FACE {

 module TSS {

 module Typed<typename DATATYPE_TYPE, typename RETURN_DATATYPE> {

 interface Read_Callback {

 void Callback_Handler (

 in CONNECTION_ID_TYPE connection_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in RETURN_DATATYPE message,

 in HEADER_TYPE header,

 in QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 };

 interface TypedTS {

 void Blocking_Send_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

FACE™ Technical Standard, Edition 3.0 267

 in DATATYPE_TYPE message,

 out HEADER_TYPE header,

 out QoS_EVENT_TYPE qos_parameters,

 out RETURN_DATATYPE return_data,

 out RETURN_CODE_TYPE return_code);

 void Send_Message_Callback (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 in TRANSACTION_ID_TYPE transaction_id,

 in DATATYPE_TYPE message,

 in Read_Callback callback,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

#endif // __FACE_TSS_EXTENDED

E.3.4.1 Callback_Handler(TS) Function

When provided in the Send_Message_Callback, the Callback_Handler function, provided by the

PCS/PSSS UoC, is called asynchronously by a TSS UoC upon receipt of data. Data is then

provided by the TSS invoking the Callback_Handler function as a callback to the PCS/PSSS

UoC. The callback is discarded by the TSS once data is received.

module FACE {

 module TSS {

 module Typed<typename DATATYPE_TYPE, typename RETURN_DATATYPE> {

 interface Read_Callback {

 void Callback_Handler (

 in CONNECTION_ID_TYPE connection_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in RETURN_DATATYPE message,

 in HEADER_TYPE header,

 in QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

The parameters to this method are as follows:

 connection_id – identifier for the connection on which data was received

 transaction_id – identifier used to associate messages in the request/response message

pattern

Clients are provided with the transaction_id along with its response message when a

response message from a server is received. Servers are provided with the transaction_id

along with a request message when a request message is received. The TSS UoC encodes

clients’ identifiers within the transaction_id value.

 message – a reference to the data of returned in response to the sent message

 header – a reference to the header instance for this Message Instance

 qos_parameters – a reference to the QoS event values for this Message Instance

 return_code – upon return, contains a status code indicating success or failure

268 Open Group Standard (2017)

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Callback_Handler is one of the following:

 NO_ERROR to indicate the Callback_Handler method was successful

 DATA_OVERFLOW to indicate the rate of received messages sent via callback exceeds

the ability of the UoP to process those messages

E.3.4.2 Blocking_Send_Message(TS) Function

The Blocking_Send_Message(TS) function is used to send data to a destination when the sender

requires a response. The response to the sent data is returned in the same method.

/* IDL declaration */

module FACE {

 module TSS {

 module Typed<typename DATATYPE_TYPE, typename RETURN_DATATYPE> {

 interface TypedTS {

 void Blocking_Send_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 in DATATYPE_TYPE message,

 out HEADER_TYPE header,

 out QoS_EVENT_TYPE qos_parameters,

 out RETURN_DATATYPE return_data,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

The parameters to this method are as follows:

 connection_id – identifier for the connection on which to send data

 timeout – an upper limit on the blocking time a UoP is willing to wait for the

Blocking_Send_Message method to return control to the UoP; Blocking_Send_Message

can return earlier, but no later than the timeout provided

 message – a reference to the PCS/PSSS data to send

 return_data – a reference to the PCS/PSSS data returned in response to the sent data

 header – a reference to the header instance for this returned Message Instance

 qos_parameters – a reference to the QoS event values for this returned Message Instance

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Blocking_Send_Message is one of the following:

 NO_ERROR to indicate the Blocking_Send_Message method was successful

 NO_ACTION to indicate a failure due to unknown reasons

FACE™ Technical Standard, Edition 3.0 269

 NOT_AVAILABLE to indicate the TS is not yet initialized or the connection for the

underlying technology is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the connection_id does not exist

 TIMED_OUT to indicate a timeout was specified and exceeded

 CONNECTION_CLOSED to indicate the TS-UoP connection is not open/available

 DATA_OVERFLOW to indicate the rate of messages to send exceeds the ability of the

transport to send the message

E.3.4.3 Send_Message_Callback(TS) Function

The Send_Message_Callback(TS) function is used to send data to a destination that requires a

response. The data returned is provided using the Callback_Handler function. The callback is

discarded by the TSS once data is received.

/* IDL declaration */

module FACE {

 module TSS {

 module Typed<typename DATATYPE_TYPE, typename RETURN_DATATYPE> {

 interface TypedTS {

 void Send_Message_Callback (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 in TRANSACTION_ID_TYPE transaction_id,

 in DATATYPE_TYPE message,

 in Read_Callback callback,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

The parameters to this method are as follows:

 connection_id – identifier for the connection on which to send data

 timeout – an upper limit on the blocking time a UoP is willing to wait for the

Send_Message_Callback method to return control to the UoP; Send_Message_Callback

can return earlier, but no later than the timeout provided

 transaction_id – identifier used to associate messages in the request/response message

pattern

Clients are returned the transaction_id from Send_Message_Callback when sending a

request message. Servers provide the transaction_id to Send_Message_Callback when

sending a response message. The TSS UoC encodes clients’ identifiers within the

transaction_id value.

 message – a reference to the PCS/PSSS data to send

 callback – a reference to a Callback_Handler method to handle the received type-specific

message as an asynchronous response to the sent data

 return_code – upon return, contains a status code indicating success or failure

270 Open Group Standard (2017)

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Send_Message_Callback is one of the following:

 NO_ERROR to indicate the Send_Message_Callback method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TS is not yet initialized or the connection for the

underlying technology is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the connection_id does not exist

 TIMED_OUT to indicate a timeout was specified and exceeded

 CONNECTION_CLOSED to indicate the TS-UoP connection is not open/available

 DATA_OVERFLOW to indicate the rate of messages to send exceeds the ability of the

transport to send the message

E.3.5 Component State Persistence Interface Specification

The CSP Interface is optional. The CSP Interface is defined by an abstraction interface allowing

UoCs to store and retrieve internal state information or private data without defining the data in

the FACE Data Architecture. A PCS, PSSS, or TSS UoC may write data with this interface;

however, only an instance of the UoC that stored the data may retrieve it. The interface is

modeled on the standard create, read, update, and delete interface for universal Data Stores.

//! Source file: FACE/TSS_CSP.idl

#ifndef __FACE_TSS_CSP

#define __FACE_TSS_CSP

#include <FACE/TSS_common.idl>

module FACE {

 module TSS {

 module CSP {

 enum DATA_STORE_KIND_TYPE {

 PRIVATE_DATA_STORE,

 CHECKPOINT_DATA_STORE

 };

 typedef long long DATA_STORE_TOKEN_TYPE;

 typedef long long DATA_ID_TYPE;

 //! The CSP Interface

 interface CSP {

 //! The Initialize(CSP) function call allows for the PCS, PSSS, and

 //! TSSS UoC to trigger the initialization of the CSP Interface.

 void Initialize (

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 //! The Open(CSP) function allows the PCS or PSSS UoC to open

 //! a data store that is associated with checkpoint or private data.

 //! The data store is associated with a configuration name and

 //! referenced by a token returned from the function.

 void Open (

FACE™ Technical Standard, Edition 3.0 271

 in GUID_TYPE uop_id,

 in STRING_TYPE configuration_name,

 in DATA_STORE_KIND_TYPE type,

 out DATA_STORE_TOKEN_TYPE token,

 out RETURN_CODE_TYPE return_code);

 //! The Close(CSP) function allows the PCS or PSSS UoC to close

 //! a data store.

 void Close (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 out RETURN_CODE_TYPE return_code);

 //! The Create(CSP) function allows the PCS or PSSS UoC to create

 //! a data store entry.

 void Create (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 out DATA_ID_TYPE data_id,

 in DATA_BUFFER_TYPE data,

 out RETURN_CODE_TYPE return_code);

 //! The Read(CSP) function allows the PCS or PSSS UoC to read

 //! a data store entry.

 void Read (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 in DATA_ID_TYPE data_id,

 out DATA_BUFFER_TYPE data,

 out RETURN_CODE_TYPE return_code);

 //! The Update(CSP) function allows the PCS or PSSS UoC to update

 //! a data store entry.

 void Update (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 in DATA_ID_TYPE data_id,

 in DATA_BUFFER_TYPE data,

 out RETURN_CODE_TYPE return_code);

 //! The Delete(CSP) function allows the PCS or PSSS UoC to delete

 //! a data store entry.

 void Delete (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 in DATA_ID_TYPE data_id,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

#endif // __FACE_TSS_CSP

E.3.5.1 Initialize(CSP) Function

The Initialize(CSP) function call allows for the PCS and PSSS UoC to trigger the initialization

of the CSP interface.

void Initialize (

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 configuration – specifies the name of the configuration for the CSP Interface

 return_code – upon return, contains a status code indicating success or failure

272 Open Group Standard (2017)

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Initialize(CSP) is one of the following:

 NO_ERROR to indicate CSP was successfully initialized according to the configuration

data

 NO_ACTION to indicate CSP has previously been successfully initialized

 NOT_AVAILABLE to indicate the configuration data is not accessible

 INVALID_CONFIG to indicate the configuration data has an error

 IN_PROGRESS to indicate the initialize is still in progress and the CSP has not yet

transitioned to a normal state

Note: To support minimal blocking at startup, the initialize may return before it transitions to

a nominal state. Subsequent calls return IN_PROGRESS until it transitions to its

nominal state. Once the transition occurs, the next call to initialize returns

NO_ACTION.

E.3.5.2 Open(CSP) Function

The Open(CSP) function call allows for the PCS and PSSS UoC open a data store associated

with checkpoint and/or private data.

void Open (

 in GUID_TYPE uop_id,

 in STRING TYPE configuration_name,

 in DATA_STORE_KIND_TYPE type,

 out DATA_STORE_TOKEN_TYPE token,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 uop_id – identifier for the type of PCS/PSSS UoC using the CSP interface

 configuration_name – reference to a name for a data store matching the configuration of

the CSP

 type – indication if the data store is to be used for private data or checkpoint data

 token – identifier for this data store which is returned by the CSP Interface; the identifier

is used in subsequent interactions with the CSP pertaining to this data store

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Open(CSP) is one of the following:

 NO_ERROR to indicate the UoC’s data store was successfully opened

 NO_ACTION to indicate a failure due to unknown reasons

FACE™ Technical Standard, Edition 3.0 273

 NOT_AVAILABLE to indicate the CSP is not yet initialized or the underlying storage

medium is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or unknown

 INVALID_CONFIG to indicate the configuration data does not match one or more

supplied parameter

E.3.5.3 Close(CSP) Function

The Close(CSP) function call allows for the PCS and PSSS UoC to close a Data Store.

void Close (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 uop_id – identifier for the PCS/PSSS UoC using the CSP interface

 token – identifier for the data store to close

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Close is one of the following:

 NO_ERROR to indicate the UoC’s data store was successfully closed

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the CSP is not yet initialized or the underlying storage

medium is unavailable

 INVALID_PARAM to indicate token supplied is null or unknown

E.3.5.4 Create(CSP) Function

The Create(CSP) function call allows for the PCS and PSSS UoC to create a Data Store entry.

void Create (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 out DATA_ID_TYPE data_id,

 in DATA_BUFFER_TYPE data,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 uop_id – identifier for the PCS/PSSS UoC using the CSP interface

 token – identifier for the CSP data store to create the entry; the token is provided by

Open(CSP)

 data_id – identifier of the data entry created within the UoC’s data store

 data –the PCS/PSSS data to store

274 Open Group Standard (2017)

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Create(CSP) is one of the following:

 NO_ERROR to indicate the Create method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the CSP is not yet initialized or the underlying storage

medium is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or unknown or

the token does not exist

 CONNECTION_CLOSED to indicate the UoC’s data store is not open

E.3.5.5 Read(CSP) Function

The Read(CSP) function call allows for the PCS and PSSS UoC to read a Data Store entry.

void Read (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 in DATA_ID_TYPE data_id,

 out DATA_BUFFER_TYPE data,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 uop_id – identifier for the PCS/PSSS UoC using the CSP interface

 token – identifier for the CSP data store from which to read; the token is provided by

Open(CSP)

 data_id – identifier of the data entry to read from the UoC’s data store

 data –the data read being returned

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Read(CSP) is one of the following:

 NO_ERROR to indicate the Read method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the CSP is not yet initialized or the underlying storage

medium is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or unknown or

the token does not exist

 CONNECTION_CLOSED to indicate the UoC’s data store is not open

FACE™ Technical Standard, Edition 3.0 275

E.3.5.6 Update(CSP) Function

The Update(CSP) function call allows for the PCS and PSSS UoC to update an existing Data

Store entry.

void Update (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 in DATA_ID_TYPE data_id,

 in DATA_BUFFER_TYPE data,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 uop_id – identifier for the PCS/PSSS UoC using the CSP interface

 token – identifier for the CSP data store to update; the token is provided by Open(CSP)

 data_id – identifier of the data entry to update within the UoC’s data store

 data –the PCS/PSSS data that will replace what is currently in the data store

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Update(CSP) is one of the following:

 NO_ERROR to indicate the Update method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the CSP is not yet initialized or the underlying storage

medium is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or unknown or

the token does not exist

 CONNECTION_CLOSED to indicate the UoC’s data store is not open

E.3.5.7 Delete(CSP) Function

The Delete(CSP) function call allows for the PCS and PSSS UoC to delete a Data Store entry.

void Delete (

 in GUID_TYPE uop_id,

 in DATA_STORE_TOKEN_TYPE token,

 in DATA_ID_TYPE data_id,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 uop_id – identifier for the PCS/PSSS UoC using the CSP interface

 token – identifier for the CSP data store which contains the entry; the token is provided by

Open(CSP)

 data_id – identifier of the data entry to delete within the UoC’s data store

 return_code – upon return, contains a status code indicating success or failure

276 Open Group Standard (2017)

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Delete(CSP) is one of the following:

 NO_ERROR to indicate the Delete method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the CSP is not yet initialized or the underlying storage

medium is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or unknown or

the token does not exist

 CONNECTION_CLOSED to indicate the UoC’s data store is not open

E.4 TSS Intra-Segment Interfaces

E.4.1 Type Abstraction Interface Specification

The FACE Type Abstraction interface is optional. It provides a standard mechanism for TS

portability across system implementations which can be conformed and verified as a software

component. An adapter is used between the Transport Services interface and the Type

Abstraction interface where the typed message in the Send_Message, Receive_Message, and

Callback_Handler is re-cast to a general reference with a TS message identifier. The parameters

and return codes are consistent with the Transport Services interface in Section E.3.1.

MESSAGE_TYPE replaces DATATYPE_TYPE for message in the Callback_Handler (Section

E.3.2.1), Receive_Message (Section E.3.2.2), Send_Message (Section E.3.2.3),

Blocking_Send_Message (Section E.3.4.2), and Send_Message_Callback (Section E.3.4.3).

//! Source file: FACE/TSS_TypeAbstraction.idl

#ifndef __FACE_TSS_TYPEABSTRACTION

#define __FACE_TSS_TYPEABSTRACTION

#include <FACE/TSS_Base.idl>

module FACE {

 module TSS {

 module TypeAbstraction {

 //! The Read_Callback interface provides a callback prototype for the TS Capability

 //! and is used to support receiving periodic data without the TS Capability having

 //! To poll for data. If a callback is used by the TS capability it is

 //! registered using the Register_Callback

 interface Read_Callback {

 void Callback_Handler (

 in CONNECTION_ID_TYPE connection_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in MESSAGE_TYPE message,

 in HEADER_TYPE header,

 in QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 };

 //! The Type Abstraction TA Interface

 interface TypeAbstractionTS {

 void Receive_Message (

FACE™ Technical Standard, Edition 3.0 277

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 inout TRANSACTION_ID_TYPE transaction_id,

 in MESSAGE_SIZE_TYPE size_limit,

 out MESSAGE_TYPE message,

 out HEADER_TYPE header,

 out QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 void Send_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 inout TRANSACTION_ID_TYPE transaction_id,

 in MESSAGE_TYPE message,

 out MESSAGE_SIZE_TYPE size_sent,

 out RETURN_CODE_TYPE return_code);

 void Blocking_Send_Message (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 in MESSAGE_SIZE_TYPE size_limit,

 in MESSAGE_TYPE message,

 out MESSAGE_SIZE_TYPE size_sent,

 out HEADER_TYPE header,

 out QoS_EVENT_TYPE qos_parameters,

 out MESSAGE_TYPE return_data,

 out RETURN_CODE_TYPE return_code);

 void Send_Message_Callback (

 in CONNECTION_ID_TYPE connection_id,

 in TIMEOUT_TYPE timeout,

 in TRANSACTION_ID_TYPE transaction_id,

 in MESSAGE_TYPE message,

 in Read_Callback callback,

 out MESSAGE_SIZE_TYPE size_sent,

 out RETURN_CODE_TYPE return_code);

 //! The purpose of Register_Callback(TA) is to provide a mechanism

 //! to read data without polling. This is used for publish/subscribe

 //! transportation mechanisms.

 void Register_Callback (

 in CONNECTION_ID_TYPE connection_id,

 inout Read_Callback data_callback,

 in MESSAGE_SIZE_TYPE max_message_size,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

#endif // __FACE_TSS_TYPEABSTRACTION

E.4.2 Transport Protocol Module (TPM) Interface Specification

There may or may not be a TPM present in an implementation. The TPM provides a standard

mechanism to access transports which may be external to a TSS implementation. A TSS can be

extended to interface to a TPM using the TPM interface to promote interoperability between

different TSS implementations. By isolating the transport protocol behind a standard interface,

implementation of TSS UoCs may use any TPM Interface conformant module to provide the

required transport functionality. A TSS UoC can also use a TPM Interface as part of its native

design if desired.

//! Source file: FACE/TSS_TPM.idl

#ifndef __FACE_TSS_TPM

#define __FACE_TSS_TPM

#include <FACE/TSS_common.idl>

278 Open Group Standard (2017)

module FACE {

 module TSS {

 module TPM {

 typedef UID_TYPE CHANNEL_ID_TYPE;

 enum EVENT_TYPE {

 INIT_COMPLETE, //initialization has completed

 XPORT_DEGRADED, //a failure, such as being oversubscribed, is degrading

 //transport performance

 CBIT_FAIL, //continuous built-in-test failure

 IBIT_FAIL, //initiated built-in-test failure

 CHANNEL_FAIL, //a particular failure has occurred in a channel

 LOST_LINK, //the transport link cannot detect wire activity

 TRANSMIT_COMPLETE //the last transmission has completed

 };

 //! Two kinds of callbacks are provided to receive data or events. Callbacks

 //! registered to receive events get called when changes in the channel(e.g. a

 //! disruption in the channel), transports (e.g. lost link, a degradation in

 //! network performance, a cbit failure), as well as notification when datagrams

 //! have completed transmission on the wire)

 interface TPM_Callback {

 typedef long EVENT_CODE_TYPE;

 typedef STRING_TYPE DIAGNOSTIC_MSG_TYPE;

 enum CALLBACK_KIND_TYPE{

 DATA, //callback kind for a message incoming from the transport

 EVENT, //callback kind for a change in event status

 BOTH //callback kind for both a message and change in event status

 };

 readonly attribute CALLBACK_KIND_TYPE callback_kind;

 void Data_Callback_Handler (

 in CHANNEL_ID_TYPE channel_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in MESSAGE_TYPE message,

 in HEADER_TYPE tss_header,

 in QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 void Event_Callback_Handler (

 in CHANNEL_ID_TYPE channel_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in EVENT_TYPE event,

 in EVENT_CODE_TYPE event_code,

 in DIAGNOSTIC_MSG_TYPE diagnostic_msg,

 out RETURN_CODE_TYPE return_code);

 };

 //! The TPM Interface

 interface TPMTS {

 typedef sequence<CHANNEL_ID_TYPE> CHANNEL_ID_SEQ_TYPE;

 enum TPM_STATE_TYPE{

 NORMAL,

 TEST,

 RESUME,

 PAUSE,

 SHUTDOWN,

 SECURE

 };

 enum LEVEL_OF_TEST_TYPE {

 CBIT,

 IBIT,

 PBIT

 };

FACE™ Technical Standard, Edition 3.0 279

 union STATE_CHANGE_DATA_TYPE switch(TPM_STATE_TYPE) {

 //! Provide a list of channels which must have their associated

 //! data cleared

 case SECURE:

 CHANNEL_ID_SEQ_TYPE channels_to_clear;

 //! Different levels of test to allow for destructive and non-destructive

 //! Testing (CBIT, IBIT, etc)

 case TEST:

 LEVEL_OF_TEST_TYPE test_level;

 //the following cases don’t have data associated with

 // them on a state change request

 //case NORMAL: //empty

 //case RESUME: //empty

 //case PAUSE: //empty

 //case SHUTDOWN: //empty

 };

 //! Initialize provides a method for use during startup to initialize the

 //! transport hardware and the protocol. Initialize would be called after each

 //! of the protocol binding module’s functions are registered with the service

 //! interface

 void Initialize (

 in CONFIGURATION_RESOURCE configuration,

 out RETURN_CODE_TYPE return_code);

 //! Open_Channel establishes an endpoint connection with another TS domain.

 //! The primary TS can establish a contract with the underlying

 //! protocol and transport for security and quality of service.

 void Open_Channel (

 in CONNECTION_NAME_TYPE endpoint_name,

 in DATA_BUFFER_TYPE transport_config,

 in DATA_BUFFER_TYPE security_config,

 out CHANNEL_ID_TYPE channel_id,

 out RETURN_CODE_TYPE return_code);

 void Close_Channel (

 in CHANNEL_ID_TYPE channel_id,

 out RETURN_CODE_TYPE return_code);

 //! State change is requested to control the transport, such as sending the TPM

 //! into test or have the TPM temporarily suspend communications. Data may be

 //! associated with the state change, such as indicating the level of test to

 //! perform

 void Request_TPM_State_Change (

 in TPM_STATE_TYPE new_state,

 in STATE_CHANGE_DATA_TYPE data,

 out RETURN_CODE_TYPE return_code);

 //! Is_Data_Available allows users to retrieve which channels have activity and

 //! can subsequently be read without blocking. NULL timeout allows the user to

 //! block until there is any data received

 void Is_Data_Available (

 in CHANNEL_ID_SEQ_TYPE channel_ids,

 in TIMEOUT_TYPE timeout,

 out CHANNEL_ID_SEQ_TYPE available_ids,

 out RETURN_CODE_TYPE return_code);

 //! Used to monitor the health and availability of the transport. The status

 //! would allow the user to continue to use the transport or consider it a

 //! BUS FAIL

 void Get_TPM_Status (

 out EVENT_TYPE status,

 out RETURN_CODE_TYPE return_code);

 //! Read_From_Transport allows the primary TS to read incoming datagrams.

 //! If a non-zero timeout is used, the call blocks until data is received

280 Open Group Standard (2017)

 //! and processed by the protocol or the timeout is reached.

 //! If used with isDataAvailable, a timeout of 0 returns the datagram already

 //! processed by the protocol otherwise if no data was received returns 0 bytes

 //! in the message

 void Read_From_Transport (

 in CHANNEL_ID_TYPE channel_id,

 in TIMEOUT_TYPE timeout,

 out TRANSACTION_ID_TYPE transaction_id,

 out MESSAGE_TYPE message,

 out HEADER_TYPE TSS_header,

 out QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

 //! Write_To_Transport provides the ability to write a datagram to the binding

 //! module for protocol processing and transport. The TPM transmits the

 //! message within this method call with a maxDelay of 0 or establish a pipeline

 //! of messages. A send_TPM_event is used to release the buffers used by the

 //! primary TS.

 void Write_To_Transport (

 in CHANNEL_ID_TYPE channel_id,

 in TIMEOUT_TYPE max_delay,

 in MESSAGE_TYPE message,

 in HEADER_TYPE TSS_header,

 out TRANSACTION_ID_TYPE transaction_id,

 out RETURN_CODE_TYPE return_code);

 //! The callback functions are provided by the user and must be registered for

 //! the binding module to call.

 void Register_TPM_Callback (

 in CHANNEL_ID_TYPE channel_id,

 inout TPM_Callback callback,

 out RETURN_CODE_TYPE return_code);

 void Unregister_TPM_Callback (

 in CHANNEL_ID_TYPE channel_id,

 in TPM_Callback::CALLBACK_KIND_TYPE rcallback_kind,

 out RETURN_CODE_TYPE return_code);

 };

 // Protocol-specific base type serialization

 // A serialization and deserialization method is provided for each of the base

 // types

 interface Primitive_Marshalling {

 void Marshal_short (

 in short data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_short (

 in DATA_BUFFER_TYPE buffer,

 out short data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_long (

 in long data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_long (

 in DATA_BUFFER_TYPE buffer,

 out long data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_long_long (

 in long long data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

FACE™ Technical Standard, Edition 3.0 281

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_long_long (

 in DATA_BUFFER_TYPE buffer,

 out long long data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_unsigned_short (

 in unsigned short data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_unsigned_short (

 in DATA_BUFFER_TYPE buffer,

 out unsigned short data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_unsigned_long (

 in unsigned long data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_unsigned_long (

 in DATA_BUFFER_TYPE buffer,

 out unsigned long data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_unsigned_long_long (

 in unsigned long long data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_unsigned_long_long (

 in DATA_BUFFER_TYPE buffer,

 out unsigned long long data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_float (

 in float data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_float (

 in DATA_BUFFER_TYPE buffer,

 out float data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_double (

 in double data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_double (

 in DATA_BUFFER_TYPE buffer,

 out double data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_long_double (

 in long double data,

 in DATA_BUFFER_TYPE buffer,

282 Open Group Standard (2017)

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_long_double (

 in DATA_BUFFER_TYPE buffer,

 out long double data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_char (

 in char data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_char (

 in DATA_BUFFER_TYPE buffer,

 out char data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_boolean (

 in boolean data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_boolean (

 in DATA_BUFFER_TYPE buffer,

 out boolean data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_octet (

 in octet data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_octet (

 in DATA_BUFFER_TYPE buffer,

 out octet data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Marshal_string (

 in UNBOUNDED_STRING_TYPE data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 void Unmarshal_string (

 in DATA_BUFFER_TYPE buffer,

 out UNBOUNDED_STRING_TYPE data,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 };

 };

 };

};

#endif // __FACE_TSS_TPM

E.4.2.1 Initialize(TPM) Function

The Initialize(TPM) function call allows for the TSS UoC to trigger the initialization of the TPM

software component. It provides the entry point for the TPM at startup.

void Initialize (

 in CONFIGURATION_RESOURCE configuration,

FACE™ Technical Standard, Edition 3.0 283

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 configuration – specifies the name of the configuration for the Transport Protocol Module

Interface

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Initialize(TPM) is one of the following:

 NO_ERROR to indicate TPM was successfully initialized according to the configuration

data

 NO_ACTION to indicate TPM has been initialized successfully previously

 NOT_AVAILABLE to indicate the configuration data is not accessible

 INVALID_CONFIG to indicate the configuration data has an error

 IN_PROGRESS to indicate the initialize is still in progress and the TPM has not yet

transitioned to a normal state

Note: To support minimal blocking at startup, the initialize may return before it transitions

from an initialize state to a normal state. Subsequent calls to initialize returns

IN_PROGRESS until it transitions out of its initial state. Once the transition occurs,

the next call to initialize returns NO_ACTION.

E.4.2.2 Open Channel(TPM) Function

The openChannel(TPM) call allows for a TSS UoC to establish a connection for the transport

managed by the TPM using attributes required by the TSS for the transport, security and QoS.

/* IDL declaration */

 void Open_Channel (

 in CONNECTION_NAME_TYPE endpoint_name,

 in DATA_BUFFER_TYPE transport_config,

 in DATA_BUFFER_TYPE security_config,

 out CHANNEL_ID_TYPE channel_id,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 Endpoint_name – reference to a name in the configuration with which the TS would like

to communicate

 Transport_config – reference to implementation-defined transport metadata, which can be

managed at run-time versus configuration, specific to the channel being opened

 Security_config – reference to implementation-defined security metadata such as

certificates, public keys, or enabling encryption for a channel

 channel_id – returned by the TPM Interface indicating the reference to use for this

channel in subsequent TPM calls

 return_code – upon return, contains a status code indicating success or failure

284 Open Group Standard (2017)

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from openChannel(TPM) is one of the following:

 NO_ERROR to indicate the TS-TPM channel was successfully created

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TPM is not yet initialized or the underlying

technology is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range

 INVALID_CONFIG to indicate the configuration data does not match one or more

supplied parameter

 TIMED_OUT to indicate a timeout was specified and exceeded

E.4.2.3 Close Channel(TPM) Function

The closeChannel(TPM) function frees up any resources allocated to the channel. This can be an

empty function if no cleanup is required.

/* IDL declaration */

 void Close_Channel (

 in CHANNEL_ID_TYPE channel_id,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 channel_id – identifier for the channel to destroy

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from closeChannel(TPM) is one of the following:

 NO_ERROR to indicate the TPM channel was successfully destroyed

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TPM is not yet initialized or the underlying

technology is unavailable

 INVALID_PARAM to indicate channelToken supplied is null or not in range

E.4.2.4 Request_TPM_State_Change(TPM) Function

The requestTPMStateChange(TPM) function frees up any resources allocated to the channel.

This can be an empty function if no cleanup is required.

/* IDL declaration */

 void Request_TPM_State_Change (

 in TPM_STATE_TYPE new_state,

 in STATE_CHANGE_DATA_TYPE data,

 out RETURN_CODE_TYPE return_code);

FACE™ Technical Standard, Edition 3.0 285

The parameters to this method are as follows:

 new_state – the state to which the TPM is being requested to change

 data – a reference to data associated with requests to change to the test or secure states

For the TEST state, this indicates a level of test to perform. For the SECURE state, it

provides the TS credentials required to secure the transport.

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from requestTPMStateChange(TPM) is one of the following:

 NO_ERROR to indicate the TPM channel was successfully changed states

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TPM is not yet initialized or the underlying

technology is unavailable

E.4.2.5 is_Data_Available(TPM) Function

The isDataAvailable(TPM) call provides a single function to indicate which previously created

channels have data ready to read. Typically used to simplify buffer management and avoid race

conditions.

/* IDL declaration */

 void Is_Data_Available (

 in CHANNEL_ID_SEQ_TYPE channel_ids,

 in TIMEOUT_TYPE timeout,

 out CHANNEL_ID_SEQ_TYPE available_ids,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 channel_ids – a list of channel token identifiers which the TS is querying for activity

 timeout – an upper limit on the blocking time a TS is willing to wait for the

isDataAvailable method to return control to the TS; isDataAvailable can return earlier, but

no later than the timeout provided

 available_ids – a list of channel token identifiers from the tokenList which have activity

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from isDataAvailable(TPM) is one of the following:

 NO_ERROR to indicate the TPM connection was successfully destroyed

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TS is not yet initialized or the underlying technology

is unavailable

286 Open Group Standard (2017)

 INVALID_PARAM to indicate connection_id supplied is null or not in range

E.4.2.6 Get_TPM_Status(TPM) Function

The Get_TPM_Status(TPM) function is used to monitor the health and availability of the

transport, get the current state of the TPM, or receive information regarding the channel and

whether it remains active and can communicate to its remote endpoint.

/* IDL declaration */

 void Get_TPM_Status (

 out EVENT_TYPE status,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 status – current state of the TPM, transport, and/or information regarding a channel

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Get_TPM_Status(TPM) is one of the following:

 NO_ERROR to indicate the GetTPMStatus method was successful

 NOT_AVAILABLE to indicate the TPM is not yet initialized or the underlying

technology is unavailable

E.4.2.7 Read_From_Transport(TPM) Function

The Read_From_Transport(TPM) function provides an interface for a TSS UoC to read a

message from the TPM that has been received on the transport. This can be used as a non-

blocking read with or without making use of the Is_Data_Available function or a blocking read

using the timeout. The TSS and TPM use the same message UID and TSS header as defined by

the TS Interface. The TPM can re-construct them if the protocol optimizes them.

/* IDL declaration */

 void Read_From_Transport (

 in CHANNEL_ID_TYPE channel_id,

 in TIMEOUT_TYPE timeout,

 out TRANSACTION_ID_TYPE transaction_id,

 out MESSAGE_TYPE message,

 out HEADER_TYPE TSS_header,

 out QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 channel_id – identifier for the connection on which to send data

 timeout – an upper limit on the blocking time a TS is willing to wait for the

read_From_Transport method to return control to the TS

read_From_Transport can return earlier, but no later than the timeout provided. A non-

zero timeout waits for a message to be received up to the timeout value.

 transaction_id – a transaction identifier provided by the TPM to the TS used to associate

messages in the request/response message pattern

FACE™ Technical Standard, Edition 3.0 287

 message – a reference to the PCS/PSSS data to read which is passed on by the TS;

messages are deserialized before the message is returned to the TS

 TSS_header – a reference to the header instance for this Message Instance

 qos_parameters – a reference to the QoS attribute values the TPM accomplished for this

Message Instance

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from read_From_Transport(TPM) is one of the following:

 NO_ERROR to indicate the readFromTransport method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TPM is not yet initialized or the connection for the

underlying technology is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the channelToken does not exist

 INVALID_MODE to indicate a callback function has been registered for this connection

 TIMED_OUT to indicate a timeout was specified and exceeded

 MESSAGE_STALE to indicate the message lifespan has been exceeded

 CONNECTION_CLOSED to indicate the TS-TPM channel is not open/available

 DATA_BUFFER_TOO_SMALL to indicate the message received exceeds the message

size given on a single transaction

 DATA_OVERFLOW to indicate the rate of incoming messages exceeds the rate of

messages being read

E.4.2.8 Write_To_Transport(TPM) Function

The Write_To_Transport(TPM) function provides an interface for a TSS UoC to write a

message to the TPM for protocol processing and transmission on the transport. Max delay of

zero indicates immediate processing by the TPM. Otherwise, the TSS can establish a pipeline of

datagrams and track they were successfully transmitted from the TPM notification. Once

notification is received by the TSS the message has completed transmission, the TSS can free the

message buffer. The TSS and TPM use the same message UID and TSS header as defined by the

TS Interface. The TPM may optimize them for transmission.

/* IDL declaration */

void Write_To_Transport (

 in CHANNEL_ID_TYPE channel_id,

 in TIMEOUT_TYPE max_delay,

 in MESSAGE_TYPE message,

 in HEADER_TYPE TSS_header,

 out TRANSACTION_ID_TYPE transaction_id,

 out RETURN_CODE_TYPE return_code);

288 Open Group Standard (2017)

The parameters to this method are as follows:

 channel_id – identifier for the connection on which to send data

 maxDelay – an upper limit on the blocking time a TS is willing to wait for the

writeToTransport method to return control to the TS

writeToTransport can return earlier, but no later than the timeout provided. Transmission

within the context of this message is indicated with a maxDelay equal to 0 (immediate). A

maxDelay > 0 queues messages within the TPM assigning it a lifespan equal to the

maxDelay value to establish a pipeline of messages. An Event_Callback_Handler notifies

the TS of message transmission status and is used to release TS resources.

 message – a reference to the PCS/PSSS data to send as passed on by the TS; message

encoding is not performed prior to sending a message to the TPM

 TSS_header – a reference to the header instance for this Message Instance

 transaction_id – a transaction identifier provided by the TPM to the TS to facilitate buffer

management

If a message is not sent within the maxDelay or a maxDelay of 0 is used, the TS can

receive a notification from the send_TPM_event when the transaction is complete to

release TS resources.

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from write_To_Transport(TPM) is one of the following:

 NO_ERROR to indicate the writeToTransport method was successful

 NO_ACTION to indicate a failure due to unknown reasons

 NOT_AVAILABLE to indicate the TPM is not yet initialized or the connection for the

underlying technology is unavailable

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the channelToken does not exist

 TIMED_OUT to indicate a timeout was specified and exceeded

 CONNECTION_CLOSED to indicate the TS-TPM channel is not open/available

 DATA_OVERFLOW to indicate the rate of messages to send exceeds the ability of the

transport to send the message

E.4.2.9 Data_Callback_Handler(TPM) Functions

Data callback handlers are provided by users of the TPM interface. The handler is supplied to

the TPM through the Register_TPM_Callback function. Once a callback is registered for a

channel, the Data_Callback_Handler is invoked by the TPM on receipt of data.

/* IDL declaration */

interface TPM_Callback {

 void Data_Callback_Handler (

FACE™ Technical Standard, Edition 3.0 289

 in CHANNEL_ID_TYPE channel_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in MESSAGE_TYPE message,

 in HEADER_TYPE tss_header,

 in QoS_EVENT_TYPE qos_parameters,

 out RETURN_CODE_TYPE return_code);

};

The parameters to this method are as follows:

 channel_id – identifier for the channel on which data was received

 transaction_id – a transaction identifier provided by the TPM to the TS used to associate

messages in the request/response message pattern

 message – a reference to the PCS/PSSS data to read which is passed on by the TS;

messages are deserialized before the message is returned to the TS

 header – a reference to the header instance for this Message Instance

 qos_parameters – a reference to the QoS attribute values the TPM accomplished for this

Message Instance

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Data_Callback_Handler is one of the following:

 NO_ERROR to indicate the Data_Callback_Handler method was successful

 DATA_OVERFLOW to indicate the rate of received messages sent via callback exceeds

the ability of the UoP to process those messages

E.4.2.10 Event_Callback_Handler(TPM) Functions

Event callback handlers are provided by users of the TPM interface. The handler is supplied to

the TPM through the Register_TPM_Callback function. Once a callback is registered for a

channel, the Event_Callback_Handler is invoked by the TPM on changes in the TPM state or

channel state.

/* IDL declaration */

interface TPM_Callback {

 void Event_Callback_Handler (

 in CHANNEL_ID_TYPE channel_id,

 in TRANSACTION_ID_TYPE transaction_id,

 in EVENT_TYPE event,

 in EVENT_CODE_TYPE event_code,

 in DIAGNOSTIC_MSG_TYPE diagnostic_msg,

 out RETURN_CODE_TYPE return_code);

};

The parameters to this method are as follows:

 channel_id – identifier for the channel on which data was received

 transaction_id – a transaction identifier provided by the TPM to the TS used to associate

messages in the request/response message pattern

290 Open Group Standard (2017)

 event – a notification of a change in TPM state or a TPM channel state such as

initialization complete, built-in-test failure, or a channel transmission has completed

 event_code – an implementation-defined code for diagnostic purposes

 diagnostic_message – an implementation-defined string of human readable information

for diagnostic purposes

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Event_Callback_Handler is one of the following:

 NO_ERROR to indicate the Event_Callback_Handler method was successful

 DATA_OVERFLOW to indicate the rate of received messages sent via callback exceeds

the ability of the UoP to process those messages

E.4.2.11 Register_TPM_Callback(TPM) Functions

The purpose of Register_TPM_Callback(TPM) is to provide a mechanism to read data without

polling. Once the TS registers its Read_TPM_Callback interface with the TPM, the TPM

invokes the Read_TPM_Callback method associated with the channel’s messages received.

/* IDL declaration */

 void Register_TPM_Callback (

 in CHANNEL_ID_TYPE channel_id,

 inout TPM_Callback callback,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 channel_id – connection identifier to associate the read callback

 callback – a reference to a TPM_Callback method to handle received messages

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Register_Callback is one of the following:

 NO_ERROR to indicate the Register_TPM_Callback method was successful

 NO_ACTION to indicate a callback has already been registered for the connection_id

given

 NOT_AVAILABLE to indicate the TPM is not yet initialized

 INVALID_PARAM to indicate one or more parameters supplied is null or not in range or

the connection_id does not exist

 CONNECTION_CLOSED to indicate the TPM-TS connection is not open/available

FACE™ Technical Standard, Edition 3.0 291

 DATA_BUFFER_TOO_SMALL to indicate the message configured is greater than the

message size given

E.4.2.12 Unregister_TPM_Callback(TPM) Functions

The purpose of Unregister_TPM_Callback(TPM) is to provide a mechanism to unregister the

data or event callback associated with a connection_id.

/* IDL declaration */

 void Unregister_TPM_Callback (

 in CHANNEL_ID_TYPE channel_id,

 in TPM_Callback::CALLBACK_KIND_TYPE rcallback_kind,

 out RETURN_CODE_TYPE return_code);

The parameters to this method are as follows:

 channel_id – identifier for the connection to unregister a callback

 rcallback_kind – unregisters a data callback or event callback for a channel

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Unregister_TPM_Callback is one of the following:

 NO_ERROR to indicate the Unregister_TPM_Callback method was successful

 NOT_AVAILABLE to indicate the TPM is not yet initialized

 INVALID_PARAM to indicate the connection_id supplied is null or not in range

E.4.2.13 Primitive_Marshalling(TPM) Functions

Protocol-specific marshalling and unmarshalling functions are provided for each primitive type

of data such as short, long, long long, unsigned short, etc. The Primitive_Marshalling interface

is provided to the implementation of the Message_Serialization interface. Each marshalling and

unmarshalling method follows the same pattern, for each primitive type. Only one example for

marshalling is provided.

/* IDL declaration */

interface Primitive_Marshalling {

 void Marshal_long (

 in long data,

 in DATA_BUFFER_TYPE buffer,

 out BYTE_SIZE_TYPE bytes_consumed,

 out RETURN_CODE_TYPE return_code);

 }; //end Primitive_Marshalling

The parameters to this method are as follows:

 data – a reference to an instance of a data element of type long

 buffer – a reference to the buffer location used to place the encoded long data element

 bytes_consumed – the number of bytes within the data buffer consumed by the encoded

long data element

 return_code – upon return, contains a status code indicating success or failure

292 Open Group Standard (2017)

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Marshal_long(TPM) is one of the following:

 NO_ERROR to indicate Marshal_long was successful

 NO_ACTION to indicate a failure due to unknown reasons

 INVALID_PARAM to indicate one or more parameter supplied is null or not in range

FACE™ Technical Standard, Edition 3.0 293

F FACE OSS HMFM Interfaces

F.1 Introduction

The Health Monitoring and Fault Management (HMFM) Services API provides a normalized

interface to manage and respond to faults, and report them in a portable manner. The HMFM

Services API is part of the OSS. The FACE HMFM API is designed to directly map to ARINC

653 services when those are available. This direct mapping is only possible if the API is defined

in C.

Note: The code in this document is formatted to align with the formatting constraints of the

printed document.

F.2 HMFM Services API and Message Definitions

//! Source file: FACE/HMFM.h

#ifndef _FACE_HMFM_H

#define _FACE_HMFM_H

#include <stdint.h>

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

typedef int32_t FACE_HMFM_long;

typedef uint32_t FACE_HMFM_unsigned_long;

typedef int8_t FACE_HMFM_char;

typedef enum {

 FACE_HMFM_NO_ERROR,

 FACE_HMFM_NO_ACTION,

 FACE_HMFM_NOT_AVAILABLE,

 FACE_HMFM_INVALID_PARAM,

 FACE_HMFM_INVALID_CONFIG,

 FACE_HMFM_INVALID_MODE,

 FACE_HMFM_TIMED_OUT,

 FACE_HMFM_ADDR_IN_USE,

 FACE_HMFM_PERMISSION_DENIED,

 FACE_HMFM_MESSAGE_STALE,

 FACE_HMFM_CONNECTION_IN_PROGRESS,

 FACE_HMFM_CONNECTION_CLOSED,

 FACE_HMFM_DATA_BUFFER_TOO_SMALL

} FACE_HMFM_RETURN_CODE_TYPE;

typedef void * FACE_HMFM_SYSTEM_ADDRESS_TYPE;

typedef FACE_HMFM_long FACE_HMFM_FAULT_MESSAGE_SIZE_TYPE;

typedef void * FACE_HMFM_FAULT_MESSAGE_ADDRESS_TYPE;

typedef uintptr_t FACE_HMFM_THREAD_ID_TYPE;

#define FACE_HMFM_FAULT_MESSAGE_MAXIMUM_SIZE ((FACE_HMFM_FAULT_MESSAGE_SIZE_TYPE) 128)

typedef FACE_HMFM_unsigned_long FACE_HMFM_STACK_SIZE_TYPE;

294 Open Group Standard (2017)

typedef FACE_HMFM_char

FACE_HMFM_FAULT_MESSAGE_TYPE[FACE_HMFM_FAULT_MESSAGE_MAXIMUM_SIZE];

typedef enum {

 FACE_HMFM_DEADLINE_MISSED,

 FACE_HMFM_APPLICATION_ERROR,

 FACE_HMFM_NUMERIC_ERROR,

 FACE_HMFM_ILLEGAL_REQUEST,

 FACE_HMFM_STACK_OVERFLOW,

 FACE_HMFM_MEMORY_VIOLATION,

 FACE_HMFM_HARDWARE_FAULT,

 FACE_HMFM_POWER_FAIL

} FACE_HMFM_FAULT_CODE_TYPE;

typedef struct {

 FACE_HMFM_FAULT_CODE_TYPE CODE;

 FACE_HMFM_FAULT_MESSAGE_SIZE_TYPE LENGTH;

 FACE_HMFM_THREAD_ID_TYPE FAILED_THREAD_ID;

 FACE_HMFM_SYSTEM_ADDRESS_TYPE FAILED_ADDRESS;

 FACE_HMFM_FAULT_MESSAGE_TYPE MESSAGE;

} FACE_HMFM_FAULT_STATUS_TYPE;

typedef void (*FACE_HMFM_FAULT_HANDLER_ENTRY_TYPE) (void);

void FACE_HMFM_Initialize (

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

void FACE_HMFM_Create_Fault_Handler (

 /* in */ FACE_HMFM_FAULT_HANDLER_ENTRY_TYPE entry_point,

 /* in */ FACE_HMFM_STACK_SIZE_TYPE stack_size,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

void FACE_HMFM_Report_Application_Message (

 /* in */ FACE_HMFM_FAULT_MESSAGE_ADDRESS_TYPE fault,

 /* in */ FACE_HMFM_FAULT_MESSAGE_SIZE_TYPE length,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

void FACE_HMFM_Get_Fault_Status (

 /* out */ FACE_HMFM_FAULT_STATUS_TYPE *fault,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

void FACE_HMFM_Raise_Application_Fault (

 /* in */ FACE_HMFM_FAULT_CODE_TYPE code,

 /* in */ FACE_HMFM_FAULT_MESSAGE_ADDRESS_TYPE message,

 /* in */ FACE_HMFM_FAULT_MESSAGE_SIZE_TYPE length,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

#ifdef __cplusplus

}

#endif /* __cplusplus */

#endif /* _FACE_HMFM_H */

F.2.1 Initialize(HMFM) Function

The Initialize(HMFM) method allows the component to initialize the HMFM implementation.

void FACE_HMFM_Initialize (

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code);

FACE™ Technical Standard, Edition 3.0 295

The parameters to this method are as follows:

 return_code – upon return contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from FACE_HMFM_Initialize is one of the following:

 FACE_HMFM_NO_ERROR to indicate successful completion of the operation

 FACE_HMFM_INVALID_CONFIG to indicate that an underlying operating system API

call failed

F.2.2 Report_Application_Message(HMFM) Function

The Report_Application_Message(HMFM) method allows for a component to send a message to

the HM fault handler which invokes the registered fault handler to process the message.

void FACE_HMFM_Report_Application_Message (

 /* in */ FACE_HMFM_FAULT_MESSAGE_ADDRESS_TYPE fault,

 /* in */ FACE_HMFM_FAULT_MESSAGE_SIZE_TYPE length,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

The FACE_HMFM_Report_Application_Message method is used by the software component to

send a message to the HM function if it detects an erroneous behavior. This service may also be

used to record an event for logging purposes. The response to the message is determined by the

fault handler installed and the system configuration. The parameters to this method are as

follows:

 fault – a message describing the fault

 length – the length of the fault message in bytes

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from FACE_HMFM_Report_Application_Message is one of the

following:

 FACE_HMFM_NO_ERROR to indicate successful completion of the operation

 FACE_HMFM_INVALID_PARAM to indicate the length parameter is invalid

F.2.3 Create_Fault_Handler(HMFM) Function

The Create_Fault_Handler(HMFM) method allows for a component to register a process-

specific fault handler which is invoked in the event of process-level faults detected by the OS or

component.

void FACE_HMFM_Create_Fault_Handler (

 /* in */ FACE_HMFM_FAULT_HANDLER_ENTRY_TYPE entry_point,

 /* in */ FACE_HMFM_STACK_SIZE_TYPE stack_size,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

296 Open Group Standard (2017)

The FACE_HMFM_Create_Fault_Handler method is used to create a fault handler thread. This

thread may not be accessible by normal thread methods. The fault handler thread is an aperiodic

thread with the highest priority and its priority cannot be modified. It cannot be suspended or

stopped by other threads. The fault handler thread preempts any running thread independent of

its priority or preemption mode.

The parameters to this method are as follows:

 entry_point – the entry point of the fault handler thread

 stack_size – the size of the fault handler's stack in bytes

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from FACE_HMFM_Create_Fault_Handler is one of the

following:

 FACE_HMFM_NO_ERROR to indicate successful completion of the operation

 FACE_HMFM_NO_ACTION to indicate that a fault handler has already been created

 FACE_HMFM_INVALID_CONFIG to indicate that the thread could not be created

 FACE_HMFM_INVALID_CONFIG to indicate that the stack_size parameter is invalid

 FACE_HMFM_INVALID_MODE to indicate that the system is in the incorrect mode to

perform this operation

F.2.4 Get_Fault_Status(HMFM) Function

The Get_Fault_Status(HMFM) function allows for the fault handler registered by a component

to obtain information regarding the current fault.

void FACE_HMFM_Get_Fault_Status (

 /* out */ FACE_HMFM_FAULT_STATUS_TYPE *fault,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

The FACE_HMFM_Get_Fault_Status method is used by the fault handler to determine the fault

type, faulty thread, the address at which the fault occurred, and the message associated with the

fault. The parameters to this method are as follows:

 fault – upon return, contains a message describing the fault

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from FACE_HMFM_Get_Fault_Status is one of the following:

 FACE_HMFM_NO_ERROR to indicate successful completion of the operation

 FACE_HMFM_INVALID_CONFIG to indicate that the current thread is not the fault

handler

FACE™ Technical Standard, Edition 3.0 297

 FACE_HMFM_NO_ACTION to indicate that there are no current faults

F.2.5 Raise_Application_Fault(HMFM) Function

The Raise_Application_Fault(HMFM) function allows for a component to indicate that a fault

has occurred.

void FACE_HMFM_Raise_Application_Fault (

 /* in */ FACE_HMFM_FAULT_CODE_TYPE code,

 /* in */ FACE_HMFM_FAULT_MESSAGE_ADDRESS_TYPE message,

 /* in */ FACE_HMFM_FAULT_MESSAGE_SIZE_TYPE length,

 /* out */ FACE_HMFM_RETURN_CODE_TYPE *return_code

);

The FACE_HMFM_Raise_Application_Fault method allows the current software component to

indicate that a fault has occurred. The code, message, and length parameters are eventually

passed to the installed fault handler for processing. The parameters to this method are as follows:

 code – contains an indication of the fault type

 message – references a message describing the fault

 length – the length of the fault message in bytes

 return_code – upon return, contains a status code indicating success or failure

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from FACE_HMFM_Raise_Application_Fault is one of the

following:

 FACE_HMFM_NO_ERROR to indicate successful completion of the operation

 FACE_HMFM_INVALID_PARAM to indicate the length parameter is invalid

 FACE_HMFM_INVALID_PARAM when error code parameter is not

FACE_HMFM_APPLICATION_ERROR

298 Open Group Standard (2017)

G FACE Configuration Interface

G.1 Introduction

The Configuration Services API provides a normalized interface to obtain configuration

information from either a local or centralized configuration service in a portable manner. The

Configuration Services API is part of the OSS.

Declarations are provided using an IDL syntax that is mapped to a Programming Language, as

described in Section 3.14.

Note: The code in this document is formatted to align with the formatting constraints of the

printed document.

G.2 Configuration Services API

FACE/Configuration.idl

//! Source file: FACE/Configuration.idl

#ifndef __FACE_CONFIGURATION

#define __FACE_CONFIGURATION

#include <FACE/common.idl>

module FACE {

 //! This defines the Configuration Application Programming Interface.

 interface Configuration {

 //! This type is used to represent the handle used during a session

 //! with a configuration container.

 typedef long HANDLE_TYPE;

 //! This type is used to pass implementation specific initialization

 //! information to a Configuration API implementation.

 typedef STRING_TYPE INITIALIZATION_TYPE;

 //! This type is used to represent the name of a configuration

 //! container.

 //! The contents of a configuration container are accessed during a

 //! session.

 typedef STRING_TYPE CONTAINER_NAME_TYPE;

 //! This type is used to represent the name of a configuration set

 //! within a configuration container.

 typedef STRING_TYPE SET_NAME_TYPE;

 //! This type is used to represent the length of the buffer or

 //! amount of data returned by Read().

 typedef long BUFFER_SIZE_TYPE;

 //! This type is used to represent the desired offset used with

 //! Seek().

 typedef long OFFSET_TYPE;

 //! This type is used to represent the parameter to

FACE™ Technical Standard, Edition 3.0 299

 //! Seek(). It indicates the manner in which the offset is to be

 //! interpreted.

 enum WHENCE_TYPE {

 //! This indicates that the offset value is to be interpreted as an

 //! offset from the beginning of the file. The offset should be a

 //! positive number and represent a position in the file.

 SEEK_FROM_START,

 //! This indicates that the offset value is to be interpreted as an

 //! offset from the current position in the file. The offset may be

 //! a positive or negative number to seek backward or forward in the

 //! in the file.

 SEEK_FROM_CURRENT,

 //! This indicates that the offset value is to be interpreted as an

 //! offset from the end of the file. The offset should be a

 //! negative number and represent how many bytes to backup.

 SEEK_FROM_END

 };

 //! The Initialize method is used to initialize the Configuration

 //! implementation.

 //!

 //! @param[in] initialization_information provides implementation

 //! specific information which assists in the initialization of

 //! a Configuration API implementation.

 //! @param[out] return_code contains a status code indicating success

 //!

 //! @return NO_ERROR is returned in @a return_code to indicate

 //! successful completion of the operation.

 //! @return INVALID_PARAM to indicate that the @a return_code pointer

 //! (in appropriate languages) is invalid.

 void Initialize

 (in INITIALIZATION_TYPE initialization_information,

 out RETURN_CODE_TYPE return_code);

 //! The @a Open method is used to establish a session with the

 //! Configuration implementation.

 //!

 //! @param[in] container_name is the name of the configuration

 //! container to open a session with.

 //! @param[out] handle contains a handle to be used on subsequent

 //! calls during this session.

 //! @param[out] return_code contains a status code indicating success

 //! or failure

 //!

 //! @return NO_ERROR is returned in @a return_code to indicate

 //! successful completion of the operation.

 //! @return INVALID_CONFIG is returned in @a return_code to indicate

 //! that the @a configuration container specified is invalid.

 //! @return INVALID_PARAM is returned in @a return_code to indicate

 //! that the @a handle pointer (in appropriate languages) is

 //! invalid.

 //! @return INVALID_MODE is returned in @a return_code to indicate

 //! the caller does not have permission to access the

 //! @a configuration container.

 void Open

 (in CONTAINER_NAME_TYPE container_name,

 out HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 //! The @a Get_Size method is used to obtain the size of a particular

 //! configuration set from the configuration container associated with

 //! this session.

 //!

 //! @param[in] handle indicates the current session.

 //! @param[in] set_name indicates the name of the configuration

 //! set to obtain the value of.

 //! @param[out] size contains the size in bytes of the set.

 //! @param[out] return_code contains a status code indicating success

 //! or failure.

 //!

 //! @return NO_ERROR is returned in @a return_code to indicate

300 Open Group Standard (2017)

 //! successful completion of the operation.

 //! @return INVALID_CONFIG is returned in @a return_code to indicate

 //! that the @a handle is invalid.

 //! @return INVALID_PARAM is returned in @a return_code to indicate

 //! that one of the pointer arguments (in the appropriate languages)

 //! is invalid.

 //! @return NOT_AVAILABLE is returned in @a return_code to indicate

 //! that the size of the set is not available based on the backend

 //! media adapter used for this configuration information.

 //!

 //! @note For streaming configuration information sources, the

 //! @a set_name parameter should be set to "" or the empty string.

 void Get_Size

 (in HANDLE_TYPE handle,

 in SET_NAME_TYPE set_name,

 out BUFFER_SIZE_TYPE size,

 out RETURN_CODE_TYPE return_code);

 //! The @a Read method is used to obtain configuration information

 //! from the configuration container associated with this session.

 //!

 //! @param[in] handle indicates the current session.

 //! @param[in] set_name indicates the name of the configuration

 //! set to obtain the value of.

 //! @param[inout] buffer points to the buffer to be filled in with

 //! configuration information.

 //! @param[in] buffer_size indicates the size of the @a buffer and

 //! the maximum number of bytes which can be returned.

 //! @param[out] bytes_read contains the number of bytes read on

 //! a successful read.

 //! @param[out] return_code contains a status code indicating success

 //! or failure

 //!

 //! @return NO_ERROR is returned in @a return_code to indicate

 //! successful completion of the operation.

 //! @return INVALID_CONFIG is returned in @a return_code to indicate

 //! that the @a handle is invalid.

 //! @return INVALID_PARAM is returned in @a return_code to indicate

 //! that one of the pointer arguments (in the appropriate

 //! languages) is invalid.

 //! @return NOT_AVAILABLE is returned in @a return_code to indicate

 //! that the entire data stream associated with this configuration

 //! set has been read.

 //!

 //! @note For streaming configuration information sources, the

 //! @a set_name parameter should be set to "all"

 void Read

 (in HANDLE_TYPE handle,

 in SET_NAME_TYPE set_name,

 inout SYSTEM_ADDRESS_TYPE buffer,

 in BUFFER_SIZE_TYPE buffer_size,

 out BUFFER_SIZE_TYPE bytes_read,

 out RETURN_CODE_TYPE return_code);

 //! The @a Seek method is used to set the current position indicator

 //! in the configuration session.

 //!

 //! @param[in] handle indicates the current session.

 //! @param[in] whence indicates how to interpret the offset parameter.

 //! @param[in] offset indicates the desired offset.

 //! @param[out] return_code contains a status code indicating success

 //! or failure

 //!

 //! @return NO_ERROR is returned in @a return_code to indicate

 //! successful completion of the operation.

 //! @return INVALID_PARAM is returned in @a return_code to indicate

 //! that the whence @a parameter is invalid, the offset is invalid

 //! for the specified value of @a whence, or that the

 //! @a return_code pointer (in the appropriate languages)

 //! is invalid.

 //!

FACE™ Technical Standard, Edition 3.0 301

 //! @note For some configuration media implementations, the @a Seek

 //! operation may not be applicable.

 void Seek

 (in HANDLE_TYPE handle,

 in WHENCE_TYPE whence,

 in OFFSET_TYPE offset,

 out RETURN_CODE_TYPE return_code);

 //! The Close method is used to conclude a sequence of operations

 //! on a configuration handle. It frees any resources allocated

 //! during open based on the specific configuration being accessed.

 //!

 //! @param[in] handle is the session to close

 //! @param[out] return_code indicates success or failure

 //!

 //! @return NO_ERROR is returned in @a return_code to indicate

 //! successful completion of the operation.

 //! @return INVALID_CONFIG is returned in @a return_code to indicate

 //! that the @a handle is invalid.

 void Close

 (in HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 };

};

#endif //! __FACE_CONFIGURATION

G.2.1 Initialize(CONFIG) Function

The Initialize(CONFIG) function is used to initialize the Configuration implementation.

/* IDL declaration */

module FACE

{

 interface Configuration

 {

 void Initialize

 (in INITIALIZATION_TYPE initialization_information,

 out RETURN_CODE_TYPE return_code); };

};

The parameters to this method are as follows:

 initialization_information – provides implementation-specific information which assists in

the initialization of a Configuration API implementation

 return_code – upon return contains a status code indicating success or failure

The return_code output parameter contains a value indicating that the method executed

successfully or failed for a specific reason.

The return code value returned from Initialize(CONFIG) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_CONFIG to indicate that the initialization_information parameter(in

appropriate languages) is invalid, or does not identify a known configuration

G.2.2 Open(CONFIG) Function

The Open(CONFIG) function is used to establish a session with the Configuration

implementation.

302 Open Group Standard (2017)

/* IDL declaration */

module FACE

{

 interface Configuration

 {

 void Open

 (in CONTAINER_NAME_TYPE container_name,

 out HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 };

};

The parameters to this method are as follows:

 container_name – the name of the configuration container with which to open a session

 handle – upon return, contains an identifier to be used in future configuration operations

upon this configuration container

 return_code – upon return contains a status code indicating success or failure

The return_code output parameter contains a value indicating that the method executed

successfully or failed for a specific reason.

The return code value returned from Open(CONFIG) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_CONFIG to indicate that the configuration container specified is invalid

 INVALID_PARAM to indicate that the handle or return_code pointer (in appropriate

languages) is invalid

 INVALID_MODE to indicate that the caller does not have permission to access the

configuration container

G.2.3 Get_Size(CONFIG) Function

The Get_Size(CONFIG) function is used to obtain used to obtain the size of a particular

configuration set from the configuration container associated with this session.

/* IDL declaration */

module FACE

{

 interface Configuration

 {

 void Get_Size

 (in HANDLE_TYPE handle,

 in SET_NAME_TYPE set_name,

 out BUFFER_SIZE_TYPE size,

 out RETURN_CODE_TYPE return_code);

 };

};

The parameters to this method are as follows:

 handle – specifies the configuration session

 set_name – indicates the name of the configuration set of which to obtain the size

 bytes_read – contains the number of bytes which would be read on a successful read

FACE™ Technical Standard, Edition 3.0 303

 return_code – upon return contains a status code indicating success or failure

The handle parameter contains the session handle returned by a previous call to Open(CONFIG).

The set_name parameter contains the name of the configuration element to obtain the value of or

one of the following special configuration element names:

 “all” to indicate that the intent is to read all data from the configuration container as a

stream

Upon successful return, the length of the requested configuration set_name is returned in

bytes_read and indicates the number of octets in length.

The return_code output parameter contains a value indicating that the method executed

successfully or failed for a specific reason.

The return code value returned from Get_Size(CONFIG) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_CONFIG to indicate that the handle specified is invalid

 INVALID_PARAM to indicate that either the buffer or return_status pointer (in

appropriate languages) is invalid

 NOT_AVAILABLE to indicate that the size of the set is not available based on the

backend media adapter used for this configuration information

G.2.4 Read(CONFIG) Function

The Read(CONFIG) function is used to obtain configuration information from the configuration

container associated with this session.

/* IDL declaration */

module FACE

{

 interface Configuration

 {

 void Read

 (in HANDLE_TYPE handle,

 in SET_NAME_TYPE set_name,

 inout SYSTEM_ADDRESS_TYPE buffer,

 in BUFFER_SIZE_TYPE buffer_size,

 out BUFFER_SIZE_TYPE bytes_read,

 out RETURN_CODE_TYPE return_code); };

};

The parameters to this method are as follows:

 handle – specifies the configuration session

 set_name – indicates the name of the configuration set of which to obtain the value

 buffer – points to the buffer to be filled in with configuration information

 buffer_size – indicates the size of the buffer and the maximum number of bytes which can

be returned

 bytes_read – contains the number of bytes read on a successful read

304 Open Group Standard (2017)

 return_code – upon return contains a status code indicating success or failure

The handle parameter contains the session handle returned by a previous call to Open(CONFIG).

The element parameter contains the name of the configuration element to obtain the value of or

one of the following special configuration element names:

 “all” to indicate that the intent is to read all data from the configuration container as a

stream

Upon successful return, the memory specified by buffer contains the contents of the requested

configuration element. This value is bytes_read octets in length. When reading the special

set_name “all” to indicate that the data is to be read as a stream, it is possible that the entire

contents cannot be read into the buffer provided. In the event, the size of the buffer provided is

not large enough to contain the entire value and bytes_read is equal to buffer_size and

subsequent Read() operations may be performed to obtain the remainder of the data. When there

is no more data to obtain, bytes_read may contain zero or larger up to buffer_size and the

return_code is set to FACE_NOT_AVAILABLE.

The return_code output parameter contains a value indicating that the method executed

successfully or failed for a specific reason.

The return code value returned from Read(CONFIG) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_CONFIG to indicate that the handle specified is invalid

 INVALID_PARAM to indicate that either the buffer or return_status pointer (in

appropriate languages) is invalid

 NOT_AVAILABLE to indicate that there is no more data to be read in the configuration

stream “all”; there may be zero or more bytes returned in this case

G.2.5 Seek(CONFIG) Function

The Seek(CONFIG) function is used to set the current position indicator for the specified

configuration session.

/* IDL declaration */

module FACE

{

 interface Configuration

 {

 void Seek

 (in HANDLE_TYPE handle,

 in WHENCE_TYPE whence,

 in OFFSET_TYPE offset,

 out RETURN_CODE_TYPE return_code);

 };

};

The parameters to this method are as follows:

 handle – specifies the configuration session

 whence – indicates how the offset parameter is to be interpreted

 offset – indicates the desired offset within the configuration session

FACE™ Technical Standard, Edition 3.0 305

 return_code – upon return contains a status code indicating success or failure

The whence parameter is used to indicate whether the offset parameter is to be relative to the

beginning of the configuration session, an arbitrary position, or relative to the end of the

configuration session. The whence parameter is of an enumerated type which can have the

following values:

 SEEK_FROM_START – indicates that the offset value is to be interpreted as an offset

from the beginning of the file – the offset should be a positive number and represent a

position in the file

 SEEK_FROM_CURRENT – indicates that the offset value is to be interpreted as an offset

from the current position in the file – the offset may be a positive or negative number to

seek backward or forward in the file

 SEEK_FROM_END – indicates that the offset value is to be interpreted as an offset from

the end of the file – the offset should be a negative number and represent how many bytes

to backup

The return_code output parameter contains a value indicating that the method executed

successfully or failed for a specific reason.

The return code value returned from Seek(CONFIG) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_CONFIG to indicate that the handle specified is invalid

 INVALID_PARAM to indicate that the whence parameter is invalid, the offset is invalid

for the specified value of whence, or that the return_code pointer (in the appropriate

languages) is invalid

Note: This method may not be supported by all underlying configuration media.

G.2.6 Close(CONFIG) Function

The Close(CONFIG) function is used to terminate a session with the Configuration

implementation.

/* IDL declaration */

module FACE

{

 interface Configuration

 {

 void Close

 (in HANDLE_TYPE handle,

 out RETURN_CODE_TYPE return_code);

 };

};

The parameters to this method are as follows:

 handle – upon return, contains an identifier to be used in future configuration operations

upon this configuration container

 return_code – upon return contains a status code indicating success or failure

306 Open Group Standard (2017)

The return_code output parameter contains a value indicating that the method executed

successfully or failed for a specific reason.

The return code value returned from Close(CONFIG) is one of the following:

 NO_ERROR to indicate successful completion of the operation

 INVALID_CONFIG to indicate that the handle specified is invalid

FACE™ Technical Standard, Edition 3.0 307

H Graphics

H.1 Introduction

Graphics Services provide normalized interfaces for PSSS Graphics UoCs and other UoCs

providing graphics capabilities. Composition of multiple graphics contexts within a multi-

threaded Embedded Graphics Library (EGL) system is enabled by the compositor extension.

Cockpit Display Systems (CDS) and User Applications (UA) use the ARINC 661 standardized

interface protocols. Adding Graphics UoCs with minimal integration is enabled by Display

Management.

H.2 Graphics – A661_Conformance.xsd

The following XSD defines the style data configuration schema for ARINC 661.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:simpleType name="a661_byte">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="255"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="a661_ushort">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="65535"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="colorReference">

 <xs:union memberTypes="a661_byte xs:string" />

 </xs:simpleType>

 <xs:complexType name="textureEntry" mixed="true">

 <xs:attribute name="name" type="xs:string" />

 <xs:attribute name="ID" type="a661_ushort" use="required"/>

 <xs:attribute name="stride" type="xs:float" use="required" />

 </xs:complexType>

 <xs:complexType name="stippleReference">

 <xs:attribute name="name" type="xs:string" />

 <xs:attribute name="index" type="xs:integer" use="required"/>

 <xs:attribute name="scale" type="xs:float" use="required"/>

 </xs:complexType>

 <xs:complexType name="colorTableEntry">

 <xs:sequence>

 <xs:element name="RGBA">

 <xs:complexType>

 <xs:attribute name="r" type="a661_byte" use="required"/>

 <xs:attribute name="g" type="a661_byte" use="required"/>

 <xs:attribute name="b" type="a661_byte" use="required"/>

 <xs:attribute name="a" type="a661_byte"/>

 </xs:complexType>

308 Open Group Standard (2017)

 </xs:element>

 <xs:element name="intent" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="ID" type="a661_byte" use="required"/>

 <xs:attribute name="intent" type="xs:string"/>

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="fillStyle">

 <xs:sequence>

 <xs:element name="lineStyle" type="lineStyle"/>

 <!--integrator only-->

 <xs:element name="textureFlags" type="textureEntry"/>

 <xs:element name="fillHints" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="ID" type="a661_ushort"/>

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="lineStyle">

 <xs:sequence>

 <xs:element name="stippleRef" type="stippleReference" minOccurs="0"/>

 <xs:element name="textureFlags" type="textureEntry" minOccurs="0"/>

 <xs:element name="lineHints" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="ID" type="a661_ushort" use="required"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="width" type="xs:float" use="required"/>

 <xs:attribute name="endCap" type="xs:boolean" default="false" />

 </xs:complexType>

 <xs:complexType name="textureTableEntry">

 <xs:sequence>

 <xs:element name="filepath" type="xs:string"/>

 <xs:element name="description" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:integer" use="required"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="width" type="xs:integer" use="required"/>

 <xs:attribute name="height" type="xs:integer" use="required"/>

 </xs:complexType>

 <xs:complexType name="pictureTableEntry">

 <xs:sequence>

 <xs:element name="filepath" type="xs:string"/>

 <xs:element name="description" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="ID" type="a661_ushort" use="required"/>

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="lineStippleTableEntry">

 <xs:attribute name="ID" type="xs:integer" use="required"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="pattern" type="xs:string" use="required"/>

 <xs:attribute name="halo" type="xs:boolean" default="false"/>

 </xs:complexType>

 <xs:complexType name="labelStyleSet">

 <xs:attribute name="ID" type="a661_ushort"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="backgroundColor" type="colorReference"/>

 </xs:complexType>

 <xs:complexType name="fontTableEntry" mixed="true">

 <xs:attribute name="ID" type="a661_byte"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="size" type="xs:integer"/>

 </xs:complexType>

 <xs:complexType name="mapItemStyleEntry">

FACE™ Technical Standard, Edition 3.0 309

 <xs:attribute name="ID" type="xs:integer" use="required"/>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="fontRef" type="a661_byte" use="required"/>

 <xs:attribute name="lineStyleRef" type="a661_ushort" use="required"/>

 <xs:attribute name="fillStyleRef" type="a661_ushort" use="required"/>

 <xs:attribute name="colorRef" type="colorReference" use="required"/>

 <xs:attribute name="labelStyleRef" type="a661_ushort" use="required"/>

 <xs:attribute name="halo" type="xs:boolean" default="false"/>

 </xs:complexType>

 <xs:element name="configuration">

 <xs:complexType>

 <xs:all>

 <xs:element name="metadata" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:any minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="constants">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="constant" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="value" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="colortable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="color" type="colorTableEntry" minOccurs="0" maxOccurs="256"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="fontTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="font" type="fontTableEntry" minOccurs="0" maxOccurs="256"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="fillStyleTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="fillStyle" type="fillStyle" minOccurs="0" maxOccurs="65536"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="lineStyleTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="lineStyle" type="lineStyle" minOccurs="0" maxOccurs="65536"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="textureTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="texture" type="textureTableEntry" minOccurs="0"

maxOccurs="65536"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="lineStippleTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

310 Open Group Standard (2017)

 <xs:element name="lineStipple" type="lineStippleTableEntry" minOccurs="0"

maxOccurs="65536"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="labelStyleTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="labelStyle" type="labelStyleSet" minOccurs="0" maxOccurs="65535"

/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="mapItemStyleTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="itemStyle" type="mapItemStyleEntry" minOccurs="0"

maxOccurs="65536"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="pictureTable" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="picture" type="pictureTableEntry" minOccurs="0"

maxOccurs="65536"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

</xs:schema>

H.3 Graphics – DisplayManagement.xsd

The following XSD defines the configuration schema for display management.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:simpleType name="a661_byte">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="255"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="a661_ushort">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="65535"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="Units">

 <xs:restriction base="xs:string">

 <xs:enumeration value="inch"/>

 <xs:enumeration value="mm"/>

 <xs:enumeration value="screen"/>

 <xs:enumeration value="pixel"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="Rectangle">

 <xs:attribute name="x" type="xs:integer" use="required"/>

 <xs:attribute name="y" type="xs:integer" use="required"/>

 <xs:attribute name="width" type="xs:integer" use="required"/>

 <xs:attribute name="height" type="xs:integer" use="required"/>

FACE™ Technical Standard, Edition 3.0 311

 </xs:complexType>

 <xs:complexType name="Scale">

 <xs:attribute name="xScale" type="xs:decimal" use="required"/>

 <xs:attribute name="yScale" type="xs:decimal" use="required"/>

 <xs:attribute name="baseUnit" type="Units" default="screen" />

 <xs:attribute name="perUnit" type="Units" default="pixel" />

 </xs:complexType>

 <xs:complexType name="Size">

 <xs:attribute name="width" type="xs:integer" use="required"/>

 <xs:attribute name="height" type="xs:integer" use="required"/>

 <xs:attribute name="units" type="Units" default="pixel"/>

 </xs:complexType>

 <xs:complexType name="UserApplication">

 <xs:anotation>

 </xs:anotation>

 <xs:attribute name="applicationId" type="xs:integer" use="required" />

 <xs:attribute name="dFPath" type="xs:string" use="required" />

 <xs:attribute name="mapSourceLayer" type="xs:boolean" default="false"/>

 <xs:attribute name="styleFilePath" type="xs:string" />

 <xs:attribute name="visible" type="xs:boolean" default="false"/>

 <xs:attribute name="window" type="xs:integer" user="required"/>

 </xs:complexType>

 <xs:complexType name="Window">

 <xs:anotation>

 </xs:anotation>

 <xs:sequence>

 <xs:element name="description" type="xs:string" />

 <xs:element name="pixelArea" type="Rectangle" />

 <xs:element name="scalingFactor" type="Scale" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:integer" use="required"/>

 <xs:attribute name="name" type="xs:string"/>

 </xs:complexType>

 <xs:complexType name="Screen">

 <xs:anotation>

 </xs:anotation>

 <xs:sequence>

 <xs:element name="pixelSize" type="Size" >

 </xs:element>

 <xs:element name="physicalDimensions" type="Size" >

 </xs:element>

 <xs:element name="layout" maxOccurs="65535" >

 <xs:anotation>

 </xs:anotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="window" type="Window" maxOccurs="65535" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:integer" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="id" type="xs:integer" use="required"/>

 </xs:complexType>

 <xs:complexType name="ExternalSource" >

 <xs:anotation>

 </xs:anotation>

 <xs:sequence>

312 Open Group Standard (2017)

 <xs:any minOccurs="0" maxOccurs="65535"/>

 </xs:sequence>

 <xs:attribute name="id" type="a661_ushort" use="required"/>

 <xs:attribute name="name" type="xs:string" />

 <xs:attribute name="type" type="xs:string" />

 </xs:complexType>

 <xs:element name="size" type="Size" />

 <xs:element name="properties">

 <xs:anotation>

 </xs:anotation>

 <xs:complexType>

 <xs:attribute name="path" type="xs:string" />

 <xs:attribute name="input" type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:element name="configuration">

 <xs:anotation>

 This is the root element of the configuration file.

 </xs:anotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="metaData" type="xs:string" minOccurs="0" />

 <xs:element name="screen" type="Screen" maxOccurs="65535"/>

 <xs:element name="ua" type="UserApplication" maxOccurs="65535" />

 <xs:element name="externalSource" type="ExternalSource" maxOccurs="65535" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

H.3.1 UserApplication

The UserApplication element is used to define which Definition Files (DF) or UAs are placed

into which windows. It also defines which DFs are visible by default and the configuration file

which defines the style tables used for that DF file, including color tables, style set parameters,

and other similar attributes. The application ID attribute is used to specify the UA ID as

specified in the ARINC 661 standard, and it helps to make sure that the UA ID is unique in a

complex system.

H.3.2 Window

The Window element defines a section of the screen in which one or more DFs are placed with

their origin at the bottom left of the window area. More information on the concept of a window

is in the ARINC 661 standard.

H.3.3 Screen

The Screen element defines a physical display surface which has both physical dimensions and a

defined pixel size. Within a screen a number of windows are defined in the ARINC 661 server’s

screen space. Within each screen space an ARINC 661 DF is used to define what is in that area

of the screen.

The “id” attribute is used by the EGL layer to define to which display output this information

refers.

FACE™ Technical Standard, Edition 3.0 313

H.3.4 pixelSize

The pixelSize element is used to let the ARINC 661 server know how many pixels are in the

area. It simply has a width and height attribute of the rectangular area of the screen. The

assumption that the screen is rectangular is being made here as a general case. If the physical

screen can be expressed as a set of rectangles it is recommended that multiple screen elements

are used.

H.3.5 physicalDimensions

The physicalDimensions element defines the physical size of the screen. This is used to

determine the default scaling factor of all ARINC 661 applications to work as specified by the

ARINC 661 standard which defined the 0.01 mm = 1 ARINC 661 display unit. It can also be

used to supply the physical dimensions to the EGL layer used by the OpenGL applications for

their use.

H.3.6 Layout

The Layout element is used to define a layout of windows. This allows for the server to be able

to change between different layouts as needed.

H.3.7 ExternalSource

The ExternalSource element defines the external sources which are in the system. The “id”

attribute maps directly to the ARINC 661 external source reference attribute of the

ExternalSourceWidget. The type attribute defines which external source driver is used for the

external source; these values are specific to the hardware being used. The name attribute is

simply a free string to help the writer identify the external source.

H.3.8 Properties

The Properties element is a set of name, value pairs that are used by the external source driver to

configure the driver for proper use to provide the requested external source data.

314 Open Group Standard (2017)

I Injectable Interface

I.1 Introduction

During startup, each UoC in a memory address space requires a reference to the IDL interfaces it

uses during run-time. The Injectable Interface provides a basic Set_Reference interface for an

external executive to provide references to UoCs. The instantiations make each Set_Reference

function unique by the type of Injectable Interface. If more than one reference to an interface is

used, the Set_Reference is called for each instance required.

Declarations are provided using an IDL syntax that is mapped to a Programming Language, as

described in Section 3.14.

Note: The code in this document is formatted to align with the formatting constraints of the

printed document.

I.2 FACE_Injectable Interface Specification

//! Source file: FACE/Injectable.idl

#ifndef __FACE_INJECTABLE

#define __FACE_INJECTABLE

#include <FACE/common.idl>

module FACE {

 module Injectable<interface INTERFACE_TYPE> {

 interface Injectable {

 void Set_Reference (

 in STRING_TYPE interface_name,

 in INTERFACE_TYPE interface_reference,

 in GUID_TYPE id,

 out RETURN_CODE_TYPE return_code);

 };

 };

};

#endif // __FACE_INJECTABLE

The parameters to Set_Reference are as follows:

 interface_name – a human-readable name for the instance of the interface being provided

– supports configuration of different instances of interfaces used by a component

 interface_reference – a reference to the specific interface appropriate for the UoC

 id – a UUID; to delineate the interface associated with a specific data modeled message or

provide computer readable ID for an interface instance

 return_code – upon return, contains a status code indicating success or failure

FACE™ Technical Standard, Edition 3.0 315

Upon return, the return_code output parameter contains a value indicating that the method

executed successfully or failed for a specific reason.

The return code value returned from Set_Reference is one of the following:

 NO_ERROR to indicate the operation was successful

 INVALID_PARAM to indicate the reference_interface parameter supplied is null or not

in range

 NO_ACTION to indicate the reference is a duplicate to one already set

 INVALID_MODE to indicate a Set_Reference call was received while in steady state

 INVALID_CONFIG to indicate a new reference is being set that has one or more

parameters that creates an invalid request, such as a new name is provided for a reference

that was previously provided

 NOT_AVAILABLE to indicate the calling function cannot set more than one reference of

this interface type for this UoC

316 Open Group Standard (2017)

J Data Model Language

J.1 Introduction

The Data Model Language is defined by a Meta-Object Facility (MOF) metamodel. This

appendix includes the full EMOF XMI representation of the metamodel and serves as the

normative version of the Data Model Language. The Data Model Language is described in detail

in Section 2.3.2, Section 3.9.1, and Section J.2. Section J.2 includes descriptions of the elements

in the metamodel. These descriptions have been removed from the included EMOF XMI. In

addition to the EMOF XMI, this appendix includes normative OCL constraints which also

describe the Data Model Language.

J.2 Language Description

The following section provides descriptive detail to aid in understanding the normative

specification of the metamodel in Section J.5.

J.2.1 Meta-Package: face

Figure 28: FACE Metamodel “face” Package

J.2.1.1 Meta-Class: face.ArchitectureModel

Description

An ArchitectureModel is a container for DataModels, UoPModels, IntegrationModels, and

TraceabilityModels. The relationships for the ArchitectureModel meta-class are listed in Table

40.

FACE™ Technical Standard, Edition 3.0 317

Table 40: face.ArchitectureModel Relationships

Type Name Target Multiplicity

Composition dm face.datamodel.DataModel 0..*

Composition um face.uop.UoPModel 0..*

Composition im face.integration.IntegrationModel 0..*

Composition tm face.traceability.TraceabilityModel 0..*

Generalization

Element

J.2.1.2 Meta-Class: face.Element

Description

An Element is the root type for defining all named elements in the ArchitectureModel. The

“name” attribute captures the name of the Element in the model. The “description” attribute

captures a description for the element. The attributes for the Element meta-class are listed in

Table 41.

Table 41: face.Element Attributes

Name Type Multiplicity

name string 1

description string 1

J.2.2 Meta-Package: face.datamodel

Figure 29: FACE Metamodel “face.datamodel” Package

J.2.2.1 Meta-Class: face.datamodel.DataModel

Description

A DataModel is a container for ConceptualDataModels, LogicalDataModels, and

PlatformDataModels. The relationships for the DataModel meta-class are listed in Table 42.

318 Open Group Standard (2017)

Table 42: face.datamodel.DataModel Relationships

Type Name Target Multiplicity

Composition cdm ConceptualDataModel 0..*

Composition ldm LogicalDataModel 0..*

Composition pdm PlatformDataModel 0..*

Generalization

face.Element

J.2.2.2 Meta-Class: face.datamodel.Element

Description

A datamodel Element is the root type for defining the elements of the FACE Data Model

Language. The relationships for the Element meta-class are listed in Table 43.

Table 43: face.datamodel.Element Relationships

Type Name Target Multiplicity

Generalization

face.Element

J.2.2.3 Meta-Class: face.datamodel.ConceptualDataModel

Description

A ConceptualDataModel is a container for CDM Elements. The relationships for the

ConceptualDataModel meta-class are listed in Table 44.

Table 44: face.datamodel.ConceptualDataModel Relationships

Type Name Target Multiplicity

Composition element face.datamodel.conceptual.Element 0..*

Composition cdm ConceptualDataModel 0..*

Generalization

Element

J.2.2.4 Meta-Class: face.datamodel.LogicalDataModel

Description

A LogicalDataModel is a container for LDM Elements. The relationships for the

LogicalDataModel meta-class are listed in Table 45.

Table 45: face.datamodel.LogicalDataModel Relationships

Type Name Target Multiplicity

Composition element face.datamodel.logical.Element 0..*

Composition ldm LogicalDataModel 0..*

FACE™ Technical Standard, Edition 3.0 319

Type Name Target Multiplicity

Generalization

Element

J.2.2.5 Meta-Class: face.datamodel.PlatformDataModel

Description

A PlatformDataModel is a container for platform Data Model Elements. The relationships for

the PlatformDataModel meta-class are listed in Table 46.

Table 46: face.datamodel.PlatformDataModel Relationships

Type Name Target Multiplicity

Composition element face.datamodel.platform.Element 0..*

Composition pdm PlatformDataModel 0..*

Generalization

Element

J.2.3 Meta-Package: face.datamodel.conceptual

Figure 30: FACE Metamodel “face.datamodel.conceptual” Package

320 Open Group Standard (2017)

Figure 31: FACE Metamodel “face.datamodel.conceptual” Package: Participant Path

Figure 32: FACE Metamodel “face.datamodel.conceptual” Package: Views

J.2.3.1 Meta-Class: face.datamodel.conceptual.Element

Description

A conceptual Element is the root type for defining the conceptual elements of the FACE Data

Model Language. The relationships for the Element meta-class are listed in Table 47.

Table 47: face.datamodel.conceptual.Element Relationships

Type Name Target Multiplicity

Generalization

face.datamodel.Element

FACE™ Technical Standard, Edition 3.0 321

J.2.3.2 Meta-Class: face.datamodel.conceptual.ComposableElement

Description

A conceptual ComposableElement is a conceptual Element that is allowed to participate in a

Composition relationship. In other words, these are the conceptual Elements that may be a

characteristic of a conceptual Entity. The relationships for the ComposableElement meta-class

are listed in Table 48.

Table 48: face.datamodel.conceptual.ComposableElement Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.3.3 Meta-Class: face.datamodel.conceptual.BasisElement

Description

A conceptual BasisElement is a conceptual data type that is independent of any specific data

representation. The relationships for the BasisElement meta-class are listed in Table 49.

Table 49: face.datamodel.conceptual.BasisElement Relationships

Type Name Target Multiplicity

Generalization

ComposableElement

J.2.3.4 Meta-Class: face.datamodel.conceptual.BasisEntity

Description

A basis entity represents a unique domain concept and establishes a basis from which conceptual

entities can be specialized. The relationships for the BasisEntity meta-class are listed in Table

50.

Table 50: face.datamodel.conceptual.BasisEntity Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.3.5 Meta-Class: face.datamodel.conceptual.Domain

Description

A domain represents a space defined by a set of basis entities relating to well understood

concepts by practitioners within the domain. The relationships for the Domain meta-class are

listed in Table 51.

322 Open Group Standard (2017)

Table 51: face.datamodel.conceptual.Domain Relationships

Type Name Target Multiplicity

Association basisEntity BasisEntity 0..*

Generalization

Element

J.2.3.6 Meta-Class: face.datamodel.conceptual.Observable

Description

An Observable is something that can be observed but not further characterized, and is typically

quantified through measurements of the physical world. An observable is independent of any

specific data representation, units, or reference frame. For example, “length” may be thought of

as an observable in that it can be measured, but at the conceptual level the nature of the

measurement is not specified. The relationships for the Observable meta-class are listed in Table

52.

Table 52: face.datamodel.conceptual.Observable Relationships

Type Name Target Multiplicity

Generalization

BasisElement

J.2.3.7 Meta-Class: face.datamodel.conceptual.Characteristic

Description

A conceptual Characteristic is a defining feature of a conceptual Entity. The “rolename” attribute

defines the name of the conceptual Characteristic within the scope of the conceptual Entity. The

“lowerBound” and “upperBound” attributes define the multiplicity of the composed

Characteristic. An “upperBound” multiplicity of -1 represents an unbounded sequence. The

attributes for the Characteristic meta-class are listed in Table 53, and its relationships are shown

in Table 54.

Table 53: face.datamodel.conceptual.Characteristic Attributes

Name Type Multiplicity

rolename string 1

lowerBound int 1

upperBound int 1

description string 0..1

Table 54: face.datamodel.conceptual.Characteristic Relationships

Type Name Target Multiplicity

Association specializes Characteristic 0..1

FACE™ Technical Standard, Edition 3.0 323

J.2.3.8 Meta-Class: face.datamodel.conceptual.Entity

Description

A conceptual Entity represents a domain concept in terms of its Observables and other composed

conceptual Entities. Since a conceptual Entity is built only from conceptual

ComposableElements, it is independent of any specific data representation, units, or reference

frame. The relationships for the Entity meta-class are listed in Table 55.

Table 55: face.datamodel.conceptual.Entity Relationships

Type Name Target Multiplicity

Composition composition Composition 0..*

Association specializes Entity 0..1

Association basisEntity BasisEntity 0..*

Generalization

ComposableElement

Generalization

face.traceability.TraceableElement

J.2.3.9 Meta-Class: face.datamodel.conceptual.Composition

Description

A conceptual Composition is the mechanism that allows conceptual Entities to be constructed

from other conceptual ComposableElements. The “type” of a Composition is the

ComposableElement being used to construct the conceptual Entity. The relationships for the

Composition meta-class are listed in Table 56.

Table 56: face.datamodel.conceptual.Composition Relationships

Type Name Target Multiplicity

Association type ComposableElement 1

Generalization

Characteristic

J.2.3.10 Meta-Class: face.datamodel.conceptual.Association

Description

A conceptual Association represents a relationship between two or more conceptual Entities. In

addition, there may be one or more conceptual ComposableElements that characterize the

relationship. Conceptual associations are conceptual Entities that may also participate in other

conceptual Associations. The relationships for the Association meta-class are listed in Table 57.

Table 57: face.datamodel.conceptual.Association Relationships

Type Name Target Multiplicity

Composition participant Participant 0..*

Generalization

Entity

324 Open Group Standard (2017)

J.2.3.11 Meta-Class: face.datamodel.conceptual.Participant

Description

A conceptual Participant is the mechanism that allows a conceptual Association to be

constructed between two or more conceptual Entities. The “type” of a conceptual Participant is

the conceptual Entity being used to construct the conceptual Association. The

“sourceLowerBound” and “sourceUpperBound” attributes define the multiplicity of the

conceptual Association relative to the Participant. A “sourceUpperBound” multiplicity of -1

represents an unbounded sequence. The “path” attribute of the Participant describes the chain of

entity characteristics to traverse to reach the subject of the association beginning with the entity

referenced by the “type” attribute. The attributes for the Participant meta-class are listed in Table

58, and its relationships are shown in Table 59.

Table 58: face.datamodel.conceptual.Participant Attributes

Name Type Multiplicity

sourceLowerBound int 1

sourceUpperBound int 1

Table 59: face.datamodel.conceptual.Participant Relationships

Type Name Target Multiplicity

Association type Entity 1

Composition path PathNode 0..1

Generalization

Characteristic

J.2.3.12 Meta-Class: face.datamodel.conceptual.PathNode

Description

A conceptual PathNode is a single element in a chain that collectively forms a path specification.

The relationships for the PathNode meta-class are listed in Table 60.

Table 60: face.datamodel.conceptual.PathNode Relationships

Type Name Target Multiplicity

Composition node PathNode 0..1

J.2.3.13 Meta-Class: face.datamodel.conceptual.ParticipantPathNode

Description

A conceptual ParticipantPathNode is a conceptual PathNode that selects an Association which

references an Entity. This provides a mechanism for reverse navigation of Association

references. The relationships for the ParticipantPathNode meta-class are listed in Table 61.

FACE™ Technical Standard, Edition 3.0 325

Table 61: face.datamodel.conceptual.ParticipantPathNode Relationships

Type Name Target Multiplicity

Association projectedParticipant Participant 1

Generalization

PathNode

J.2.3.14 Meta-Class: face.datamodel.conceptual.CharacteristicPathNode

Description

A conceptual CharacteristicPathNode is a conceptual PathNode that selects conceptual

Characteristics which are directly contained in a conceptual Entity or Association. The

relationships for the CharacteristicPathNode meta-class are listed in Table 62.

Table 62: face.datamodel.conceptual.CharacteristicPathNode Relationships

Type Name Target Multiplicity

Association projectedCharacteristic Characteristic 1

Generalization

PathNode

J.2.3.15 Meta-Class: face.datamodel.conceptual.View

Description

A conceptual View is a conceptual Query or a conceptual CompositeQuery. The relationships

for the View meta-class are listed in Table 63.

Table 63: face.datamodel.conceptual.View Relationships

Type Name Target Multiplicity

Generalization

Element

Generalization

face.traceability.TraceableElement

J.2.3.16 Meta-Class: face.datamodel.conceptual.Query

Description

A conceptual Query is a specification that defines the content of conceptual View as a set of

conceptual Characteristics projected from a selected set of related conceptual Entities. The

“specification” attribute captures the specification of a Query as defined by the Query grammar

in Section J.3. The attributes for the Query meta-class are listed in Table 64, and its relationships

are shown in Table 65.

Table 64: face.datamodel.conceptual.Query Attributes

Name Type Multiplicity

specification string 1

326 Open Group Standard (2017)

Table 65: face.datamodel.conceptual.Query Relationships

Type Name Target Multiplicity

Generalization

View

J.2.3.17 Meta-Class: face.datamodel.conceptual.CompositeQuery

Description

A conceptual CompositeQuery is a collection of two or more conceptual Queries. The “isUnion”

attribute specifies whether the composed conceptual Queries are intended to be represented as

cases in an IDL union or as members of an IDL struct. The attributes for the CompositeQuery

meta-class are listed in Table 66, and its relationships are shown in Table 67.

Table 66: face.datamodel.conceptual.CompositeQuery Attributes

Name Type Multiplicity

isUnion boolean 1

Table 67: face.datamodel.conceptual.CompositeQuery Relationships

Type Name Target Multiplicity

Composition composition QueryComposition 2..*

Generalization

Element

Generalization

View

J.2.3.18 Meta-Class: face.datamodel.conceptual.QueryComposition

Description

A conceptual QueryComposition is the mechanism that allows a conceptual CompositeQuery to

be constructed from conceptual Queries and other conceptual CompositeQueries. The

“rolename” attribute defines the name of the composed conceptual View within the scope of the

composing conceptual CompositeQuery. The “type” of a conceptual QueryComposition is the

conceptual View being used to construct the conceptual CompositeQuery. The attributes for the

QueryComposition meta-class are listed in Table 68, and its relationships are shown in Table 69.

Table 68: face.datamodel.conceptual.QueryComposition Attributes

Name Type Multiplicity

rolename string 1

Table 69: face.datamodel.conceptual.QueryComposition Relationships

Type Name Target Multiplicity

Association type View 1

FACE™ Technical Standard, Edition 3.0 327

J.2.4 Meta-Package: face.datamodel.logical

Figure 33: FACE Metamodel “face.datamodel.logical” Package

328 Open Group Standard (2017)

Figure 34: FACE Metamodel “face.datamodel.logical” Package: Logical Basis

Figure 35: FACE Metamodel “face.datamodel.logical” Package: Logical Value Types

FACE™ Technical Standard, Edition 3.0 329

Figure 36: FACE Metamodel “face.datamodel.logical” Package: Measurement Constraints

Figure 37: FACE Metamodel “face.datamodel.logical” Package: Measurement Conversion

330 Open Group Standard (2017)

Figure 38: FACE Metamodel “face.datamodel.logical” Package: Participant Path

Figure 39: FACE Metamodel “face.datamodel.logical” Package: Views

J.2.4.1 Meta-Class: face.datamodel.logical.Element

Description

A logical Element is the root type for defining the logical elements of the FACE Data Model

Language. The relationships for the Element meta-class are listed in Table 70.

Table 70: face.datamodel.logical.Element Relationships

Type Name Target Multiplicity

Generalization

face.datamodel.Element

FACE™ Technical Standard, Edition 3.0 331

J.2.4.2 Meta-Class: face.datamodel.logical.ConvertibleElement

Description

A ConvertibleElement is a Unit. The relationships for the ConvertibleElement meta-class are

listed in Table 71.

Table 71: face.datamodel.logical.ConvertibleElement Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.4.3 Meta-Class: face.datamodel.logical.Unit

Description

A Unit is a defined magnitude of quantity used as a standard for measurement. The relationships

for the Unit meta-class are listed in Table 72.

Table 72: face.datamodel.logical.Unit Relationships

Type Name Target Multiplicity

Generalization

ConvertibleElement

J.2.4.4 Meta-Class: face.datamodel.logical.Conversion

Description

A Conversion is a relationship between two ConvertibleElements that describes how to

transform measured quantities between two Units. The relationships for the Conversion meta-

class are listed in Table 73.

Table 73: face.datamodel.logical.Conversion Relationships

Type Name Target Multiplicity

Association destination ConvertibleElement 1

Association source ConvertibleElement 1

Generalization

Element

J.2.4.5 Meta-Class: face.datamodel.logical.AffineConversion

Description

An AffineConversion is a relationship between two ConvertibleElements in the form mx+b. The

attributes for the AffineConversion meta-class are listed in Table 74, and its relationships are

shown in Table 75.

332 Open Group Standard (2017)

Table 74: face.datamodel.logical.AffineConversion Attributes

Name Type Multiplicity

conversionFactor float 1

offset float 1

Table 75: face.datamodel.logical.AffineConversion Relationships

Type Name Target Multiplicity

Generalization

Conversion

J.2.4.6 Meta-Class: face.datamodel.logical.ValueType

Description

A ValueType specifies the logical representation of a MeasurementSystem or Measurement.

Integer, Real, and String are examples of logical ValueTypes. The relationships for the

ValueType meta-class are listed in Table 76.

Table 76: face.datamodel.logical.ValueType Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.4.7 Meta-Class: face.datamodel.logical.String

Description

A String is a data type that represents a variable length sequence of characters. The relationships

for the String meta-class are listed in Table 77.

Table 77: face.datamodel.logical.String Relationships

Type Name Target Multiplicity

Generalization

ValueType

J.2.4.8 Meta-Class: face.datamodel.logical.Character

Description

A Character is a data type representing characters from any character set. The relationships for

the Character meta-class are listed in Table 78.

Table 78: face.datamodel.logical.Character Relationships

Type Name Target Multiplicity

Generalization

ValueType

FACE™ Technical Standard, Edition 3.0 333

J.2.4.9 Meta-Class: face.datamodel.logical.Boolean

Description

A Boolean is a data type representing the two values TRUE and FALSE. The relationships for

the Boolean meta-class are listed in Table 79.

Table 79: face.datamodel.logical.Boolean Relationships

Type Name Target Multiplicity

Generalization

ValueType

J.2.4.10 Meta-Class: face.datamodel.logical.Numeric

Description

A Numeric is a numeric ValueType. The relationships for the Numeric meta-class are listed in

Table 80.

Table 80: face.datamodel.logical.Numeric Relationships

Type Name Target Multiplicity

Generalization

ValueType

J.2.4.11 Meta-Class: face.datamodel.logical.Integer

Description

An Integer is a data type representing integer numbers. The relationships for the Integer meta-

class are listed in Table 81.

Table 81: face.datamodel.logical.Integer Relationships

Type Name Target Multiplicity

Generalization

Numeric

J.2.4.12 Meta-Class: face.datamodel.logical.Natural

Description

A Natural is a data type representing the non-negative integers. The relationships for the Natural

meta-class are listed in Table 82.

Table 82: face.datamodel.logical.Natural Relationships

Type Name Target Multiplicity

Generalization

Numeric

334 Open Group Standard (2017)

J.2.4.13 Meta-Class: face.datamodel.logical.Real

Description

A Real is a data type representing real numbers. The relationships for the Real meta-class are

listed in Table 83.

Table 83: face.datamodel.logical.Real Relationships

Type Name Target Multiplicity

Generalization

Numeric

J.2.4.14 Meta-Class: face.datamodel.logical.NonNegativeReal

Description

A NonNegativeReal is a data type representing non-negative real numbers. The relationships for

the NonNegativeReal meta-class are listed in Table 84.

Table 84: face.datamodel.logical.NonNegativeReal Relationships

Type Name Target Multiplicity

Generalization

Numeric

J.2.4.15 Meta-Class: face.datamodel.logical.Enumerated

Description

An Enumerated is a data type representing a set of named values, each with specific meaning.

The attributes for the Enumerated meta-class are listed in Table 85, and its relationships are

shown in Table 86.

Table 85: face.datamodel.logical.Enumerated Attributes

Name Type Multiplicity

standardReference string 0..1

Table 86: face.datamodel.logical.Enumerated Relationships

Type Name Target Multiplicity

Composition label EnumerationLabel 1..* {Ordered}

Generalization

ValueType

J.2.4.16 Meta-Class: face.datamodel.logical.EnumerationLabel

Description

An EnumerationLabel defines a named member of an Enumerated value set. The relationships

for the EnumerationLabel meta-class are listed in Table 87.

FACE™ Technical Standard, Edition 3.0 335

Table 87: face.datamodel.logical.EnumerationLabel Relationships

Type Name Target Multiplicity

Generalization

face.Element

J.2.4.17 Meta-Class: face.datamodel.logical.CoordinateSystem

Description

A CoordinateSystem is a system which uses one or more coordinates to uniquely determine the

position of a point in an N-dimensional space. The coordinate system is comprised of multiple

CoordinateSystemAxis which completely span the space. Coordinates are quantified relative to

the CoordinateSystemAxis. It is not required that the dimensions be ordered or continuous. The

attributes for the CoordinateSystem meta-class are listed in Table 88, and its relationships are

shown in Table 89.

Table 88: face.datamodel.logical.CoordinateSystem Attributes

Name Type Multiplicity

axisRelationshipDescription string 0..1

angleEquation string 0..1

distanceEquation string 0..1

Table 89: face.datamodel.logical.CoordinateSystem Relationships

Type Name Target Multiplicity

Association axis CoordinateSystemAxis 1..*

Generalization

Element

J.2.4.18 Meta-Class: face.datamodel.logical.CoordinateSystemAxis

Description

A CoordinateSystemAxis represents a dimension within a CoordinateSystem. The relationships

for the CoordinateSystemAxis meta-class are listed in Table 90.

Table 90: face.datamodel.logical.CoordinateSystemAxis Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.4.19 Meta-Class: face.datamodel.logical.AbstractMeasurementSystem

Description

An AbstractMeasurementSystem is an abstract parent for StandardMeasurementSystems and

MeasurementSystems. It is used for structural simplicity in the metamodel. The relationships for

the AbstractMeasurementSystem meta-class are listed in Table 91.

336 Open Group Standard (2017)

Table 91: face.datamodel.logical.AbstractMeasurementSystem Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.4.20 Meta-Class: face.datamodel.logical.StandardMeasurementSystem

Description

A StandardMeasurementSystem is used to represent an open, referenced measurement system

without requiring the detailed modeling of the measurement system. The reference should be

unambiguous and allows for full comprehension of the underlying measurement system. The

attributes for the StandardMeasurementSystem meta-class are listed in Table 92, and its

relationships are shown in Table 93.

Table 92: face.datamodel.logical.StandardMeasurementSystem Attributes

Name Type Multiplicity

referenceStandard string 0..1

Table 93: face.datamodel.logical.StandardMeasurementSystem Relationships

Type Name Target Multiplicity

Generalization

AbstractMeasurementSystem

J.2.4.21 Meta-Class: face.datamodel.logical.Landmark

Description

A Landmark represents a described point which relates a ReferencePoint to a well-known

location. The relationships for the Landmark meta-class are listed in Table 94.

Table 94: face.datamodel.logical.Landmark Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.4.22 Meta-Class: face.datamodel.logical.MeasurementSystem

Description

A MeasurementSystem relates a CoordinateSystem to an origin and orientation for the purpose

of establishing a common basis for describing points in an N-dimensional space. Defining a

MeasurementSystem establishes additional properties of the CoordinateSystem including units

and value types for each axis, and a set of reference points that can be used to establish an origin

and indicate the direction of each axis. The attributes for the MeasurementSystem meta-class are

listed in Table 95, and its relationships are shown in Table 96.

FACE™ Technical Standard, Edition 3.0 337

Table 95: face.datamodel.logical.MeasurementSystem Attributes

Name Type Multiplicity

externalStandardReference string 0..1

orientation string 0..1

Table 96: face.datamodel.logical.MeasurementSystem Relationships

Type Name Target Multiplicity

Association measurementSystemAxis MeasurementSystemAxis 1..*

Association coordinateSystem CoordinateSystem 1

Composition referencePoint ReferencePoint 0..*

Composition constraint MeasurementConstraint 0..* {Ordered}

Generalization

AbstractMeasurementSystem

J.2.4.23 Meta-Class: face.datamodel.logical.MeasurementSystemAxis

Description

A MeasurementSystemAxis establishes additional properties for a CoordinateSystemAxis

including units and value types. The relationships for the MeasurementSystemAxis meta-class

are listed in Table 97.

Table 97: face.datamodel.logical.MeasurementSystemAxis Relationships

Type Name Target Multiplicity

Association axis CoordinateSystemAxis 1

Association defaultValueTypeUnit ValueTypeUnit 1..*

Composition constraint MeasurementConstraint 0..* {Ordered}

Generalization

Element

J.2.4.24 Meta-Class: face.datamodel.logical.ReferencePoint

Description

A ReferencePoint is an identifiable point (landmark) that can be used to provide a basis for

locating and/or orienting a MeasurementSystem. The relationships for the ReferencePoint meta-

class are listed in Table 98.

Table 98: face.datamodel.logical.ReferencePoint Relationships

Type Name Target Multiplicity

Composition referencePointPart ReferencePointPart 1..*

Association landmark Landmark 1

338 Open Group Standard (2017)

Type Name Target Multiplicity

Generalization

face.Element

J.2.4.25 Meta-Class: face.datamodel.logical.ReferencePointPart

Description

A ReferencePointPart is a value for one ValueTypeUnit in a ValueTypeUnit set that is used to

identify a specific point along an axis. The attributes for the ReferencePointPart meta-class are

listed in Table 99, and its relationships are shown in Table 100.

Table 99: face.datamodel.logical.ReferencePointPart Attributes

Name Type Multiplicity

value string 1

Table 100: face.datamodel.logical.ReferencePointPart Relationships

Type Name Target Multiplicity

Association axis MeasurementSystemAxis 0..1

Association valueTypeUnit ValueTypeUnit 0..1

J.2.4.26 Meta-Class: face.datamodel.logical.ValueTypeUnit

Description

A ValueTypeUnit defines the logical representation of a MeasurementSystemAxis or

MeasurementAxis value type in terms of a Unit and ValueType pair. The relationships for the

ValueTypeUnit meta-class are listed in Table 101.

Table 101: face.datamodel.logical.ValueTypeUnit Relationships

Type Name Target Multiplicity

Association unit Unit 1

Association valueType ValueType 1

Composition constraint Constraint 0..1

Generalization

Element

Generalization

AbstractMeasurement

J.2.4.27 Meta-Class: face.datamodel.logical.Constraint

Description

A Constraint limits the set of possible values for the ValueType of a MeasurementSystem or

Measurement. The relationships for the Constraint meta-class are listed in Table 102.

FACE™ Technical Standard, Edition 3.0 339

Table 102: face.datamodel.logical.Constraint Relationships

Type Name Target Multiplicity

Generalization

face.Element

J.2.4.28 Meta-Class: face.datamodel.logical.IntegerConstraint

Description

An IntegerConstraint specifies a defined set of meaningful values for an Integer or Natural. The

relationships for the IntegerConstraint meta-class are listed in Table 103.

Table 103: face.datamodel.logical.IntegerConstraint Relationships

Type Name Target Multiplicity

Generalization

Constraint

J.2.4.29 Meta-Class: face.datamodel.logical.IntegerRangeConstraint

Description

An IntegerRangeConstraint specifies a defined range of meaningful values for an Integer or

Natural. The “upperBound” is greater than or equal to the “lowerBound”. The defined range is

inclusive of the “upperBound” and “lowerBound”. The attributes for the IntegerRangeConstraint

meta-class are listed in Table 104, and its relationships are shown in Table 105.

Table 104: face.datamodel.logical.IntegerRangeConstraint Attributes

Name Type Multiplicity

lowerBound int 1

upperBound int 1

Table 105: face.datamodel.logical.IntegerRangeConstraint Relationships

Type Name Target Multiplicity

Generalization

IntegerConstraint

J.2.4.30 Meta-Class: face.datamodel.logical.RealConstraint

Description

A RealConstraint specifies a defined set of meaningful values for a Real or NonNegativeReal.

The relationships for the RealConstraint meta-class are listed in Table 106.

Table 106: face.datamodel.logical.RealConstraint Relationships

Type Name Target Multiplicity

Generalization

Constraint

340 Open Group Standard (2017)

J.2.4.31 Meta-Class: face.datamodel.logical.RealRangeConstraint

Description

A RealRangeConstraint specifies a defined range of meaningful values for a Real or

NonNegativeReal. The “upperBound” is greater than or equal to the “lowerBound”. The

attributes for the RealRangeConstraint meta-class are listed in Table 107, and its relationships

are shown in Table 108.

Table 107: face.datamodel.logical.RealRangeConstraint Attributes

Name Type Multiplicity

lowerBound float 1

upperBound float 1

lowerBoundInclusive boolean 1

upperBoundInclusive boolean 1

Table 108: face.datamodel.logical.RealRangeConstraint Relationships

Type Name Target Multiplicity

Generalization

RealConstraint

J.2.4.32 Meta-Class: face.datamodel.logical.StringConstraint

Description

A StringConstraint specifies a defined set of meaningful values for a String. The relationships

for the StringConstraint meta-class are listed in Table 109.

Table 109: face.datamodel.logical.StringConstraint Relationships

Type Name Target Multiplicity

Generalization

Constraint

J.2.4.33 Meta-Class: face.datamodel.logical.RegularExpressionConstraint

Description

A RegularExpressionConstraint specifies a defined set of meaningful values for a String in the

form of a regular expression. The attributes for the RegularExpressionConstraint meta-class are

listed in Table 110, and its relationships are shown in Table 111.

Table 110: face.datamodel.logical.RegularExpressionConstraint Attributes

Name Type Multiplicity

expression string 1

FACE™ Technical Standard, Edition 3.0 341

Table 111: face.datamodel.logical.RegularExpressionConstraint Relationships

Type Name Target Multiplicity

Generalization

StringConstraint

J.2.4.34 Meta-Class: face.datamodel.logical.FixedLengthStringConstraint

Description

A FixedLengthStringConstraint specifies a defined set of meaningful values for a String as with

of a specific fixed length. The “length” attribute defines the fixed length, an integer value greater

than 0. The attributes for the FixedLengthStringConstraint meta-class are listed in Table 112,

and its relationships are shown in Table 113.

Table 112: face.datamodel.logical.FixedLengthStringConstraint Attributes

Name Type Multiplicity

length int 1

Table 113: face.datamodel.logical.FixedLengthStringConstraint Relationships

Type Name Target Multiplicity

Generalization

StringConstraint

J.2.4.35 Meta-Class: face.datamodel.logical.EnumerationConstraint

Description

An EnumerationConstraint identifies a subset of enumerated values (EnumerationLabel)

considered valid for an Enumerated value type of a MeasurementAxis. The relationships for the

EnumerationConstraint meta-class are listed in Table 114.

Table 114: face.datamodel.logical.EnumerationConstraint Relationships

Type Name Target Multiplicity

Association allowedValue EnumerationLabel 0..*

Generalization

Constraint

J.2.4.36 Meta-Class: face.datamodel.logical.MeasurementConstraint

Description

A MeasurementConstraint describes the constraints over the axes of a given

MeasurementSystem or Measurement or over the value types of a MeasurementSystemAxis or

MeasurementAxis. The constraints are described in the “constraintText” attribute. The specific

format of “constraintText” is undefined. The attributes for the MeasurementConstraint meta-

class are listed in Table 115.

342 Open Group Standard (2017)

Table 115: face.datamodel.logical.MeasurementConstraint Attributes

Name Type Multiplicity

constraintText string 1

J.2.4.37 Meta-Class: face.datamodel.logical.MeasurementSystemConversion

Description

A MeasurementSystemConversion is a relationship between two MeasurementSystems that

describes how to transform measured quantities between those MeasurementSystems. The

conversion is captured as a set of equations in the “equation” attribute. The specific format of

“equation” is undefined. The loss introduced by the conversion equations is captured in the

“conversionLossDescription” attribute. The specific format of “conversionLossDescription” is

undefined. The attributes for the MeasurementSystemConversion meta-class are listed in Table

116, and its relationships are shown in Table 117.

Table 116: face.datamodel.logical.MeasurementSystemConversion Attributes

Name Type Multiplicity

equation string 1..* {Ordered}

conversionLossDescription string 0..1

Table 117: face.datamodel.logical.MeasurementSystemConversion Relationships

Type Name Target Multiplicity

Association source MeasurementSystem 1

Association target MeasurementSystem 1

Generalization

Element

J.2.4.38 Meta-Class: face.datamodel.logical.AbstractMeasurement

Description

An AbstractMeasurement is a Measurement, MeasurementAxis, or a ValueTypeUnit.

J.2.4.39 Meta-Class: face.datamodel.logical.Measurement

Description

A Measurement realizes an Observable as a set of quantities that can be recorded for each of the

axis of a MeasurementSystem. A Measurement contains the specific implementation details

optionally including an override of the default Unit for each axis as well as the constraints over

that space for which the MeasurementSystem is valid. The relationships for the Measurement

meta-class are listed in Table 118.

FACE™ Technical Standard, Edition 3.0 343

Table 118: face.datamodel.logical.Measurement Relationships

Type Name Target Multiplicity

Composition constraint MeasurementConstraint 0..* {Ordered}

Association measurementAxis MeasurementAxis 0..*

Association measurementSystem AbstractMeasurementSystem 1

Association realizes face.datamodel.conceptual.Observable 1

Composition attribute MeasurementAttribute 0..*

Generalization

ComposableElement

Generalization

AbstractMeasurement

J.2.4.40 Meta-Class: face.datamodel.logical.MeasurementAxis

Description

A MeasurementAxis optionally establishes constraints for a MeasurementSystemAxis and may

optionally override its default units and value types. The relationships for the MeasurementAxis

meta-class are listed in Table 119.

Table 119: face.datamodel.logical.MeasurementAxis Relationships

Type Name Target Multiplicity

Association valueTypeUnit ValueTypeUnit 0..*

Association measurementSystemAxis MeasurementSystemAxis 1

Composition constraint MeasurementConstraint 0..* {Ordered}

Association realizes face.datamodel.conceptual.Observable 0..1

Generalization

Element

Generalization

AbstractMeasurement

J.2.4.41 Meta-Class: face.datamodel.logical.MeasurementAttribute

Description

A MeasurementAttribute is supplemental data associated with a Measurement. The attributes for

the MeasurementAttribute meta-class are listed in Table 120, and its relationships are shown in

Table 121.

Table 120: face.datamodel.logical.MeasurementAttribute Attributes

Name Type Multiplicity

rolename string 1

344 Open Group Standard (2017)

Table 121: face.datamodel.logical.MeasurementAttribute Relationships

Type Name Target Multiplicity

Association type Measurement 1

J.2.4.42 Meta-Class: face.datamodel.logical.MeasurementConversion

Description

A MeasurementConversion is a relationship between two Measurements that describes how to

transform measured quantities between those Measurements. The conversion is captured as a set

of equations in the “equation” attribute. The specific format of “equation” is undefined. The loss

introduced by the conversion equations is captured in the “conversionLossDescription” attribute.

The specific format of “conversionLossDescription” is undefined. The attributes for the

MeasurementConversion meta-class are listed in Table 122, and its relationships are shown in

Table 123.

Table 122: face.datamodel.logical.MeasurementConversion Attributes

Name Type Multiplicity

equation string 1..* {Ordered}

conversionLossDescription string 0..1

Table 123: face.datamodel.logical.MeasurementConversion Relationships

Type Name Target Multiplicity

Association source Measurement 1

Association target Measurement 1

Generalization

Element

J.2.4.43 Meta-Class: face.datamodel.logical.ComposableElement

Description

A logical ComposableElement is a logical Element that is allowed to participate in a

Composition relationship. In other words, these are the logical Elements that may be a

characteristic of a logical Entity. The relationships for the ComposableElement meta-class are

listed in Table 124.

Table 124: face.datamodel.logical.ComposableElement Relationships

Type Name Target Multiplicity

Generalization

Element

FACE™ Technical Standard, Edition 3.0 345

J.2.4.44 Meta-Class: face.datamodel.logical.Characteristic

Description

A logical Characteristic is a defining feature of a logical Entity. The “rolename” attribute defines

the name of the logical Characteristic within the scope of the logical Entity. The “lowerBound”

and “upperBound” attributes define the multiplicity of the composed Characteristic. An

“upperBound” multiplicity of -1 represents an unbounded sequence. The attributes for the

Characteristic meta-class are listed in Table 125, and its relationships are shown in Table 126.

Table 125: face.datamodel.logical.Characteristic Attributes

Name Type Multiplicity

rolename string 1

lowerBound int 1

upperBound int 1

description string 0..1

Table 126: face.datamodel.logical.Characteristic Relationships

Type Name Target Multiplicity

Association specializes Characteristic 0..1

J.2.4.45 Meta-Class: face.datamodel.logical.Entity

Description

A logical Entity “realizes” a conceptual Entity in terms of Measurements and other logical

Entities. Since a logical Entity is built from logical Measurements, it is independent of any

specific platform data representation. A logical Entity's composition hierarchy is consistent with

the composition hierarchy of the conceptual Entity that it realizes. The logical Entity’s composed

Entities realize one to one the conceptual Entity’s composed Entities; the logical Entity’s

composed Measurements realize many to one the conceptual Entity’s composed Observables.

The relationships for the Entity meta-class are listed in Table 127.

Table 127: face.datamodel.logical.Entity Relationships

Type Name Target Multiplicity

Composition composition Composition 0..*

Association realizes face.datamodel.conceptual.Entity 1

Association specializes Entity 0..1

Generalization

ComposableElement

Generalization

face.traceability.TraceableElement

346 Open Group Standard (2017)

J.2.4.46 Meta-Class: face.datamodel.logical.Composition

Description

A logical Composition is the mechanism that allows logical Entities to be constructed from other

logical ComposableElements. The “type” of a Composition is the ComposableElement being

used to construct the logical Entity. The “lowerBound” and “upperBound” define the

multiplicity of the composed logical Entity. An “upperBound” multiplicity of -1 represents an

unbounded sequence. The relationships for the Composition meta-class are listed in Table 128.

Table 128: face.datamodel.logical.Composition Relationships

Type Name Target Multiplicity

Association type ComposableElement 1

Association realizes face.datamodel.conceptual.Composition 1

Generalization

Characteristic

J.2.4.47 Meta-Class: face.datamodel.logical.Association

Description

A logical Association represents a relationship between two or more logical Entities. In addition,

there may be one or more logical ComposableElements that characterize the relationship.

Logical associations are logical Entities that may also participate in other logical Associations.

The relationships for the Association meta-class are listed in Table 129.

Table 129: face.datamodel.logical.Association Relationships

Type Name Target Multiplicity

Composition participant Participant 0..*

Generalization

Entity

J.2.4.48 Meta-Class: face.datamodel.logical.Participant

Description

A logical Participant is the mechanism that allows a logical Association to be constructed

between two or more logical Entities. The “type” of a logical Participant is the logical Entity

being used to construct the logical Association. The “sourceLowerBound” and

“sourceUpperBound” attributes define the multiplicity of the logical Association relative to the

Participant. A “sourceUpperBound” multiplicity of -1 represents an unbounded sequence. The

“path” attribute of the Participant describes the chain of entity characteristics to traverse to reach

the subject of the association beginning with the entity referenced by the “type” attribute. The

attributes for the Participant meta-class are listed in Table 130, and its relationships are shown in

Table 131.

FACE™ Technical Standard, Edition 3.0 347

Table 130: face.datamodel.logical.Participant Attributes

Name Type Multiplicity

sourceLowerBound int 1

sourceUpperBound int 1

Table 131: face.datamodel.logical.Participant Relationships

Type Name Target Multiplicity

Association type Entity 1

Association realizes face.datamodel.conceptual.Participant 1

Composition path PathNode 0..1

Generalization

Characteristic

J.2.4.49 Meta-Class: face.datamodel.logical.PathNode

Description

A logical PathNode is a single element in a chain that collectively forms a path specification.

The relationships for the PathNode meta-class are listed in Table 132.

Table 132: face.datamodel.logical.PathNode Relationships

Type Name Target Multiplicity

Composition node PathNode 0..1

J.2.4.50 Meta-Class: face.datamodel.logical.ParticipantPathNode

Description

A logical ParticipantPathNode is a logical PathNode that selects an Association which references

an Entity. This provides a mechanism for reverse navigation of Association references. The

relationships for the ParticipantPathNode meta-class are listed in Table 133.

Table 133: face.datamodel.logical.ParticipantPathNode Relationships

Type Name Target Multiplicity

Association projectedParticipant Participant 1

Generalization

PathNode

348 Open Group Standard (2017)

J.2.4.51 Meta-Class: face.datamodel.logical.CharacteristicPathNode

Description

A logical CharacteristicPathNode is a logical PathNode that selects logical Characteristics which

are directly contained in a logical Entity or Association. The relationships for the

CharacteristicPathNode meta-class are listed in Table 134.

Table 134: face.datamodel.logical.CharacteristicPathNode Relationships

Type Name Target Multiplicity

Association projectedCharacteristic Characteristic 1

Generalization

PathNode

J.2.4.52 Meta-Class: face.datamodel.logical.View

Description

A logical View is a logical Query or a logical CompositeQuery. The relationships for the View

meta-class are listed in Table 135.

Table 135: face.datamodel.logical.View Relationships

Type Name Target Multiplicity

Generalization

Element

Generalization

face.traceability.TraceableElement

J.2.4.53 Meta-Class: face.datamodel.logical.Query

Description

A logical Query is a specification that defines the content of logical View as a set of logical

Characteristics projected from a selected set of related logical Entities. The “specification”

attribute captures the specification of a Query as defined by the Query grammar. The attributes

for the Query meta-class are listed in Table 136, and its relationships are shown in Table 137.

Table 136: face.datamodel.logical.Query Attributes

Name Type Multiplicity

specification string 1

Table 137: face.datamodel.logical.Query Relationships

Type Name Target Multiplicity

Association realizes face.datamodel.conceptual.Query 0..1

Generalization

View

FACE™ Technical Standard, Edition 3.0 349

J.2.4.54 Meta-Class: face.datamodel.logical.CompositeQuery

Description

A logical CompositeQuery is a collection of two or more logical Queries. The “isUnion”

attribute specifies whether the composed logical Queries are intended to be represented as cases

in an IDL union or as members of an IDL struct. The attributes for the CompositeQuery meta-

class are listed in Table 138, and its relationships are shown in Table 139.

Table 138: face.datamodel.logical.CompositeQuery Attributes

Name Type Multiplicity

isUnion boolean 1

Table 139: face.datamodel.logical.CompositeQuery Relationships

Type Name Target Multiplicity

Composition composition QueryComposition 2..*

Association realizes face.datamodel.conceptual.CompositeQuery 0..1

Generalization

Element

Generalization

View

J.2.4.55 Meta-Class: face.datamodel.logical.QueryComposition

Description

A logical QueryComposition is the mechanism that allows a logical CompositeQuery to be

constructed from logical Queries and other logical CompositeQueries. The “rolename” attribute

defines the name of the composed logical View within the scope of the composing logical

CompositeQuery. The “type” of a logical QueryComposition is the logical View being used to

construct the logical CompositeQuery. The attributes for the QueryComposition meta-class are

listed in Table 140, and its relationships are shown in Table 141.

Table 140: face.datamodel.logical.QueryComposition Attributes

Name Type Multiplicity

rolename string 1

Table 141: face.datamodel.logical.QueryComposition Relationships

Type Name Target Multiplicity

Association realizes face.datamodel.conceptual.QueryComposition 0..1

Association type View 1

350 Open Group Standard (2017)

J.2.5 Meta-Package: face.datamodel.platform

Figure 40: FACE Metamodel “face.datamodel.platform” Package

Figure 41: FACE Metamodel “face.datamodel.platform” Package: Platform Value Types

FACE™ Technical Standard, Edition 3.0 351

Figure 42: FACE Metamodel “face.datamodel.platform” Package: Participant Path

Figure 43: FACE Metamodel “face.datamodel.platform” Package: Views

J.2.5.1 Meta-Class: face.datamodel.platform.Element

Description

A platform Element is the root type for defining the platform elements of the FACE Data Model

Language. The relationships for the Element meta-class are listed in Table 142.

Table 142: face.datamodel.platform.Element Relationships

Type Name Target Multiplicity

Generalization

face.datamodel.Element

352 Open Group Standard (2017)

J.2.5.2 Meta-Class: face.datamodel.platform.ComposableElement

Description

A platform ComposableElement is a platform Element that is allowed to participate in a

Composition relationship. In other words, these are the platform Elements that may be a

characteristic of a platform Entity. The relationships for the ComposableElement meta-class are

listed in Table 143.

Table 143: face.datamodel.platform.ComposableElement Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.5.3 Meta-Class: face.datamodel.platform.PhysicalDataType

Description

A PhysicalDataType specifies how a logical AbstractMeasurement is represented on the target

platform. Each PhysicalDataType has a predefined size in bytes that is fixed. The relationships

for the PhysicalDataType meta-class are listed in Table 144.

Table 144: face.datamodel.platform.PhysicalDataType Relationships

Type Name Target Multiplicity

Generalization

ComposableElement

J.2.5.4 Meta-Class: face.datamodel.platform.IDLType

Description

An IDLType is an IDLPrimitive or an IDLStruct. The relationships for the IDLType meta-class

are listed in Table 145.

Table 145: face.datamodel.platform.IDLType Relationships

Type Name Target Multiplicity

Association realizes face.datamodel.logical.AbstractMeasurement 1

Generalization

PhysicalDataType

J.2.5.5 Meta-Class: face.datamodel.platform.IDLPrimitive

Description

An IDLPrimitive is a platform realization of a logical AbstractMeasurement, and represented as

a primitive data type supported by the OMG Interface Definition Language (IDL). The

relationships for the IDLPrimitive meta-class are listed in Table 146.

FACE™ Technical Standard, Edition 3.0 353

Table 146: face.datamodel.platform.IDLPrimitive Relationships

Type Name Target Multiplicity

Generalization

IDLType

J.2.5.6 Meta-Class: face.datamodel.platform.Boolean

Description

A Boolean is a data type that represents the values TRUE and FALSE. The relationships for the

Boolean meta-class are listed in Table 147.

Table 147: face.datamodel.platform.Boolean Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

J.2.5.7 Meta-Class: face.datamodel.platform.Octet

Description

An Octet is an 8-bit quantity that is guaranteed not to undergo any conversion during transfer

between systems. The relationships for the Octet meta-class are listed in Table 148.

Table 148: face.datamodel.platform.Octet Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

J.2.5.8 Meta-Class: face.datamodel.platform.CharType

Description

A CharType is a Char. The relationships for the CharType meta-class are listed in Table 149.

Table 149: face.datamodel.platform.CharType Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

J.2.5.9 Meta-Class: face.datamodel.platform.Char

Description

A Char is a data type that represents characters from any single byte character set. The

relationships for the Char meta-class are listed in Table 150.

354 Open Group Standard (2017)

Table 150: face.datamodel.platform.Char Relationships

Type Name Target Multiplicity

Generalization

CharType

J.2.5.10 Meta-Class: face.datamodel.platform.StringType

Description

A StringType is an IDLBoundedString, an IDLUnboundedString or an IDLCharacterArray. The

relationships for the StringType meta-class are listed in Table 151.

Table 151: face.datamodel.platform.StringType Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

J.2.5.11 Meta-Class: face.datamodel.platform.IDLUnboundedString

Description

An IDLUnboundedString is a String or a WString. The relationships for the

IDLUnboundedString meta-class are listed in Table 152.

Table 152: face.datamodel.platform.IDLUnboundedString Relationships

Type Name Target Multiplicity

Generalization

StringType

J.2.5.12 Meta-Class: face.datamodel.platform.String

Description

A String is a data type that represents a variable length sequence of Char (all 8-bit quantities

except NULL). The length is a non-negative integer, and is available at run-time. The length is

not maximally bounded. The relationships for the String meta-class are listed in Table 153.

Table 153: face.datamodel.platform.String Relationships

Type Name Target Multiplicity

Generalization

IDLUnboundedString

J.2.5.13 Meta-Class: face.datamodel.platform.IDLBoundedString

Description

An IDLBoundedString is a BoundedString or a BoundedWString. The “maxLength” attribute

defines the maximum length of the IDLBoundedString, an integer value greater than 0. The

attributes for the IDLBoundedString meta-class are listed in Table 154, and its relationships are

shown in Table 155.

FACE™ Technical Standard, Edition 3.0 355

Table 154: face.datamodel.platform.IDLBoundedString Attributes

Name Type Multiplicity

maxLength int 1

Table 155: face.datamodel.platform.IDLBoundedString Relationships

Type Name Target Multiplicity

Generalization

StringType

J.2.5.14 Meta-Class: face.datamodel.platform.BoundedString

Description

A BoundedString is a data type that represents a variable length sequence of Char (all 8-bit

quantities except NULL). The length is a non-negative integer, and is available at run-time. The

length is maximally bounded. The relationships for the BoundedString meta-class are listed in

Table 156.

Table 156: face.datamodel.platform.BoundedString Relationships

Type Name Target Multiplicity

Generalization

IDLBoundedString

J.2.5.15 Meta-Class: face.datamodel.platform.IDLCharacterArray

Description

An IDLCharacterArray is a CharArray or a WCharArray. The “length” attribute defines the

length of the IDLCharacterArray, an integer value greater than 0. The attributes for the

IDLCharacterArray meta-class are listed in Table 157, and its relationships are shown in Table

158.

Table 157: face.datamodel.platform.IDLCharacterArray Attributes

Name Type Multiplicity

length int 1

Table 158: face.datamodel.platform.IDLCharacterArray Relationships

Type Name Target Multiplicity

Generalization

StringType

356 Open Group Standard (2017)

J.2.5.16 Meta-Class: face.datamodel.platform.CharArray

Description

A CharArray is a data type that represents a fixed length sequence of Char (all 8-bit quantities

except NULL). The length is a positive integer, and is available at run-time. The length is

maximally bounded. The relationships for the CharArray meta-class are listed in Table 159.

Table 159: face.datamodel.platform.CharArray Relationships

Type Name Target Multiplicity

Generalization

IDLCharacterArray

J.2.5.17 Meta-Class: face.datamodel.platform.Enumeration

Description

An Enumeration is a data type that represents an ordered list of identifiers. A maximum of 2^32

identifiers may be specified in an enumeration. The order in which the identifiers are named

defines the relative order of the identifiers. The relationships for the Enumeration meta-class are

listed in Table 160.

Table 160: face.datamodel.platform.Enumeration Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

J.2.5.18 Meta-Class: face.datamodel.platform.IDLNumber

Description

An IDLNumber is an abstract meta-class from which all meta-classes representing numeric

values derive. The relationships for the IDLNumber meta-class are listed in Table 161.

Table 161: face.datamodel.platform.IDLNumber Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

J.2.5.19 Meta-Class: face.datamodel.platform.IDLInteger

Description

An IDLInteger is an abstract meta-class from which all meta-classes representing whole

numbers derive. The relationships for the IDLInteger meta-class are listed in Table 162.

Table 162: face.datamodel.platform.IDLInteger Relationships

Type Name Target Multiplicity

Generalization

IDLNumber

FACE™ Technical Standard, Edition 3.0 357

J.2.5.20 Meta-Class: face.datamodel.platform.Short

Description

A Short is an integer data type that represents integer values in the range -2^15 to (2^15 - 1). The

relationships for the Short meta-class are listed in Table 163.

Table 163: face.datamodel.platform.Short Relationships

Type Name Target Multiplicity

Generalization

IDLInteger

J.2.5.21 Meta-Class: face.datamodel.platform.Long

Description

A Long is an integer data type that represents integer values in the range -2^31 to (2^31 - 1). The

relationships for the Long meta-class are listed in Table 164.

Table 164: face.datamodel.platform.Long Relationships

Type Name Target Multiplicity

Generalization

IDLInteger

J.2.5.22 Meta-Class: face.datamodel.platform.LongLong

Description

A LongLong is an integer data type that represents integer values in the range -2^63 to (2^63 -

1). The relationships for the LongLong meta-class are listed in Table 165.

Table 165: face.datamodel.platform.LongLong Relationships

Type Name Target Multiplicity

Generalization

IDLInteger

J.2.5.23 Meta-Class: face.datamodel.platform.IDLReal

Description

An IDLReal is an abstract meta-class from which all meta-classes representing real numbers

derive. The relationships for the IDLReal meta-class are listed in Table 166.

Table 166: face.datamodel.platform.IDLReal Relationships

Type Name Target Multiplicity

Generalization

IDLNumber

358 Open Group Standard (2017)

J.2.5.24 Meta-Class: face.datamodel.platform.Double

Description

A Double is a real data type that represents an IEEE double precision floating-point number. The

relationships for the Double meta-class are listed in Table 167.

Table 167: face.datamodel.platform.Double Relationships

Type Name Target Multiplicity

Generalization

IDLReal

J.2.5.25 Meta-Class: face.datamodel.platform.LongDouble

Description

A LongDouble is a real data type that represents an IEEE extended double precision floating-

point number (having a signed fraction of at least 64 bits and an exponent of at least 15 bits).

The relationships for the LongDouble meta-class are listed in Table 168.

Table 168: face.datamodel.platform.LongDouble Relationships

Type Name Target Multiplicity

Generalization

IDLReal

J.2.5.26 Meta-Class: face.datamodel.platform.Float

Description

A Float is a real data type that represents an IEEE single precision floating-point number. The

relationships for the Float meta-class are listed in Table 169.

Table 169: face.datamodel.platform.Float Relationships

Type Name Target Multiplicity

Generalization

IDLReal

J.2.5.27 Meta-Class: face.datamodel.platform.Fixed

Description

A Fixed is a real data type that represents a fixed-point decimal number of up to 31 significant

digits. The “digits” attribute defines the total number of digits, a non-negative integer value less

than or equal to 31. The “scale” attribute defines the position of the decimal point in the number,

and cannot be greater than “digits”. The attributes for the Fixed meta-class are listed in Table

170, and its relationships are shown in Table 171.

FACE™ Technical Standard, Edition 3.0 359

Table 170: face.datamodel.platform.Fixed Attributes

Name Type Multiplicity

digits int 1

scale int 1

Table 171: face.datamodel.platform.Fixed Relationships

Type Name Target Multiplicity

Generalization

IDLReal

J.2.5.28 Meta-Class: face.datamodel.platform.IDLUnsignedInteger

Description

An IDLUnsignedInteger is an abstract meta-class from which all meta-classes representing

unsigned whole numbers derive. The relationships for the IDLUnsignedInteger meta-class are

listed in Table 172.

Table 172: face.datamodel.platform.IDLUnsignedInteger Relationships

Type Name Target Multiplicity

Generalization

IDLInteger

J.2.5.29 Meta-Class: face.datamodel.platform.UShort

Description

A UShort is an integer data type that represents integer values in the range 0 to (2^16 - 1). The

relationships for the UShort meta-class are listed in Table 173.

Table 173: face.datamodel.platform.UShort Relationships

Type Name Target Multiplicity

Generalization

IDLUnsignedInteger

J.2.5.30 Meta-Class: face.datamodel.platform.ULong

Description

A ULong is an integer data type that represents integer values in the range 0 to (2^32 - 1). The

relationships for the ULong meta-class are listed in Table 174.

Table 174: face.datamodel.platform.ULong Relationships

Type Name Target Multiplicity

Generalization

IDLUnsignedInteger

360 Open Group Standard (2017)

J.2.5.31 Meta-Class: face.datamodel.platform.ULongLong

Description

A ULongLong is an integer data type that represents integer values in the range 0 to (2^64 - 1).

The relationships for the ULongLong meta-class are listed in Table 175.

Table 175: face.datamodel.platform.ULongLong Relationships

Type Name Target Multiplicity

Generalization

IDLUnsignedInteger

J.2.5.32 Meta-Class: face.datamodel.platform.IDLSequence

Description

An IDLSequence is used to represent a sequence of Octets. This can be used to realize a

StandardMeasurementSystem. The attributes for the IDLSequence meta-class are listed in Table

176, and its relationships are shown in Table 177.

Table 176: face.datamodel.platform.IDLSequence Attributes

Name Type Multiplicity

maxSize int 0..1

Table 177: face.datamodel.platform.IDLSequence Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

J.2.5.33 Meta-Class: face.datamodel.platform.IDLArray

Description

IDLArray is used to represent an array of Octets. This can be used to realize a

StandardMeasurementSystem. The attributes for the IDLArray meta-class are listed in Table

178, and its relationships are shown in Table 179.

Table 178: face.datamodel.platform.IDLArray Attributes

Name Type Multiplicity

size int 0..1

Table 179: face.datamodel.platform.IDLArray Relationships

Type Name Target Multiplicity

Generalization

IDLPrimitive

FACE™ Technical Standard, Edition 3.0 361

J.2.5.34 Meta-Class: face.datamodel.platform.IDLStruct

Description

A platform IDLStruct “realizes” a logical AbstractMeasurement in terms of IDLPrimitives and

other IDLStructs composed of IDLPrimitives. A platform IDLStruct’s composition hierarchy is

consistent with the composition hierarchy of the logical AbstractMeasurement that it realizes.

Each composed platform IDLType realizes a logical AbstractMeasurement. The relationships for

the IDLStruct meta-class are listed in Table 180.

Table 180: face.datamodel.platform.IDLStruct Relationships

Type Name Target Multiplicity

Composition composition IDLComposition 2..* {Ordered}

Generalization

IDLType

J.2.5.35 Meta-Class: face.datamodel.platform.IDLComposition

Description

An IDLComposition is the mechanism that allows IDLStructs to be constructed from other

platform IDLTypes. The “type” of an IDLComposition is the IDLType being used to construct

the IDLStruct. If “type” is an IDLPrimitive, the “precision” attribute specifies a measure of the

detail in which a quantity is captured. The attributes for the IDLComposition meta-class are

listed in Table 181, and its relationships are shown in Table 182.

Table 181: face.datamodel.platform.IDLComposition Attributes

Name Type Multiplicity

rolename string 1

precision float 0..1

Table 182: face.datamodel.platform.IDLComposition Relationships

Type Name Target Multiplicity

Association type IDLType 1

Association realizes face.datamodel.logical.MeasurementAttribute 0..1

J.2.5.36 Meta-Class: face.datamodel.platform.Characteristic

Description

A platform Characteristic is a defining feature of a platform Entity. The “rolename” attribute

defines the name of the platform Characteristic within the scope of the platform Entity. The

“lowerBound” and “upperBound” attributes define the multiplicity of the composed

Characteristic. An “upperBound” multiplicity of -1 represents an unbounded sequence. The

attributes for the Characteristic meta-class are listed in Table 183, and its relationships are

shown in Table 184.

362 Open Group Standard (2017)

Table 183: face.datamodel.platform.Characteristic Attributes

Name Type Multiplicity

rolename string 1

upperBound int 1

lowerBound int 1

description string 0..1

Table 184: face.datamodel.platform.Characteristic Relationships

Type Name Target Multiplicity

Association specializes Characteristic 0..1

J.2.5.37 Meta-Class: face.datamodel.platform.Entity

Description

A platform Entity “realizes” a logical Entity in terms of PhysicalDataTypes and other platform

Entities composed of PhysicalDataTypes. A platform Entity's composition hierarchy is

consistent with the composition hierarchy of the logical Entity that it realizes. The platform

Entity’s composed Entities realize one to one the logical Entity’s composed Entities; the

platform Entity’s composed PhysicalDataTypes realize many to one the logical Entity’s

composed Measurements. The relationships for the Entity meta-class are listed in Table 185.

Table 185: face.datamodel.platform.Entity Relationships

Type Name Target Multiplicity

Composition composition Composition 0..* {Ordered}

Association realizes face.datamodel.logical.Entity 1

Association specializes Entity 0..1

Generalization

ComposableElement

Generalization

face.traceability.TraceableElement

J.2.5.38 Meta-Class: face.datamodel.platform.Composition

Description

A platform Composition is the mechanism that allows platform Entities to be constructed from

other platform ComposableElements. The “type” of a Composition is the ComposableElement

being used to construct the platform Entity. The “lowerBound” and “upperBound” define the

multiplicity of the composed platform Entity. An “upperBound” multiplicity of -1 represents an

unbounded sequence. If “type” is an IDLPrimitive, the “precision” attribute specifies a measure

of the detail in which a quantity is captured. The attributes for the Composition meta-class are

listed in Table 186, and its relationships are shown in Table 187.

FACE™ Technical Standard, Edition 3.0 363

Table 186: face.datamodel.platform.Composition Attributes

Name Type Multiplicity

precision float 0..1

Table 187: face.datamodel.platform.Composition Relationships

Type Name Target Multiplicity

Association type ComposableElement 1

Association realizes face.datamodel.logical.Composition 1

Generalization

Characteristic

J.2.5.39 Meta-Class: face.datamodel.platform.Association

Description

A platform Association represents a relationship between two or more platform Entities. In

addition, there may be one or more platform ComposableElements that characterize the

relationship. Platform associations are platform Entities that may also participate in other

platform Associations. The relationships for the Association meta-class are listed in Table 188.

Table 188: face.datamodel.platform.Association Relationships

Type Name Target Multiplicity

Composition participant Participant 0..* {Ordered}

Generalization

Entity

J.2.5.40 Meta-Class: face.datamodel.platform.Participant

Description

A platform Participant is the mechanism that allows a platform Association to be constructed

between two or more platform Entities. The “type” of a platform Participant is the platform

Entity being used to construct the platform Association. The “sourceLowerBound” and

“sourceUpperBound” attributes define the multiplicity of the platform Association relative to the

Participant. A “sourceUpperBound” multiplicity of -1 represents an unbounded sequence. The

“path” attribute of the Participant describes the chain of entity characteristics to traverse to reach

the subject of the association beginning with the entity referenced by the “type” attribute. The

attributes for the Participant meta-class are listed in Table 189, and its relationships are shown in

Table 190.

Table 189: face.datamodel.platform.Participant Attributes

Name Type Multiplicity

sourceLowerBound int 1

sourceUpperBound int 1

364 Open Group Standard (2017)

Table 190: face.datamodel.platform.Participant Relationships

Type Name Target Multiplicity

Association type Entity 1

Association realizes face.datamodel.logical.Participant 1

Composition path PathNode 0..1

Generalization

Characteristic

J.2.5.41 Meta-Class: face.datamodel.platform.PathNode

Description

A platform PathNode is a single element in a chain that collectively forms a path specification.

The relationships for the PathNode meta-class are listed in Table 191.

Table 191: face.datamodel.platform.PathNode Relationships

Type Name Target Multiplicity

Composition node PathNode 0..1

J.2.5.42 Meta-Class: face.datamodel.platform.ParticipantPathNode

Description

A platform ParticipantPathNode is a platform PathNode that selects an Association which

references an Entity. This provides a mechanism for reverse navigation of Association

references. The relationships for the ParticipantPathNode meta-class are listed in Table 192.

Table 192: face.datamodel.platform.ParticipantPathNode Relationships

Type Name Target Multiplicity

Association projectedParticipant Participant 1

Generalization

PathNode

J.2.5.43 Meta-Class: face.datamodel.platform.CharacteristicPathNode

Description

A platform CharacteristicPathNode is a platform PathNode that selects platform Characteristics

which are directly contained in a platform Entity or Association. The relationships for the

CharacteristicPathNode meta-class are listed in Table 193.

Table 193: face.datamodel.platform.CharacteristicPathNode Relationships

Type Name Target Multiplicity

Association projectedCharacteristic Characteristic 1

FACE™ Technical Standard, Edition 3.0 365

Type Name Target Multiplicity

Generalization

PathNode

J.2.5.44 Meta-Class: face.datamodel.platform.View

Description

A platform View is a Template or a CompositeTemplate. The relationships for the View meta-

class are listed in Table 194.

Table 194: face.datamodel.platform.View Relationships

Type Name Target Multiplicity

Generalization

Element

Generalization

face.traceability.TraceableElement

J.2.5.45 Meta-Class: face.datamodel.platform.Query

Description

A platform Query is a specification that defines the content of platform View as a set of platform

Characteristics projected from a selected set of related platform Entities. The “specification”

attribute captures the specification of a Query as defined by the Query grammar. The attributes

for the Query meta-class are listed in Table 195, and its relationships are shown in Table 196.

Table 195: face.datamodel.platform.Query Attributes

Name Type Multiplicity

specification string 1

Table 196: face.datamodel.platform.Query Relationships

Type Name Target Multiplicity

Association realizes face.datamodel.logical.Query 0..1

Generalization

Element

Generalization

face.traceability.TraceableElement

J.2.5.46 Meta-Class: face.datamodel.platform.CompositeTemplate

Description

A CompositeTemplate is a collection of two or more Templates. The “isUnion” attribute

specifies whether the composed Templates are to be represented as cases in an IDL union or as

members of an IDL struct. The attributes for the CompositeTemplate meta-class are listed in

Table 197, and its relationships are shown in Table 198.

366 Open Group Standard (2017)

Table 197: face.datamodel.platform.CompositeTemplate Attributes

Name Type Multiplicity

isUnion boolean 1

Table 198: face.datamodel.platform.CompositeTemplate Relationships

Type Name Target Multiplicity

Composition composition TemplateComposition 2..* {Ordered}

Association realizes face.datamodel.logical.CompositeQuery 0..1

Generalization

Element

Generalization

View

J.2.5.47 Meta-Class: face.datamodel.platform.TemplateComposition

Description

A TemplateComposition is the mechanism that allows a CompositeTemplate to be constructed

from Templates and other CompositeTemplates. The “rolename” attribute defines the name of

the composed platform View within the scope of the composing CompositeTemplate. The

“type” of a TemplateComposition is the platform View being used to construct the

CompositeTemplate. The attributes for the TemplateComposition meta-class are listed in Table

199, and its relationships are shown in Table 200.

Table 199: face.datamodel.platform.TemplateComposition Attributes

Name Type Multiplicity

rolename string 1

Table 200: face.datamodel.platform.TemplateComposition Relationships

Type Name Target Multiplicity

Association realizes face.datamodel.logical.QueryComposition 0..1

Association type View 1

J.2.5.48 Meta-Class: face.datamodel.platform.Template

Description

A Template is a specification that defines a structure for Characteristics projected by its

“boundQuery” or its “effectiveQuery”. The “specification” attribute captures the specification of

a Template as defined by the Template grammar in Section J.4. The attributes for the Template

meta-class are listed in Table 201, and its relationships are shown in Table 202.

FACE™ Technical Standard, Edition 3.0 367

Table 201: face.datamodel.platform.Template Attributes

Name Type Multiplicity

specification string 1

Table 202: face.datamodel.platform.Template Relationships

Type Name Target Multiplicity

Association boundQuery Query 0..1

Association effectiveQuery Query 0..1

Generalization

View

J.2.6 Meta-Package: face.uop

Figure 44: FACE Metamodel “face.uop” Package

368 Open Group Standard (2017)

Figure 45: FACE Metamodel “face.uop” Package: UoP Connections

Figure 46: FACE Metamodel “face.uop” Package: UoP Characterization

FACE™ Technical Standard, Edition 3.0 369

Figure 47: FACE Metamodel “face.uop” Package: Abstract UoP

Figure 48: FACE Metamodel “face.uop” Package: Aliases

J.2.6.1 Meta-Enumeration: face.uop.ClientServerRole

Description

The literals for the ClientServerRole enumeration are listed in Table 203.

Table 203: face.uop.ClientServerRole Literals

Name

Client

Server

370 Open Group Standard (2017)

J.2.6.2 Meta-Enumeration: face.uop.FaceProfile

Description

The FaceProfile enumeration captures the OS API subsets for a UoP as defined by the OSS. The

literals for the FaceProfile enumeration are listed in Table 204.

Table 204: face.uop.FaceProfile Literals

Name

GeneralPurpose

Security

SafetyBase

SafetyExtended

J.2.6.3 Meta-Enumeration: face.uop.DesignAssuranceLevel

Description

The literals for the DesignAssuranceLevel enumeration are listed in Table 205.

Table 205: face.uop.DesignAssuranceLevel Literals

Name

A

B

C

D

E

J.2.6.4 Meta-Enumeration: face.uop.DesignAssuranceStandard

Description

The literals for the DesignAssuranceStandard enumeration are listed in Table 206.

Table 206: face.uop.DesignAssuranceStandard Literals

Name

DO_178B_ED_12B

DO_178C_ED_12C

FACE™ Technical Standard, Edition 3.0 371

J.2.6.5 Meta-Enumeration: face.uop.MessageExchangeType

Description

The MessageExchangeType enumeration captures the options for the message exchange type of

a UoP port as defined by the TS Interface. The literals for the MessageExchangeType

enumeration are listed in Table 207.

Table 207: face.uop.MessageExchangeType Literals

Name

InboundMessage

OutboundMessage

J.2.6.6 Meta-Enumeration: face.uop.PartitionType

Description

The PartitionType enumeration captures the OS API types for a UoP as defined by the OSS. The

literals for the PartitionType enumeration are listed in Table 208.

Table 208: face.uop.PartitionType Literals

Name

POSIX

ARINC653

J.2.6.7 Meta-Enumeration: face.uop.ProgrammingLanguage

Description

The ProgrammingLanguage enumeration captures the options for programming language API

bindings as defined by Section 3.14. The literals for the ProgrammingLanguage enumeration are

listed in Table 209.

Table 209: face.uop.ProgrammingLanguage Literals

Name

C

CPP

Java

Ada

372 Open Group Standard (2017)

J.2.6.8 Meta-Enumeration: face.uop.SynchronizationStyle

Description

The SynchronizationStyle enumeration captures the options for the synchronization style of a

UoP port as defined by the TS Interface. The literals for the SynchronizationStyle enumeration

are listed in Table 210.

Table 210: face.uop.SynchronizationStyle Literals

Name

Blocking

NonBlocking

J.2.6.9 Meta-Enumeration: face.uop.ThreadType

Description

The literals for the ThreadType enumeration are listed in Table 211.

Table 211: face.uop.ThreadType Literals

Name

Foreground

Background

J.2.6.10 Meta-Class: face.uop.UoPModel

Description

A UoPModel is a container for UoC Elements. The relationships for the UoPModel meta-class

are listed in Table 212.

Table 212: face.uop.UoPModel Relationships

Type Name Target Multiplicity

Composition element Element 0..*

Composition um UoPModel 0..*

Generalization

face.Element

J.2.6.11 Meta-Class: face.uop.Element

Description

A uop Element is the root type for defining the component elements of the ArchitectureModel.

The relationships for the Element meta-class are listed in Table 213.

FACE™ Technical Standard, Edition 3.0 373

Table 213: face.uop.Element Relationships

Type Name Target Multiplicity

Generalization

face.Element

J.2.6.12 Meta-Class: face.uop.SupportingComponent

Description

A SupportingComponent is a LanguageRunTime or ApplicationFramework. The “version”

attribute is the version of the SupportingComponent. The attributes for the

SupportingComponent meta-class are listed in Table 214, and its relationships are shown in

Table 215.

Table 214: face.uop.SupportingComponent Attributes

Name Type Multiplicity

version string 1

Table 215: face.uop.SupportingComponent Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.6.13 Meta-Class: face.uop.LanguageRunTime

Description

A LanguageRunTime is a language run-time as defined in Section 3.2.3. The relationships for

the LanguageRunTime meta-class are listed in Table 216.

Table 216: face.uop.LanguageRunTime Relationships

Type Name Target Multiplicity

Generalization

SupportingComponent

J.2.6.14 Meta-Class: face.uop.ComponentFramework

Description

An ComponentFramework is an application framework as defined in Section 3.2.4. The

relationships for the ComponentFramework meta-class are listed in Table 217.

Table 217: face.uop.ComponentFramework Relationships

Type Name Target Multiplicity

Generalization

SupportingComponent

374 Open Group Standard (2017)

J.2.6.15 Meta-Class: face.uop.AbstractUoP

Description

An AbstractUoP is used to capture the specification of a UoP. The relationships for the

AbstractUoP meta-class are listed in Table 218.

Table 218: face.uop.AbstractUoP Relationships

Type Name Target Multiplicity

Composition connection AbstractConnection 0..*

Generalization

Element

Generalization

face.traceability.TraceableElement

J.2.6.16 Meta-Class: face.uop.AbstractConnection

Description

An AbstractConnection captures the input and output characteristics of an AbstractUoP by

specifying data at a Logical or Conceptual level. The relationships for the AbstractConnection

meta-class are listed in Table 219.

Table 219: face.uop.AbstractConnection Relationships

Type Name Target Multiplicity

Association conceptualView face.datamodel.conceptual.View 0..1

Association logicalView face.datamodel.logical.View 0..1

Generalization

face.Element

Generalization

face.traceability.TraceableElement

J.2.6.17 Meta-Class: face.uop.UnitOfPortability

Description

A UnitOfPortability is a FACE PlatformSpecificComponent or PortableComponent. The

attributes for the UnitOfPortability meta-class are listed in Table 220, and its relationships are

shown in Table 221.

Table 220: face.uop.UnitOfPortability Attributes

Name Type Multiplicity

transportAPILanguage ProgrammingLanguage 1

designAssuranceLevel DesignAssuranceLevel 0..1

partitionType PartitionType 1

designAssuranceStandard DesignAssuranceStandard 0..1

FACE™ Technical Standard, Edition 3.0 375

Name Type Multiplicity

faceProfile FaceProfile 1

Table 221: face.uop.UnitOfPortability Relationships

Type Name Target Multiplicity

Association supportingComponent SupportingComponent 0..*

Composition thread Thread 1..*

Composition memoryRequirements RAMMemoryRequirements 1

Association realizes AbstractUoP 0..1

Composition connection Connection 1..*

Composition lcmPort LifeCycleManagementPort 0..2

Generalization

Element

Generalization

face.traceability.TraceableElement

J.2.6.18 Meta-Class: face.uop.PortableComponent

Description

A PortableComponent is a software component as defined by the PCS. The relationships for the

PortableComponent meta-class are listed in Table 222.

Table 222: face.uop.PortableComponent Relationships

Type Name Target Multiplicity

Generalization

UnitOfPortability

J.2.6.19 Meta-Class: face.uop.PlatformSpecificComponent

Description

A PlatformSpecificComponent is a software component as defined by the PSSS. The

relationships for the PlatformSpecificComponent meta-class are listed in Table 223.

Table 223: face.uop.PlatformSpecificComponent Relationships

Type Name Target Multiplicity

Generalization

UnitOfPortability

J.2.6.20 Meta-Class: face.uop.Thread

Description

A Thread defines the properties for the scheduling of a thread. The attributes for the Thread

meta-class are listed in Table 224.

376 Open Group Standard (2017)

Table 224: face.uop.Thread Attributes

Name Type Multiplicity

period float 1

timeCapacity float 1

relativePriority int 1

relativeCoreAffinity int 1

threadType ThreadType 1

J.2.6.21 Meta-Class: face.uop.RAMMemoryRequirements

Description

A RAMMemoryRequirements defines memory resources required by a UoP. The attributes for

the RAMMemoryRequirements meta-class are listed in Table 225.

Table 225: face.uop.RAMMemoryRequirements Attributes

Name Type Multiplicity

heapStackMin int 0..1

heapStackMax int 0..1

heapStackTypical int 0..1

textMax int 0..1

roDataMax int 0..1

dataMax int 0..1

bssMax int 0..1

J.2.6.22 Meta-Class: face.uop.Connection

Description

A Connection is a communication endpoint on a FACE UoP. A Connection is either a Publisher,

Subscriber, Client, or Server. The “messageType” specifies the platform View that is transmitted

through the endpoint. If “period” is not specified, the endpoint is aperiodic. If “period” is

specified, the value is the period of the endpoint in seconds. The attributes for the Connection

meta-class are listed in Table 226, and its relationships are shown in Table 227.

Table 226: face.uop.Connection Attributes

Name Type Multiplicity

period float 1

synchronizationStyle SynchronizationStyle 1

FACE™ Technical Standard, Edition 3.0 377

Table 227: face.uop.Connection Relationships

Type Name Target Multiplicity

Association realizes AbstractConnection 0..1

Generalization

face.traceability.TraceableElement

Generalization

face.Element

J.2.6.23 Meta-Class: face.uop.ClientServerConnection

Description

A ClientServerConnection is a Request/Reply Connection as defined in Section 3.7. The

attributes for the ClientServerConnection meta-class are listed in Table 228, and its relationships

are shown in Table 229.

Table 228: face.uop.ClientServerConnection Attributes

Name Type Multiplicity

role ClientServerRole 1

Table 229: face.uop.ClientServerConnection Relationships

Type Name Target Multiplicity

Association requestType face.datamodel.platform.View 1

Association responseType face.datamodel.platform.View 1

Generalization

Connection

J.2.6.24 Meta-Class: face.uop.PubSubConnection

Description

A PubSubConnection is a QueuingConnection or a SingleInstanceMessageConnection. The

“messageExchangeType” attribute defines the direction of the message relative to the UoP. The

attributes for the PubSubConnection meta-class are listed in Table 230, and its relationships are

shown in Table 231.

Table 230: face.uop.PubSubConnection Attributes

Name Type Multiplicity

messageExchangeType MessageExchangeType 1

Table 231: face.uop.PubSubConnection Relationships

Type Name Target Multiplicity

Association messageType face.datamodel.platform.View 1

378 Open Group Standard (2017)

Type Name Target Multiplicity

Generalization

Connection

J.2.6.25 Meta-Class: face.uop.QueuingConnection

Description

A QueuingConnection is a PubSubConnection that supports buffering/queuing as defined in

Section 3.8. The attributes for the QueuingConnection meta-class are listed in Table 232, and its

relationships are shown in Table 233.

Table 232: face.uop.QueuingConnection Attributes

Name Type Multiplicity

depth int 1

Table 233: face.uop.QueuingConnection Relationships

Type Name Target Multiplicity

Generalization

PubSubConnection

J.2.6.26 Meta-Class: face.uop.SingleInstanceMessageConnection

Description

A SingleInstanceMessageConnection is a PubSubConnection that supports single instance

messaging as defined in Section 3.8. The relationships for the SingleInstanceMessageConnection

meta-class are listed in Table 234.

Table 234: face.uop.SingleInstanceMessageConnection Relationships

Type Name Target Multiplicity

Generalization

PubSubConnection

J.2.6.27 Meta-Class: face.uop.LifeCycleManagementPort

Description

A LifeCycleManagementPort is used to define the life-cycle interface for the component. The

“messageExchangeType” attribute defines the direction of the life-cycle message relative to the

UoP. The attributes for the LifeCycleManagementPort meta-class are listed in Table 235, and its

relationships are shown in Table 236.

Table 235: face.uop.LifeCycleManagementPort Attributes

Name Type Multiplicity

messageExchangeType MessageExchangeType 1

FACE™ Technical Standard, Edition 3.0 379

Table 236: face.uop.LifeCycleManagementPort Relationships

Type Name Target Multiplicity

Association lcmMessageType face.datamodel.platform.View 1

J.2.7 Meta-Package: face.integration

Figure 49: FACE Metamodel “face.integration” Package

Figure 50: FACE Metamodel “face.integration” Package: Transport

380 Open Group Standard (2017)

J.2.7.1 Meta-Class: face.integration.IntegrationModel

Description

An IntegrationModel is a container for integration Elements. The relationships for the

IntegrationModel meta-class are listed in Table 237.

Table 237: face.integration.IntegrationModel Relationships

Type Name Target Multiplicity

Composition im IntegrationModel 0..*

Composition element Element 0..*

Generalization

face.Element

J.2.7.2 Meta-Class: face.integration.Element

Description

An integration Element is the root type for defining the integration elements of the

ArchitectureModel. The relationships for the Element meta-class are listed in Table 238.

Table 238: face.integration.Element Relationships

Type Name Target Multiplicity

Generalization

face.Element

J.2.7.3 Meta-Class: face.integration.IntegrationContext

Description

An IntegrationContext is a container used to group a set of TransportNodes and

TSNodeConnections related to each other by a common, integrator defined context (e.g.,

collection and distribution of navigation data). The relationships for the IntegrationContext

meta-class are listed in Table 239.

Table 239: face.integration.IntegrationContext Relationships

Type Name Target Multiplicity

Composition connection TSNodeConnection 0..*

Composition node TransportNode 0..*

Generalization

Element

J.2.7.4 Meta-Class: face.integration.TSNodeConnection

Description

A TSNodeConnection represents a connection between two TransportNodes. The relationships

for the TSNodeConnection meta-class are listed in Table 240.

FACE™ Technical Standard, Edition 3.0 381

Table 240: face.integration.TSNodeConnection Relationships

Type Name Target Multiplicity

Association source TSNodePortBase 1

Association destination TSNodePortBase 1

J.2.7.5 Meta-Class: face.integration.TSNodePortBase

Description

A TSNodePortBase is a port that can be used to connect a TransportNode and a UoPEndPoint

together using a TSNodeConnection.

J.2.7.6 Meta-Class: face.integration.UoPInstance

Description

A UoPInstance represents an instance of a specific UoP within the system bounded by an

integration model. An integration model can contain multiple instances of the same UoP. The

attributes for the UoPInstance meta-class are listed in Table 241, and its relationships are shown

in Table 242.

Table 241: face.integration.UoPInstance Attributes

Name Type Multiplicity

configurationURI string 0..1

Table 242: face.integration.UoPInstance Relationships

Type Name Target Multiplicity

Association realizes face.uop.UnitOfPortability 1

Composition output UoPOutputEndPoint 0..*

Composition input UoPInputEndPoint 0..*

Generalization

Element

J.2.7.7 Meta-Class: face.integration.UoPEndPoint

Description

A UoPEndPoint is a specialization of a TSNodePortBase that allows connections in a

UoPInstance to be part of a TSNodeConnection. This supports connecting UOP input and output

endpoints to each other and to transport node input and output ports. The relationships for the

UoPEndPoint meta-class are listed in Table 243.

382 Open Group Standard (2017)

Table 243: face.integration.UoPEndPoint Relationships

Type Name Target Multiplicity

Association connection face.uop.Connection 1

Generalization

TSNodePortBase

J.2.7.8 Meta-Class: face.integration.UoPInputEndPoint

Description

A UoPInputEndPoint is a specialization of a UoPEndPoint providing an endpoint which is used

to input data to a UoP. The relationships for the UoPInputEndPoint meta-class are listed in Table

244.

Table 244: face.integration.UoPInputEndPoint Relationships

Type Name Target Multiplicity

Generalization

UoPEndPoint

J.2.7.9 Meta-Class: face.integration.UoPOutputEndPoint

Description

A UoPOutputEndPoint is a specialization of a UoPEndPoint providing an endpoint which is

used to output data from a UoP. The relationships for the UoPOutputEndPoint meta-class are

listed in Table 245.

Table 245: face.integration.UoPOutputEndPoint Relationships

Type Name Target Multiplicity

Generalization

UoPEndPoint

J.2.7.10 Meta-Class: face.integration.TransportNode

Description

A TransportNode is an abstraction of a node that performs a function along a path of

communication from source UoPs to destination UoPs. The relationships for the TransportNode

meta-class are listed in Table 246.

Table 246: face.integration.TransportNode Relationships

Type Name Target Multiplicity

Composition outPort TSNodeOutputPort 0..1

Composition inPort TSNodeInputPort 0..*

Generalization

face.Element

FACE™ Technical Standard, Edition 3.0 383

J.2.7.11 Meta-Class: face.integration.TSNodePort

Description

A TSNodePort is a port that provides a connection point to a TransportNode. A TSNodePort is

typed by the “view” it references. The relationships for the TSNodePort meta-class are listed in

Table 247.

Table 247: face.integration.TSNodePort Relationships

Type Name Target Multiplicity

Association view face.datamodel.platform.View 1

Generalization

TSNodePortBase

J.2.7.12 Meta-Class: face.integration.TSNodeInputPort

Description

A TSNodeInputPort is a specialization of a TSNodePort providing an endpoint which is used to

input data to a TransportNode. The relationships for the TSNodeInputPort meta-class are listed

in Table 248.

Table 248: face.integration.TSNodeInputPort Relationships

Type Name Target Multiplicity

Generalization

TSNodePort

J.2.7.13 Meta-Class: face.integration.TSNodeOutputPort

Description

A TSNodeOutputPort is a specialization of a TSNodePort providing an endpoint which is used

to output data from a TransportNode. The relationships for the TSNodeOutputPort meta-class

are listed in Table 249.

Table 249: face.integration.TSNodeOutputPort Relationships

Type Name Target Multiplicity

Generalization

TSNodePort

J.2.7.14 Meta-Class: face.integration.ViewAggregation

Description

A ViewAggregation represents of an instance of aggregation of data from multiple incoming

views into a single outgoing view type, including transformation of input data to that required by

the output view type. The relationships for the ViewAggregation meta-class are listed in Table

250.

384 Open Group Standard (2017)

Table 250: face.integration.ViewAggregation Relationships

Type Name Target Multiplicity

Generalization

TransportNode

J.2.7.15 Meta-Class: face.integration.ViewFilter

Description

A ViewFilter represents of an instance of a filter of data allowing a view to either pass through a

filter, or to be filtered out (i.e., not passed through). A ViewFilter performs no transformation of

data. The relationships for the ViewFilter meta-class are listed in Table 251.

Table 251: face.integration.ViewFilter Relationships

Type Name Target Multiplicity

Generalization

TransportNode

J.2.7.16 Meta-Class: face.integration.ViewSource

Description

A ViewSource is a TransportNode that only provides a View. The relationships for the

ViewSource meta-class are listed in Table 252.

Table 252: face.integration.ViewSource Relationships

Type Name Target Multiplicity

Generalization

TransportNode

J.2.7.17 Meta-Class: face.integration.ViewSink

Description

A ViewSink is a TransportNode that only receives a View. The relationships for the ViewSink

meta-class are listed in Table 253.

Table 253: face.integration.ViewSink Relationships

Type Name Target Multiplicity

Generalization

TransportNode

J.2.7.18 Meta-Class: face.integration.ViewTransformation

Description

A ViewTransformation represents an instance of transformation of data from one view type to

another. The relationships for the ViewTransformation meta-class are listed in Table 254.

FACE™ Technical Standard, Edition 3.0 385

Table 254: face.integration.ViewTransformation Relationships

Type Name Target Multiplicity

Generalization

TransportNode

J.2.7.19 Meta-Class: face.integration.ViewTransporter

Description

A ViewTransporter represents the use of a TransportChannel with the intent of moving a view

over it. The relationships for the ViewTransporter meta-class are listed in Table 255.

Table 255: face.integration.ViewTransporter Relationships

Type Name Target Multiplicity

Association channel TransportChannel 1

Generalization

TransportNode

J.2.7.20 Meta-Class: face.integration.TransportChannel

Description

A TransportChannel is a placeholder for an integrator supplied configuration between transport

endpoints. The relationships for the TransportChannel meta-class are listed in Table 256.

Table 256: face.integration.TransportChannel Relationships

Type Name Target Multiplicity

Generalization

Element

J.2.8 Meta-Package: face.traceability

Figure 51: FACE Metamodel “face.traceability” Package

386 Open Group Standard (2017)

Figure 52: FACE Metamodel “face.traceability” Package: Traceable Elements

J.2.8.1 Meta-Class: face.traceability.TraceabilityModel

Description

A TraceabilityModel is a container for traceability Elements. The relationships for the

TraceabilityModel meta-class are listed in Table 257.

Table 257: face.traceability.TraceabilityModel Relationships

Type Name Target Multiplicity

Composition element Element 0..*

Composition tm TraceabilityModel 0..*

Generalization

face.Element

J.2.8.2 Meta-Class: face.traceability.Element

Description

A traceability Element is the root type for defining the traceability elements of the FACE

Architecure Model. The relationships for the Element meta-class are listed in Table 258.

FACE™ Technical Standard, Edition 3.0 387

Table 258: face.traceability.Element Relationships

Type Name Target Multiplicity

Generalization

face.Element

J.2.8.3 Meta-Class: face.traceability.TraceableElement

Description

A TraceableElement is used to capture traceabilty to other models. The relationships for the

TraceableElement meta-class are listed in Table 259.

Table 259: face.traceability.TraceableElement Relationships

Type Name Target Multiplicity

Composition traceabilityPoint TraceabilityPoint 0..*

J.2.8.4 Meta-Class: face.traceability.TraceabilityPoint

Description

A TraceabilityPoint is used to document the relationship between a TraceableElement and an

external model. The “reference” attribute is a reference to the external model. The “rationale”

attribute is used to document the reasoning behind the Trace. The attributes for the

TraceabilityPoint meta-class are listed in Table 260.

Table 260: face.traceability.TraceabilityPoint Attributes

Name Type Multiplicity

rationale string 0..1

reference string 0..1

J.2.8.5 Meta-Class: face.traceability.UoPTraceabilitySet

Description

A UoPTraceabilitySet is used to relate a set of UoPs and/or AbstractUoPs to a set of

TraceabilityPoints. The relationships for the UoPTraceabilitySet meta-class are listed in Table

261.

Table 261: face.traceability.UoPTraceabilitySet Relationships

Type Name Target Multiplicity

Association uop face.uop.UnitOfPortability 0..*

Association abstractUoP face.uop.AbstractUoP 0..*

Generalization

Element

Generalization

TraceableElement

388 Open Group Standard (2017)

J.2.8.6 Meta-Class: face.traceability.ConnectionTraceabilitySet

Description

A ConnectionTraceabilitySet is used to relate a set of Connections and/or AbstractConnections

to a set of TraceabilityPoints. The relationships for the ConnectionTraceabilitySet meta-class are

listed in Table 262.

Table 262: face.traceability.ConnectionTraceabilitySet Relationships

Type Name Target Multiplicity

Association connection face.uop.Connection 0..*

Association abstractConnection face.uop.AbstractConnection 0..*

Generalization

Element

Generalization

TraceableElement

J.3 Query Specification Grammar

The FACE Data Architecture employs a modified, reduced query language grammar for

specifying View selections. Many of the tenets of the language are borrowed from the Structured

Query Language (SQL) specification. Since the FACE Data Architecture does not involve

tables, selections specify Entity Characteristics that are to be passed over the TS Interface. The

FACE Data Architecture eliminates several features present in the SQL specification, most

notably any features involving the creation, update, or deletion of data. While the FACE

selection language is not derived from the existing SQL language definitions, it heavily

leverages the concepts from SQL.

Note: Use of the FACE Data Architecture does not imply that a UoC implements or uses a

relational database management system.

This section may be modified in subsequent releases. Prior to implementing, please ensure you

are using the latest revision of FACE Technical Standard, Edition 3.x, and you have checked to

see if any minor releases, corrigenda, or approved corrections have been published.

J.3.1 Data Architecture Query Grammar Definition

The following Extended Backus-Naur Form grammar defines the language for a QueryView

specification.

(*

A query_specification represents a Query in the Data Model.

*)

query_specification = query_statement ;

(*

A query_statement is the expression of a Query, which is a declaration of a set of data

in terms of a set of Entities and their Characteristics. The selected_entity_expression

defines the context for a query_statement's data set as a set of related Entities and

optionally a set of conditions expressed over their Characteristics that are true for all

data in the data set. The projected_characteristic_list identifies the specific

Characteristics that are the elements of the query_statement's data set. The

FACE™ Technical Standard, Edition 3.0 389

set_qualifier DISTINCT, if specified, indicates that instances of data in the data set

are not duplicated. Otherwise, they may be duplicated.

*)

query_statement = kw_select , [set_qualifier] , projected_characteristic_list ,

selected_entity_expression ;

(*

A set_qualifier indicates whether instances of data in a set are unique (kw_distinct) or

not (kw_all).

*)

set_qualifier = kw_distinct | kw_all ;

(*

A projected_characteristic_list defines the set of Characteristics in a query_statement.

all_characteristics indicates that every Characteristic of every selected_entity is

included. Otherwise, the Characteristics are those specified by the

projected_characteristic_expressions. In both cases, only those Characteristics whose

types are not Entities are included.

*)

projected_characteristic_list = all_characteristics | projected_characteristic_expression

, { comma , projected_characteristic_expression } ;

(*

all_characteristics is a shorthand notation indicating "every Characteristic".

*)

all_characteristics = "*" ;

(*

A projected_characteristic_expression represents one or more Characteristics of a

specific Entity.

*)

projected_characteristic_expression = selected_entity_characteristic_wildcard_reference |

explicit_selected_entity_characteristic_reference ;

(*

A selected_entity_characteristic_wildcard_reference is a shorthand notation indicating

"every Characteristic of selected_entity_reference".

*)

selected_entity_characteristic_wildcard_reference = selected_entity_reference , period ,

all_characteristics ;

(*

An explicit_selected_entity_characteristic_reference represents one Characteristic of one

Entity. projected_characteristic_alias specifies an optional alias for the Characteristic

for use elsewhere in a query_statement.

*)

explicit_selected_entity_characteristic_reference =

selected_entity_characteristic_reference , [[kw_as] , projected_characteristic_alias

] ;

(*

A selected_entity_expression defines the context for a query_statement's data set as a

set of related Entities (using the from_clause). It may also specify a set of conditions

expressed over Characteristics of those Entities that are true for all data in the data

set (using a where_clause) and specify how data in the data set is ordered (using an

order_by_clause).

*)

selected_entity_expression = from_clause , [where_clause] , [order_by_clause] ;

(*

A from_clause identifies a set of related Entities via entity_expression.

*)

390 Open Group Standard (2017)

from_clause = kw_from , entity_expression ;

(*

An entity_expression identifies a set of Entities and a set of relationships between

those Entities. The set of Entities are the selected_entitys in the entity_expression.

The set of relationships are identified by the

entity_type_characteristic_equivalence_expressions in the entity_expression.

*)

entity_expression = selected_entity , { entity_join_expression } ;

(*

A selected_entity is the Entity whose name is entity_type_reference.

selected_entity_alias specifies an alias for the Entity for use elsewhere in a

query_statement.

*)

selected_entity = entity_type_reference , [[kw_as] , selected_entity_alias] ;

(*

An entity_join_expression identifies an Entity (join_entity) and one or more

relationships between it and other selected_entitys in the entity_expression. Each

relationship is identifed with an entity_type_characteristic_equivalence_expression whose

selected_entity_characteristic_reference is either a Characteristic of join_entity whose

type is another selected_entity, or is a Characteristic of another selected_entity whose

type is join_entity.

*)

entity_join_expression = kw_join , join_entity , kw_on , entity_join_criteria ;

(*

A join_entity is a selected_entity in an entity_join_expression.

*)

join_entity = selected_entity ;

(*

An entity_join_criteria identifies one or more relationships between two or more

selected_entitys in the entity_expression. Each

entity_type_characteristic_equivalence_expression identifies a relationship between two

selected_entitys.

*)

entity_join_criteria = entity_type_characteristic_equivalence_expression , { kw_and ,

entity_type_characteristic_equivalence_expression } ;

(*

An entity_type_characteristic_equivalence_expression identifies a relationship between

two selected_entitys. selected_entity_characteristic_reference is a Characteristic of one

selected_entity whose type is the another selected_entity in the entity_expression. A

selected_entity_reference is used to identify a specific selected_entity should there be

more than one selected_entity whose type is that Characteristic's type.

*)

entity_type_characteristic_equivalence_expression =

selected_entity_characteristic_reference , [equals_operator , selected_entity_reference

] ;

(*

A selected_entity_characteristic_reference is a selected_entity's Characteristic

specified by characteristic_reference. A selected_entity_reference is used to identify a

specific selected_entity should there be more than one Characteristic whose name is

characteristic_reference.

*)

selected_entity_characteristic_reference = [selected_entity_reference , period] ,

characteristic_reference ;

(*

FACE™ Technical Standard, Edition 3.0 391

A selected_entity_reference is a reference by name to a selected_entity, where

query_identifier is either a selected_entity's entity_type_reference or its

selected_entity_alias.

*)

selected_entity_reference = query_identifier ;

(*

A where_clause specifies a set of conditions that are true for all data in the

query_statement's data set.

*)

where_clause = kw_where , criteria ;

(*

A criteria specifies a set of conditions expressed over Characteristics of

selected_entitys via boolean_expression.

*)

criteria = boolean_expression ;

(*

An order_by_clause specifies how data in the query_statement's data set is ordered. The

data set is intially ordered by the first ordering_expression's

projected_characteristic_reference. Each additional ordering_expression further orders

the data set.

*)

order_by_clause = kw_order , kw_by , ordering_expression , { comma , ordering_expression

} ;

(*

An ordering_expression specifies a Characteristic in the projected_characteristic_list

used to order data in the query_statement's data set. If ordering_type DESC is specified,

it indicates that data is ordered descending. Otherwise, it is ordered ascending.

*)

ordering_expression = projected_characteristic_reference , [ordering_type] ;

(*

A projected_characteristic_reference is a reference to a Characteristic in the

projected_characteristic_list.

*)

projected_characteristic_reference = qualified_projected_characteristic_reference |

unqualified_projected_characteristic_reference_or_alias ;

(*

A qualified_projected_characteristic_reference is a Characteristic specified by

characteristic_reference in the Entity specified by selected_entity_reference.

*)

qualified_projected_characteristic_reference = selected_entity_reference , period ,

characteristic_reference ;

(*

An unqualified_projected_characteristic_reference_or_alias is a Characteristic in

projected_characteristic_list whose rolename or assigned projected_characteristic_alias

is query_identifier. If query_identifier happens to match both a

projected_characteristic_alias and a rolename, then the Characteristic associated with

the projected_characteristic_alias is assumed.

*)

unqualified_projected_characteristic_reference_or_alias = query_identifier ;

(*

An ordering_type specifies whether data is ordered ascending (kw_asc) or descending

(kw_desc).

*)

ordering_type = kw_asc | kw_desc ;

392 Open Group Standard (2017)

(*

A boolean_expression is a boolean OR expression over boolean_terms.

*)

boolean_expression = boolean_term , { kw_or , boolean_term } ;

(*

A boolean_term is a boolean AND expression over boolean_factors.

*)

boolean_term = boolean_factor , { kw_and , boolean_factor } ;

(*

A boolean_factor is a boolean_predicate. If kw_not is not present, it evaluates the same

as boolean_predicate. If kw_not is present, the evaluation is the same but negated.

*)

boolean_factor = [kw_not] , boolean_predicate ;

(*

A boolean_predicate is a predicate.

*)

boolean_predicate = scalar_compare_predicate | set_compare_predicate |

set_membership_predicate | exists_predicate | left_paren , boolean_expression ,

right_paren ;

(*

A scalar_compare_predicate is a function that compares two predicate_terms. It evaluates

to TRUE if the comparison is true, FALSE otherwise.

*)

scalar_compare_predicate = predicate_term , compare_operator , predicate_term ;

(*

A set_membership_predicate is a function that checks a predicate_term for membership in a

logical_set. If kw_not is not present, it evaluates to TRUE if predicate_term is a member

of logical_set, FALSE otherwise. If kw_not is present, the evaluation is the same but

negated.

*)

set_membership_predicate = predicate_term , [kw_not] , kw_in , logical_set ;

(*

A logical_set is a set of data. If logical_set is a subquery with one Characteristic in

its projected_characteristic_list, the set is the data associated with that

Characteristic. If logical_set is a characteristic_basis_set, the set is the data

associated with each characteristic_basis. If logical_set is an enum_literal_set, the set

is the specified EnumerationLabels.

*)

logical_set = subquery | characteristic_basis_set | enum_literal_set ;

(*

A characteristic_basis_set is one or more characteristic_basis.

*)

characteristic_basis_set = left_paren , characteristic_basis , { comma ,

characteristic_basis } , right_paren ;

(*

A set_compare_predicate is a function that represents a pair-wise comparison of

predicate_term with all members of compare_set. If set_compare_quantifier is kw_all, the

function evaluates to TRUE if the application of compare_operator evaluates to TRUE for

predicate_term and every member of the set, FALSE otherwise. If set_compare_quantifier is

kw_some, the function evaluates to TRUE if the application of compare_operator evaluates

to TRUE for predicate_term and at least one member in the set, FALSE otherwise.

*)

FACE™ Technical Standard, Edition 3.0 393

set_compare_predicate = predicate_term , compare_operator , set_compare_quantifier ,

compare_set ;

(*

A compare_set is a subquery with a single Characteristic in its

projected_characteristic_list.

*)

compare_set = subquery ;

(*

A compare_operator is a boolean comparison operator.

*)

compare_operator = equals_operator | not_equals_operator | less_than_operator |

greater_than_operator | less_than_or_equals_operator | greater_than_or_equals_operator ;

(*

A set_compare_quantifier indicates that a comparison applies to every (kw_all) or any

(kw_some) member of a set.

*)

set_compare_quantifier = kw_all | kw_some ;

(*

An exists_predicate is a function that evaluates to TRUE if there is any data associated

with the single Characteristic in subquery's projected_characteristic_list, FALSE

otherwise.

*)

exists_predicate = kw_exists , subquery ;

(*

A predicate_term represents a DataModel Element whose associated data is scalar.

*)

predicate_term = characteristic_basis | enum_literal_reference_expression ;

(*

A characteristic_basis is a Characteristic whose associated data is scalar. If

characteristic_basis is a subquery with one Characteristic in its

projected_characteristic_list, then the characteristic_basis is that Characteristic.

Otherwise, the Characteristic is specified by selected_entity_characteristic_reference.

*)

characteristic_basis = selected_entity_characteristic_reference | subquery ;

(*

A subquery is a query_statement that is nested inside another query_statement.

*)

subquery = left_paren , query_statement , right_paren ;

(*

A characteristic_reference is a Characteristic whose rolename matches query_identifier.

*)

characteristic_reference = query_identifier ;

(*

An entity_type_reference is the Entity whose name matches query_identifier.

*)

entity_type_reference = query_identifier ;

(*

An enum_literal_set is a set of EnumerationLabels. Each member in the set is identified

by the EnumerationLabel whose name is enumeration_literal_reference in the Enumerated

whose name is enumeration_type_reference.

*)

394 Open Group Standard (2017)

enum_literal_set = left_brace , enumeration_type_reference , colon ,

enumeration_literal_reference , { comma , enumeration_literal_reference } , right_brace

;

(*

An enum_literal_reference_expression is an EnumerationLabel whose name is

enumeration_literal_reference in the Enumerated whose name is enumeration_type_reference.

*)

enum_literal_reference_expression = left_brace , enumeration_type_reference , colon ,

enumeration_literal_reference , right_brace ;

(*

An enumeration_type_reference is the Enumerated whose name matches query_identifier.

*)

enumeration_type_reference = query_identifier ;

(*

An enumeration_literal_reference is an EnumerationLabel whose name matches

query_identifier.

*)

enumeration_literal_reference = query_identifier ;

(*

A selected_entity_alias is an alias for a selected_entity.

*)

selected_entity_alias = query_identifier ;

(*

A projected_characteristic_alias provides an alias for a Characteristic in a

projected_characteristic_list.

*)

projected_characteristic_alias = query_identifier ;

(*

A query_identifier is an alphanumeric string used to represent an identifier in a

query_specification.

*)

query_identifier = identifier ;

(*

The following terms start with kw_ to indicate that they are keyword tokens.

*)

kw_all = "ALL" | "all" ;

kw_some = "SOME" | "some" | "ANY" | "any" ;

kw_exists = "EXISTS" | "exists" ;

kw_not = "NOT" | "not" ;

kw_in = "IN" | "in" ;

kw_select = "SELECT" | "select" ;

kw_and = "AND" | "and" ;

kw_or = "OR" | "or" ;

kw_as = "AS" | "as" ;

kw_distinct = "DISTINCT" | "distinct" ;

kw_from = "FROM" | "from" ;

FACE™ Technical Standard, Edition 3.0 395

kw_where = "WHERE" | "where" ;

kw_by = "BY" | "by" ;

kw_join = "JOIN" | "join" ;

kw_on = "ON" | "on" ;

kw_order = "ORDER" | "order" ;

kw_asc = "ASC" | "asc" ;

kw_desc = "DESC" | "desc" ;

(*

The following terms represent boolean operator tokens.

*)

(*

An equals_operator is the boolean equals operator.

*)

equals_operator = "=" ;

(*

A not_equals_operator is the boolean not equals operator.

*)

not_equals_operator = "<>" | "!=" ;

(*

A less_than_operator is the boolean less-than operator.

*)

less_than_operator = "<" ;

(*

A greater_than_operator is the boolean greater-than operator.

*)

greater_than_operator = ">" ;

(*

A greater_than_or_equals_operator is the boolean greater-than-or-equals operator.

*)

greater_than_or_equals_operator = ">=" ;

(*

A less_than_or_equals_operator is the boolean less-than-or-equals operator.

*)

less_than_or_equals_operator = "<=" ;

(*

The following terms represent punctuation tokens.

*)

comma = "," ;

left_paren = "(" ;

right_paren = ")" ;

period = "." ;

left_brace = "{" ;

right_brace = "}" ;

colon = ":" ;

396 Open Group Standard (2017)

(*

The following terms represent identifier tokens.

*)

identifier = letter , { letter | digit_literal } ;

letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" |

"n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" | "B" |

"C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" |

"R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "_" ;

digit_literal = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

J.4 Data Architecture Template Specification Grammar

In the FACE Data Architecture, templates are used to specify the presentation of data in

Platform Views. The data selection specification is made with the query grammar specified in

Section J.3.1. The template refers to elements in the query specification through its selected or

projected elements. Only elements in the “select” clause may be referenced in the template. This

eliminates ambiguity in how the data is presented. Please note that templates only control how

the data is presented across the TS API; they cannot affect the data selected by the Query.

This section may be modified in subsequent releases. Prior to implementing, please ensure you

are using the latest revision of FACE Technical Standard, Edition 3.x, and you have checked to

see if any minor releases, corrigenda, or approved corrections have been published.

J.4.1 Data Architecture Template Grammar Definition

The following Extended Backus-Naur Form grammar describes defines the language for a

Template specification.

template_specification = { using_external_template_statement } ,

structured_template_element_type_decl , { structured_template_element_type_decl } ;

using_external_template_statement = kw_using , external_template_type_reference ,

semicolon ;

structured_template_element_type_decl = main_template_method_decl |

supporting_template_method_decl | union_type_decl ;

main_template_method_decl = main_entity_type_template_method_decl |

main_equivalent_entity_type_template_method_decl ;

main_entity_type_template_method_decl = kw_main , left_paren , [

primary_entity_type_template_method_parameter] , [comma , kw_varargs , [

optional_entity_type_template_method_parameter_list]] , right_paren ,

entity_type_template_method_body ;

primary_entity_type_template_method_parameter = entity_type_template_method_parameter ;

optional_entity_type_template_method_parameter_list =

entity_type_template_method_parameter , { comma , entity_type_template_method_parameter

} ;

entity_type_template_method_parameter =

entity_type_structured_template_element_declared_parameter_expression ;

main_equivalent_entity_type_template_method_decl = kw_main ,

equivalent_entity_type_template_method_decl ;

supporting_template_method_decl = supporting_entity_type_template_method_decl |

supporting_equivalent_entity_type_template_method_decl ;

FACE™ Technical Standard, Edition 3.0 397

supporting_entity_type_template_method_decl = template_element_type_name , left_paren ,

primary_entity_type_template_method_parameter , right_paren ,

entity_type_template_method_body ;

supporting_equivalent_entity_type_template_method_decl = template_element_type_name ,

equivalent_entity_type_template_method_decl ;

entity_type_template_method_body = left_brace , entity_type_template_method_member , {

entity_type_template_method_member } , right_brace ;

entity_type_template_method_member = entity_type_structured_template_element_member ;

equivalent_entity_type_template_method_decl = left_angle_bracket ,

equivalent_entity_type_template_method_parameter_list , right_angle_bracket ,

equivalent_entity_type_template_method_body ;

equivalent_entity_type_template_method_parameter_list =

equivalent_entity_type_template_method_parameter , { comma ,

equivalent_entity_type_template_method_parameter } ;

equivalent_entity_type_template_method_body = left_brace ,

equivalent_entity_type_template_method_member , {

equivalent_entity_type_template_method_member } , right_brace ;

equivalent_entity_type_template_method_member =

equivalent_entity_type_template_element_member_statement , semicolon ;

equivalent_entity_type_template_element_member_statement = [optional_annotation] ,

designated_equivalent_entity_non_entity_type_characteristic_reference , [deref ,

idlstruct_member_reference] , [kw_as , structured_template_element_member_name] ;

union_type_decl = kw_union , template_element_type_name , left_paren , union_parameter ,

right_paren , union_body ;

union_parameter = entity_type_structured_template_element_declared_parameter_expression ;

union_body = left_brace , union_switch_statement , right_brace ;

union_switch_statement = kw_switch , left_paren , discriminator_type , right_paren ,

union_switch_body ;

union_switch_body = left_brace , case_expression , { case_expression } , right_brace ;

discriminator_type = idldiscriminator_type |

designated_entity_enumeration_type_characteristic_reference ;

case_expression = case_label , { case_label } , union_member ;

case_label = kw_case , case_label_literal , colon | kw_default , colon;

case_label_literal = enum_literal_reference_expression | idldiscriminator_type_literal ;

union_member = entity_type_structured_template_element_member ;

entity_type_structured_template_element_member =

entity_type_structured_template_element_member_statement , semicolon ;

entity_type_structured_template_element_member_statement =

designated_entity_characteristic_reference_statement |

structured_template_element_type_reference_statement ;

optional_annotation = at_symbol , kw_optional ;

inline_annotation = at_symbol , kw_inline ;

designated_entity_characteristic_reference_statement =

explicit_designated_entity_non_entity_type_characteristic_reference_expression |

designated_entity_non_entity_type_characteristic_wildcard_reference ;

explicit_designated_entity_non_entity_type_characteristic_reference_expression = [

optional_annotation] , designated_entity_non_entity_type_characteristic_reference , [

398 Open Group Standard (2017)

deref , idlstruct_member_reference] , [kw_as ,

structured_template_element_member_name] ;

structured_template_element_type_reference_statement = inline_annotation ,

structured_template_element_type_reference_expression | [optional_annotation] ,

structured_template_element_type_reference_expression ,

structured_template_element_member_name ;

structured_template_element_type_reference_expression =

entity_type_structured_template_element_type_reference , left_paren ,

structured_template_element_type_reference_parameter_list , right_paren |

equivalent_entity_type_template_method_reference , left_angle_bracket ,

structured_template_element_type_reference_parameter_list , right_angle_bracket ;

structured_template_element_type_reference_parameter_list =

primary_structured_template_element_type_reference_parameter , { comma ,

optional_structured_template_element_type_reference_parameter } ;

primary_structured_template_element_type_reference_parameter =

structured_template_element_type_reference_parameter ;

optional_structured_template_element_type_reference_parameter =

structured_template_element_type_reference_parameter ;

structured_template_element_type_reference_parameter = [

entity_type_structured_template_element_declared_parameter_reference , equals] ,

designated_entity_type_reference_path ;

external_template_type_reference = identifier ;

entity_type_structured_template_element_type_reference = identifier ;

entity_type_structured_template_element_declared_parameter_reference = identifier ;

entity_type_structured_template_element_declared_parameter_expression =

entity_type_reference , [

entity_type_structured_template_element_declared_parameter_alias] ;

entity_type_structured_template_element_declared_parameter_alias = identifier ;

structured_template_element_member_name = identifier ;

template_element_type_name = identifier ;

equivalent_entity_type_template_method_reference = identifier ;

equivalent_entity_type_template_method_parameter = identifier ;

designated_equivalent_entity_non_entity_type_characteristic_reference =

equivalent_entity_type_template_method_parameter_reference , period ,

equivalent_entity_type_template_method_characteristic_reference ;

equivalent_entity_type_template_method_parameter_reference = identifier ;

equivalent_entity_type_template_method_characteristic_reference = identifier ;

designated_entity_non_entity_type_characteristic_reference =

designated_entity_type_reference_path , period ,

query_projected_non_entity_type_characteristic_reference |

query_projected_non_entity_type_characteristic_reference_or_alias ;

designated_entity_non_entity_type_characteristic_wildcard_reference = [

designated_entity_type_reference_path , period] , asterisk ;

designated_entity_enumeration_type_characteristic_reference =

designated_entity_type_reference_path , period ,

query_projected_enumeration_type_characteristic_reference |

query_projected_enumeration_type_characteristic_reference_or_alias;

designated_entity_type_reference_path = [explicit_entity_type_reference_join_path] ,

designated_entity_type_reference ;

FACE™ Technical Standard, Edition 3.0 399

explicit_entity_type_reference_join_path = (join_path_entity_type_reference , period)

, { join_path_entity_type_reference , period };

join_path_entity_type_reference = qualified_entity_type_reference ;

designated_entity_type_reference = qualified_entity_type_reference ;

qualified_entity_type_reference = entity_type_reference , [

entity_characteristic_value_qualifier] ;

entity_type_reference = query_selected_entity_type_reference_or_alias ;

entity_characteristic_value_qualifier = query_where_clause_criteria ;

idlstruct_member_reference = identifier ;

enum_literal_reference_expression = left_brace , enumeration_type_reference , colon ,

enumeration_literal_reference , right_brace ;

enumeration_type_reference = identifier ;

enumeration_literal_reference = identifier ;

(* criteria is a production rule defined in the query grammar specified in Appendix

J.3.1. *)

query_where_clause_criteria = left_bracket , criteria , right_bracket ;

query_projected_non_entity_type_characteristic_reference_or_alias = identifier ;

query_projected_non_entity_type_characteristic_reference = identifier ;

query_projected_enumeration_type_characteristic_reference_or_alias = identifier ;

query_projected_enumeration_type_characteristic_reference = identifier ;

query_selected_entity_type_reference_or_alias = identifier ;

idldiscriminator_type = idlunsigned_int | idlboolean ;

idlunsigned_int = idlunsigned_short | idlunsigned_long | idlunsigned_long_long ;

idlunsigned_short = kw_unsigned , kw_short ;

idlunsigned_long = kw_unsigned , kw_long ;

idlunsigned_long_long = kw_unsigned , kw_long , kw_long ;

idlboolean = kw_boolean ;

idldiscriminator_type_literal = idlinteger_literal | idloctal_literal | idlhex_literal |

idlboolean_literal ;

idlinteger_literal = zero_digit_literal | positive_digit_literal , { digit_literal } ;

idloctal_literal = zero_digit_literal , octal_digit_literal , { octal_digit_literal } ;

idlhex_literal = zero_digit_literal , ("x" | "X") hex_digit_literal , {

hex_digit_literal } ;

idlboolean_literal = kw_true | kw_false ;

kw_main = "MAIN" | "main" ;

kw_using = "USING" | "using" ;

kw_as = "AS" | "as" ;

kw_varargs = "VARARGS" | "varargs" ;

kw_optional = "OPTIONAL" | "optional" ;

400 Open Group Standard (2017)

kw_inline = "INLINE" | "inline" ;

kw_union = "UNION" | "union" ;

kw_switch = "SWITCH" | "switch" ;

kw_case = "CASE" | "case" ;

kw_default = "DEFAULT" | "default" ;

kw_boolean = "BOOLEAN" | "boolean" ;

kw_short = "SHORT" | "short" ;

kw_long = "LONG" | "long" ;

kw_unsigned = "UNSIGNED" | "unsigned" ;

kw_true = "TRUE" ;

kw_false = "FALSE" ;

deref = "->" ;

asterisk = "*" ;

left_brace = "{" ;

right_brace = "}" ;

left_paren = "(" ;

right_paren = ")" ;

left_bracket = "[" ;

right_bracket = "]" ;

left_angle_bracket = "<" ;

right_angle_bracket = ">" ;

comma = "," ;

colon = ":" ;

semicolon = ";" ;

period = "." ;

at_symbol = "@" ;

equals = "=" ;

octal_digit_literal = zero_digit_literal | "1" | "2" | "3" | "4" | "5" | "6" | "7" ;

hex_digit_literal = digit_literal | "a" | "b" | "c" | "d" | "e" | "f" | "A" | "B" | "C" |

"D" | "E" | "F" ;

identifier = char_literal , { char_literal | digit_literal } ;

char_literal = "a" | "b"| "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"

| "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" |

"B"| "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |

"Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "_" ;

digit_literal = zero_digit_literal | positive_digit_literal ;

zero_digit_literal = "0" ;

FACE™ Technical Standard, Edition 3.0 401

positive_digit_literal = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

J.5 EMOF Metamodel

<emof:Package xmi:version="2.0" xmi:id="face" name="face"

uri="http://www.opengroup.us/face/3.0"

xmlns:emof="http://schema.omg.org/spec/MOF/2.0/emof.xml"

xmlns:xmi="http://www.omg.org/XMI">

 <ownedType xmi:type="emof:Class" xmi:id="face.ArchitectureModel"

name="ArchitectureModel" superClass="face.Element">

 <ownedAttribute xmi:id="face.ArchitectureModel.dm" name="dm" lower="0" upper="*"

type="face.datamodel.DataModel" isComposite="true" />

 <ownedAttribute xmi:id="face.ArchitectureModel.um" name="um" lower="0" upper="*"

type="face.uop.UoPModel" isComposite="true" />

 <ownedAttribute xmi:id="face.ArchitectureModel.im" name="im" lower="0" upper="*"

type="face.integration.IntegrationModel" isComposite="true" />

 <ownedAttribute xmi:id="face.ArchitectureModel.tm" name="tm" lower="0" upper="*"

type="face.traceability.TraceabilityModel" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.Element" name="Element"

isAbstract="true">

 <ownedAttribute xmi:id="face.Element.name" name="name" isOrdered="true" default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.Element.description" name="description" isOrdered="true"

default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <nestedPackage xmi:id="face.datamodel" name="datamodel"

uri="http://www.opengroup.us/face/datamodel/3.0">

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.DataModel" name="DataModel"

superClass="face.Element">

 <ownedAttribute xmi:id="face.datamodel.DataModel.cdm" name="cdm" lower="0"

upper="*" type="face.datamodel.ConceptualDataModel" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.DataModel.ldm" name="ldm" lower="0"

upper="*" type="face.datamodel.LogicalDataModel" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.DataModel.pdm" name="pdm" lower="0"

upper="*" type="face.datamodel.PlatformDataModel" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.Element" name="Element"

isAbstract="true" superClass="face.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.ConceptualDataModel"

name="ConceptualDataModel" superClass="face.datamodel.Element">

 <ownedAttribute xmi:id="face.datamodel.ConceptualDataModel.element" name="element"

lower="0" upper="*" type="face.datamodel.conceptual.Element" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.ConceptualDataModel.cdm" name="cdm"

lower="0" upper="*" type="face.datamodel.ConceptualDataModel" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.LogicalDataModel"

name="LogicalDataModel" superClass="face.datamodel.Element">

 <ownedAttribute xmi:id="face.datamodel.LogicalDataModel.element" name="element"

lower="0" upper="*" type="face.datamodel.logical.Element" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.LogicalDataModel.ldm" name="ldm" lower="0"

upper="*" type="face.datamodel.LogicalDataModel" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.PlatformDataModel"

name="PlatformDataModel" superClass="face.datamodel.Element">

 <ownedAttribute xmi:id="face.datamodel.PlatformDataModel.element" name="element"

lower="0" upper="*" type="face.datamodel.platform.Element" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.PlatformDataModel.pdm" name="pdm" lower="0"

upper="*" type="face.datamodel.PlatformDataModel" isComposite="true" />

 </ownedType>

 <nestedPackage xmi:id="face.datamodel.conceptual" name="conceptual"

uri="http://www.opengroup.us/face/datamodel/conceptual/3.0">

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Element"

name="Element" isAbstract="true" superClass="face.datamodel.Element" />

402 Open Group Standard (2017)

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.conceptual.ComposableElement" name="ComposableElement"

isAbstract="true" superClass="face.datamodel.conceptual.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.BasisElement"

name="BasisElement" isAbstract="true"

superClass="face.datamodel.conceptual.ComposableElement" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.BasisEntity"

name="BasisEntity" superClass="face.datamodel.conceptual.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Domain"

name="Domain" superClass="face.datamodel.conceptual.Element">

 <ownedAttribute xmi:id="face.datamodel.conceptual.Domain.basisEntity"

name="basisEntity" lower="0" upper="*" type="face.datamodel.conceptual.BasisEntity" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Observable"

name="Observable" superClass="face.datamodel.conceptual.BasisElement" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Characteristic"

name="Characteristic" isAbstract="true">

 <ownedAttribute xmi:id="face.datamodel.conceptual.Characteristic.rolename"

name="rolename" isOrdered="true" default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.conceptual.Characteristic.lowerBound"

name="lowerBound" isOrdered="true" default="1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.conceptual.Characteristic.upperBound"

name="upperBound" isOrdered="true" default="1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.conceptual.Characteristic.specializes"

name="specializes" isOrdered="true" lower="0"

type="face.datamodel.conceptual.Characteristic" />

 <ownedAttribute xmi:id="face.datamodel.conceptual.Characteristic.description"

name="description" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Entity"

name="Entity" superClass="face.datamodel.conceptual.ComposableElement

face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.datamodel.conceptual.Entity.composition"

name="composition" lower="0" upper="*" type="face.datamodel.conceptual.Composition"

isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.conceptual.Entity.specializes"

name="specializes" lower="0" type="face.datamodel.conceptual.Entity" />

 <ownedAttribute xmi:id="face.datamodel.conceptual.Entity.basisEntity"

name="basisEntity" lower="0" upper="*" type="face.datamodel.conceptual.BasisEntity" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Composition"

name="Composition" superClass="face.datamodel.conceptual.Characteristic">

 <ownedAttribute xmi:id="face.datamodel.conceptual.Composition.type" name="type"

isOrdered="true" type="face.datamodel.conceptual.ComposableElement" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Association"

name="Association" superClass="face.datamodel.conceptual.Entity">

 <ownedAttribute xmi:id="face.datamodel.conceptual.Association.participant"

name="participant" lower="0" upper="*" type="face.datamodel.conceptual.Participant"

isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Participant"

name="Participant" superClass="face.datamodel.conceptual.Characteristic">

 <ownedAttribute xmi:id="face.datamodel.conceptual.Participant.type" name="type"

isOrdered="true" type="face.datamodel.conceptual.Entity" />

 <ownedAttribute xmi:id="face.datamodel.conceptual.Participant.sourceLowerBound"

name="sourceLowerBound" isOrdered="true" default="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

FACE™ Technical Standard, Edition 3.0 403

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.conceptual.Participant.sourceUpperBound"

name="sourceUpperBound" isOrdered="true" default="-1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.conceptual.Participant.path" name="path"

isOrdered="true" lower="0" type="face.datamodel.conceptual.PathNode" isComposite="true"

/>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.PathNode"

name="PathNode" isAbstract="true">

 <ownedAttribute xmi:id="face.datamodel.conceptual.PathNode.node" name="node"

isOrdered="true" lower="0" type="face.datamodel.conceptual.PathNode" isComposite="true"

/>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.conceptual.ParticipantPathNode" name="ParticipantPathNode"

superClass="face.datamodel.conceptual.PathNode">

 <ownedAttribute

xmi:id="face.datamodel.conceptual.ParticipantPathNode.projectedParticipant"

name="projectedParticipant" isOrdered="true" type="face.datamodel.conceptual.Participant"

/>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.conceptual.CharacteristicPathNode" name="CharacteristicPathNode"

superClass="face.datamodel.conceptual.PathNode">

 <ownedAttribute

xmi:id="face.datamodel.conceptual.CharacteristicPathNode.projectedCharacteristic"

name="projectedCharacteristic" isOrdered="true"

type="face.datamodel.conceptual.Characteristic" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.View"

name="View" isAbstract="true" superClass="face.datamodel.conceptual.Element

face.traceability.TraceableElement" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.Query"

name="Query" superClass="face.datamodel.conceptual.View">

 <ownedAttribute xmi:id="face.datamodel.conceptual.Query.specification"

name="specification" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.conceptual.CompositeQuery"

name="CompositeQuery" superClass="face.datamodel.conceptual.Element

face.datamodel.conceptual.View">

 <ownedAttribute xmi:id="face.datamodel.conceptual.CompositeQuery.composition"

name="composition" lower="2" upper="*" type="face.datamodel.conceptual.QueryComposition"

isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.conceptual.CompositeQuery.isUnion"

name="isUnion" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Boolean" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.conceptual.QueryComposition" name="QueryComposition">

 <ownedAttribute xmi:id="face.datamodel.conceptual.QueryComposition.rolename"

name="rolename" isOrdered="true" default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.conceptual.QueryComposition.type"

name="type" isOrdered="true" type="face.datamodel.conceptual.View" />

 </ownedType>

 </nestedPackage>

 <nestedPackage xmi:id="face.datamodel.logical" name="logical"

uri="http://www.opengroup.us/face/datamodel/logical/3.0">

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Element"

name="Element" isAbstract="true" superClass="face.datamodel.Element" />

404 Open Group Standard (2017)

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.ConvertibleElement"

name="ConvertibleElement" isAbstract="true" superClass="face.datamodel.logical.Element"

/>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Unit" name="Unit"

superClass="face.datamodel.logical.ConvertibleElement" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Conversion"

name="Conversion" superClass="face.datamodel.logical.Element">

 <ownedAttribute xmi:id="face.datamodel.logical.Conversion.destination"

name="destination" isOrdered="true" type="face.datamodel.logical.ConvertibleElement" />

 <ownedAttribute xmi:id="face.datamodel.logical.Conversion.source" name="source"

isOrdered="true" type="face.datamodel.logical.ConvertibleElement" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.AffineConversion"

name="AffineConversion" superClass="face.datamodel.logical.Conversion">

 <ownedAttribute xmi:id="face.datamodel.logical.AffineConversion.conversionFactor"

name="conversionFactor" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.AffineConversion.offset"

name="offset" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.ValueType"

name="ValueType" isAbstract="true" superClass="face.datamodel.logical.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.String"

name="String" superClass="face.datamodel.logical.ValueType" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Character"

name="Character" superClass="face.datamodel.logical.ValueType" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Boolean"

name="Boolean" superClass="face.datamodel.logical.ValueType" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Numeric"

name="Numeric" isAbstract="true" superClass="face.datamodel.logical.ValueType" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Integer"

name="Integer" superClass="face.datamodel.logical.Numeric" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Natural"

name="Natural" superClass="face.datamodel.logical.Numeric" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Real" name="Real"

superClass="face.datamodel.logical.Numeric" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.NonNegativeReal"

name="NonNegativeReal" superClass="face.datamodel.logical.Numeric" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Enumerated"

name="Enumerated" superClass="face.datamodel.logical.ValueType">

 <ownedAttribute xmi:id="face.datamodel.logical.Enumerated.label" name="label"

isOrdered="true" upper="*" type="face.datamodel.logical.EnumerationLabel"

isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.logical.Enumerated.standardReference"

name="standardReference" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.EnumerationLabel"

name="EnumerationLabel" superClass="face.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.CoordinateSystem"

name="CoordinateSystem" superClass="face.datamodel.logical.Element">

 <ownedAttribute xmi:id="face.datamodel.logical.CoordinateSystem.axis" name="axis"

upper="*" type="face.datamodel.logical.CoordinateSystemAxis" />

 <ownedAttribute

xmi:id="face.datamodel.logical.CoordinateSystem.axisRelationshipDescription"

name="axisRelationshipDescription" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.CoordinateSystem.angleEquation"

name="angleEquation" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

FACE™ Technical Standard, Edition 3.0 405

 <ownedAttribute xmi:id="face.datamodel.logical.CoordinateSystem.distanceEquation"

name="distanceEquation" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.CoordinateSystemAxis" name="CoordinateSystemAxis"

superClass="face.datamodel.logical.Element" />

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.AbstractMeasurementSystem"

name="AbstractMeasurementSystem" isAbstract="true"

superClass="face.datamodel.logical.Element" />

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.StandardMeasurementSystem"

name="StandardMeasurementSystem"

superClass="face.datamodel.logical.AbstractMeasurementSystem">

 <ownedAttribute

xmi:id="face.datamodel.logical.StandardMeasurementSystem.referenceStandard"

name="referenceStandard" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Landmark"

name="Landmark" superClass="face.datamodel.logical.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.MeasurementSystem"

name="MeasurementSystem" superClass="face.datamodel.logical.AbstractMeasurementSystem">

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystem.measurementSystemAxis"

name="measurementSystemAxis" upper="*"

type="face.datamodel.logical.MeasurementSystemAxis" />

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystem.coordinateSystem"

name="coordinateSystem" type="face.datamodel.logical.CoordinateSystem" />

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementSystem.referencePoint"

name="referencePoint" lower="0" upper="*" type="face.datamodel.logical.ReferencePoint"

isComposite="true" />

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystem.externalStandardReference"

name="externalStandardReference" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementSystem.orientation"

name="orientation" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementSystem.constraint"

name="constraint" isOrdered="true" lower="0" upper="*"

type="face.datamodel.logical.MeasurementConstraint" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.MeasurementSystemAxis" name="MeasurementSystemAxis"

superClass="face.datamodel.logical.Element">

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementSystemAxis.axis"

name="axis" type="face.datamodel.logical.CoordinateSystemAxis" />

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystemAxis.defaultValueTypeUnit"

name="defaultValueTypeUnit" upper="*" type="face.datamodel.logical.ValueTypeUnit" />

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementSystemAxis.constraint"

name="constraint" isOrdered="true" lower="0" upper="*"

type="face.datamodel.logical.MeasurementConstraint" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.ReferencePoint"

name="ReferencePoint" superClass="face.Element">

 <ownedAttribute xmi:id="face.datamodel.logical.ReferencePoint.referencePointPart"

name="referencePointPart" upper="*" type="face.datamodel.logical.ReferencePointPart"

isComposite="true" />

406 Open Group Standard (2017)

 <ownedAttribute xmi:id="face.datamodel.logical.ReferencePoint.landmark"

name="landmark" isOrdered="true" type="face.datamodel.logical.Landmark" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.ReferencePointPart"

name="ReferencePointPart">

 <ownedAttribute xmi:id="face.datamodel.logical.ReferencePointPart.axis"

name="axis" isOrdered="true" lower="0"

type="face.datamodel.logical.MeasurementSystemAxis" />

 <ownedAttribute xmi:id="face.datamodel.logical.ReferencePointPart.value"

name="value" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.ReferencePointPart.valueTypeUnit"

name="valueTypeUnit" isOrdered="true" lower="0"

type="face.datamodel.logical.ValueTypeUnit" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.ValueTypeUnit"

name="ValueTypeUnit" superClass="face.datamodel.logical.Element

face.datamodel.logical.AbstractMeasurement">

 <ownedAttribute xmi:id="face.datamodel.logical.ValueTypeUnit.unit" name="unit"

isOrdered="true" type="face.datamodel.logical.Unit" />

 <ownedAttribute xmi:id="face.datamodel.logical.ValueTypeUnit.valueType"

name="valueType" isOrdered="true" type="face.datamodel.logical.ValueType" />

 <ownedAttribute xmi:id="face.datamodel.logical.ValueTypeUnit.constraint"

name="constraint" isOrdered="true" lower="0" type="face.datamodel.logical.Constraint"

isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Constraint"

name="Constraint" superClass="face.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.IntegerConstraint"

name="IntegerConstraint" isAbstract="true" superClass="face.datamodel.logical.Constraint"

/>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.IntegerRangeConstraint" name="IntegerRangeConstraint"

superClass="face.datamodel.logical.IntegerConstraint">

 <ownedAttribute xmi:id="face.datamodel.logical.IntegerRangeConstraint.lowerBound"

name="lowerBound" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.IntegerRangeConstraint.upperBound"

name="upperBound" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.RealConstraint"

name="RealConstraint" isAbstract="true" superClass="face.datamodel.logical.Constraint" />

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.RealRangeConstraint" name="RealRangeConstraint"

superClass="face.datamodel.logical.RealConstraint">

 <ownedAttribute xmi:id="face.datamodel.logical.RealRangeConstraint.lowerBound"

name="lowerBound" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.RealRangeConstraint.upperBound"

name="upperBound" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 <ownedAttribute

xmi:id="face.datamodel.logical.RealRangeConstraint.lowerBoundInclusive"

name="lowerBoundInclusive" isOrdered="true" default="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Boolean" />

 </ownedAttribute>

 <ownedAttribute

xmi:id="face.datamodel.logical.RealRangeConstraint.upperBoundInclusive"

name="upperBoundInclusive" isOrdered="true" default="true">

FACE™ Technical Standard, Edition 3.0 407

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Boolean" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.StringConstraint"

name="StringConstraint" isAbstract="true" superClass="face.datamodel.logical.Constraint"

/>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.RegularExpressionConstraint"

name="RegularExpressionConstraint" superClass="face.datamodel.logical.StringConstraint">

 <ownedAttribute

xmi:id="face.datamodel.logical.RegularExpressionConstraint.expression" name="expression"

isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.FixedLengthStringConstraint"

name="FixedLengthStringConstraint" superClass="face.datamodel.logical.StringConstraint">

 <ownedAttribute

xmi:id="face.datamodel.logical.FixedLengthStringConstraint.length" name="length"

isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.EnumerationConstraint" name="EnumerationConstraint"

superClass="face.datamodel.logical.Constraint">

 <ownedAttribute

xmi:id="face.datamodel.logical.EnumerationConstraint.allowedValue" name="allowedValue"

lower="0" upper="*" type="face.datamodel.logical.EnumerationLabel" />

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.MeasurementConstraint" name="MeasurementConstraint">

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementConstraint.constraintText"

name="constraintText" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.MeasurementSystemConversion"

name="MeasurementSystemConversion" superClass="face.datamodel.logical.Element">

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystemConversion.source" name="source"

type="face.datamodel.logical.MeasurementSystem" />

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystemConversion.target" name="target"

type="face.datamodel.logical.MeasurementSystem" />

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystemConversion.equation" name="equation"

isOrdered="true" upper="*">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementSystemConversion.conversionLossDescription"

name="conversionLossDescription" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.AbstractMeasurement" name="AbstractMeasurement"

isAbstract="true" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Measurement"

name="Measurement" superClass="face.datamodel.logical.ComposableElement

face.datamodel.logical.AbstractMeasurement">

408 Open Group Standard (2017)

 <ownedAttribute xmi:id="face.datamodel.logical.Measurement.constraint"

name="constraint" isOrdered="true" lower="0" upper="*"

type="face.datamodel.logical.MeasurementConstraint" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.logical.Measurement.measurementAxis"

name="measurementAxis" lower="0" upper="*" type="face.datamodel.logical.MeasurementAxis"

/>

 <ownedAttribute xmi:id="face.datamodel.logical.Measurement.measurementSystem"

name="measurementSystem" isOrdered="true"

type="face.datamodel.logical.AbstractMeasurementSystem" />

 <ownedAttribute xmi:id="face.datamodel.logical.Measurement.realizes"

name="realizes" isOrdered="true" type="face.datamodel.conceptual.Observable" />

 <ownedAttribute xmi:id="face.datamodel.logical.Measurement.attribute"

name="attribute" lower="0" upper="*" type="face.datamodel.logical.MeasurementAttribute"

isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.MeasurementAxis"

name="MeasurementAxis" superClass="face.datamodel.logical.Element

face.datamodel.logical.AbstractMeasurement">

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementAxis.valueTypeUnit"

name="valueTypeUnit" lower="0" upper="*" type="face.datamodel.logical.ValueTypeUnit" />

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementAxis.measurementSystemAxis"

name="measurementSystemAxis" isOrdered="true"

type="face.datamodel.logical.MeasurementSystemAxis" />

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementAxis.constraint"

name="constraint" isOrdered="true" lower="0" upper="*"

type="face.datamodel.logical.MeasurementConstraint" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementAxis.realizes"

name="realizes" isOrdered="true" lower="0" type="face.datamodel.conceptual.Observable" />

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.MeasurementAttribute" name="MeasurementAttribute">

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementAttribute.type"

name="type" isOrdered="true" type="face.datamodel.logical.Measurement" />

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementAttribute.rolename"

name="rolename" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.MeasurementConversion" name="MeasurementConversion"

superClass="face.datamodel.logical.Element">

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementConversion.equation"

name="equation" isOrdered="true" upper="*">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute

xmi:id="face.datamodel.logical.MeasurementConversion.conversionLossDescription"

name="conversionLossDescription" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementConversion.source"

name="source" isOrdered="true" type="face.datamodel.logical.Measurement" />

 <ownedAttribute xmi:id="face.datamodel.logical.MeasurementConversion.target"

name="target" isOrdered="true" type="face.datamodel.logical.Measurement" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.ComposableElement"

name="ComposableElement" isAbstract="true" superClass="face.datamodel.logical.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Characteristic"

name="Characteristic" isAbstract="true">

 <ownedAttribute xmi:id="face.datamodel.logical.Characteristic.rolename"

name="rolename" isOrdered="true" default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.Characteristic.lowerBound"

name="lowerBound" isOrdered="true" default="1">

FACE™ Technical Standard, Edition 3.0 409

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.Characteristic.upperBound"

name="upperBound" isOrdered="true" default="1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.Characteristic.specializes"

name="specializes" isOrdered="true" lower="0"

type="face.datamodel.logical.Characteristic" />

 <ownedAttribute xmi:id="face.datamodel.logical.Characteristic.description"

name="description" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Entity"

name="Entity" superClass="face.datamodel.logical.ComposableElement

face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.datamodel.logical.Entity.composition"

name="composition" lower="0" upper="*" type="face.datamodel.logical.Composition"

isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.logical.Entity.realizes" name="realizes"

isOrdered="true" type="face.datamodel.conceptual.Entity" />

 <ownedAttribute xmi:id="face.datamodel.logical.Entity.specializes"

name="specializes" lower="0" type="face.datamodel.logical.Entity" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Composition"

name="Composition" superClass="face.datamodel.logical.Characteristic">

 <ownedAttribute xmi:id="face.datamodel.logical.Composition.type" name="type"

isOrdered="true" type="face.datamodel.logical.ComposableElement" />

 <ownedAttribute xmi:id="face.datamodel.logical.Composition.realizes"

name="realizes" isOrdered="true" type="face.datamodel.conceptual.Composition" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Association"

name="Association" superClass="face.datamodel.logical.Entity">

 <ownedAttribute xmi:id="face.datamodel.logical.Association.participant"

name="participant" lower="0" upper="*" type="face.datamodel.logical.Participant"

isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Participant"

name="Participant" superClass="face.datamodel.logical.Characteristic">

 <ownedAttribute xmi:id="face.datamodel.logical.Participant.type" name="type"

isOrdered="true" type="face.datamodel.logical.Entity" />

 <ownedAttribute xmi:id="face.datamodel.logical.Participant.realizes"

name="realizes" isOrdered="true" type="face.datamodel.conceptual.Participant" />

 <ownedAttribute xmi:id="face.datamodel.logical.Participant.sourceLowerBound"

name="sourceLowerBound" isOrdered="true" default="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.Participant.sourceUpperBound"

name="sourceUpperBound" isOrdered="true" default="-1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.Participant.path" name="path"

isOrdered="true" lower="0" type="face.datamodel.logical.PathNode" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.PathNode"

name="PathNode" isAbstract="true">

 <ownedAttribute xmi:id="face.datamodel.logical.PathNode.node" name="node"

isOrdered="true" lower="0" type="face.datamodel.logical.PathNode" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.ParticipantPathNode" name="ParticipantPathNode"

superClass="face.datamodel.logical.PathNode">

 <ownedAttribute

xmi:id="face.datamodel.logical.ParticipantPathNode.projectedParticipant"

name="projectedParticipant" isOrdered="true" type="face.datamodel.logical.Participant" />

410 Open Group Standard (2017)

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.logical.CharacteristicPathNode" name="CharacteristicPathNode"

superClass="face.datamodel.logical.PathNode">

 <ownedAttribute

xmi:id="face.datamodel.logical.CharacteristicPathNode.projectedCharacteristic"

name="projectedCharacteristic" isOrdered="true"

type="face.datamodel.logical.Characteristic" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.View" name="View"

isAbstract="true" superClass="face.datamodel.logical.Element

face.traceability.TraceableElement" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.Query" name="Query"

superClass="face.datamodel.logical.View">

 <ownedAttribute xmi:id="face.datamodel.logical.Query.realizes" name="realizes"

isOrdered="true" lower="0" type="face.datamodel.conceptual.Query" />

 <ownedAttribute xmi:id="face.datamodel.logical.Query.specification"

name="specification" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.CompositeQuery"

name="CompositeQuery" superClass="face.datamodel.logical.Element

face.datamodel.logical.View">

 <ownedAttribute xmi:id="face.datamodel.logical.CompositeQuery.composition"

name="composition" lower="2" upper="*" type="face.datamodel.logical.QueryComposition"

isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.logical.CompositeQuery.realizes"

name="realizes" isOrdered="true" lower="0"

type="face.datamodel.conceptual.CompositeQuery" />

 <ownedAttribute xmi:id="face.datamodel.logical.CompositeQuery.isUnion"

name="isUnion" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Boolean" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.logical.QueryComposition"

name="QueryComposition">

 <ownedAttribute xmi:id="face.datamodel.logical.QueryComposition.realizes"

name="realizes" isOrdered="true" lower="0"

type="face.datamodel.conceptual.QueryComposition" />

 <ownedAttribute xmi:id="face.datamodel.logical.QueryComposition.rolename"

name="rolename" isOrdered="true" default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.logical.QueryComposition.type" name="type"

isOrdered="true" type="face.datamodel.logical.View" />

 </ownedType>

 </nestedPackage>

 <nestedPackage xmi:id="face.datamodel.platform" name="platform"

uri="http://www.opengroup.us/face/datamodel/platform/3.0">

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Element"

name="Element" isAbstract="true" superClass="face.datamodel.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.ComposableElement"

name="ComposableElement" isAbstract="true" superClass="face.datamodel.platform.Element"

/>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.PhysicalDataType"

name="PhysicalDataType" isAbstract="true"

superClass="face.datamodel.platform.ComposableElement" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLType"

name="IDLType" isAbstract="true" superClass="face.datamodel.platform.PhysicalDataType">

 <ownedAttribute xmi:id="face.datamodel.platform.IDLType.realizes" name="realizes"

isOrdered="true" type="face.datamodel.logical.AbstractMeasurement" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLPrimitive"

name="IDLPrimitive" isAbstract="true" superClass="face.datamodel.platform.IDLType" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Boolean"

name="Boolean" superClass="face.datamodel.platform.IDLPrimitive" />

FACE™ Technical Standard, Edition 3.0 411

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Octet"

name="Octet" superClass="face.datamodel.platform.IDLPrimitive" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.CharType"

name="CharType" isAbstract="true" superClass="face.datamodel.platform.IDLPrimitive" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Char" name="Char"

superClass="face.datamodel.platform.CharType" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.StringType"

name="StringType" isAbstract="true" superClass="face.datamodel.platform.IDLPrimitive" />

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.platform.IDLUnboundedString" name="IDLUnboundedString"

isAbstract="true" superClass="face.datamodel.platform.StringType" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.String"

name="String" superClass="face.datamodel.platform.IDLUnboundedString" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLBoundedString"

name="IDLBoundedString" isAbstract="true"

superClass="face.datamodel.platform.StringType">

 <ownedAttribute xmi:id="face.datamodel.platform.IDLBoundedString.maxLength"

name="maxLength" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.BoundedString"

name="BoundedString" superClass="face.datamodel.platform.IDLBoundedString" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLCharacterArray"

name="IDLCharacterArray" isAbstract="true"

superClass="face.datamodel.platform.StringType">

 <ownedAttribute xmi:id="face.datamodel.platform.IDLCharacterArray.length"

name="length" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.CharArray"

name="CharArray" superClass="face.datamodel.platform.IDLCharacterArray" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Enumeration"

name="Enumeration" superClass="face.datamodel.platform.IDLPrimitive" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLNumber"

name="IDLNumber" isAbstract="true" superClass="face.datamodel.platform.IDLPrimitive" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLInteger"

name="IDLInteger" isAbstract="true" superClass="face.datamodel.platform.IDLNumber" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Short"

name="Short" superClass="face.datamodel.platform.IDLInteger" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Long" name="Long"

superClass="face.datamodel.platform.IDLInteger" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.LongLong"

name="LongLong" superClass="face.datamodel.platform.IDLInteger" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLReal"

name="IDLReal" isAbstract="true" superClass="face.datamodel.platform.IDLNumber" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Double"

name="Double" superClass="face.datamodel.platform.IDLReal" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.LongDouble"

name="LongDouble" superClass="face.datamodel.platform.IDLReal" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Float"

name="Float" superClass="face.datamodel.platform.IDLReal" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Fixed"

name="Fixed" superClass="face.datamodel.platform.IDLReal">

 <ownedAttribute xmi:id="face.datamodel.platform.Fixed.digits" name="digits"

isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.Fixed.scale" name="scale"

isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.platform.IDLUnsignedInteger" name="IDLUnsignedInteger"

isAbstract="true" superClass="face.datamodel.platform.IDLInteger" />

412 Open Group Standard (2017)

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.UShort"

name="UShort" superClass="face.datamodel.platform.IDLUnsignedInteger" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.ULong"

name="ULong" superClass="face.datamodel.platform.IDLUnsignedInteger" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.ULongLong"

name="ULongLong" superClass="face.datamodel.platform.IDLUnsignedInteger" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLSequence"

name="IDLSequence" superClass="face.datamodel.platform.IDLPrimitive">

 <ownedAttribute xmi:id="face.datamodel.platform.IDLSequence.maxSize"

name="maxSize" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLArray"

name="IDLArray" superClass="face.datamodel.platform.IDLPrimitive">

 <ownedAttribute xmi:id="face.datamodel.platform.IDLArray.size" name="size"

isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLStruct"

name="IDLStruct" superClass="face.datamodel.platform.IDLType">

 <ownedAttribute xmi:id="face.datamodel.platform.IDLStruct.composition"

name="composition" isOrdered="true" lower="2" upper="*"

type="face.datamodel.platform.IDLComposition" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.IDLComposition"

name="IDLComposition">

 <ownedAttribute xmi:id="face.datamodel.platform.IDLComposition.type" name="type"

isOrdered="true" type="face.datamodel.platform.IDLType" />

 <ownedAttribute xmi:id="face.datamodel.platform.IDLComposition.rolename"

name="rolename" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.IDLComposition.precision"

name="precision" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.IDLComposition.realizes"

name="realizes" isOrdered="true" lower="0"

type="face.datamodel.logical.MeasurementAttribute" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Characteristic"

name="Characteristic" isAbstract="true">

 <ownedAttribute xmi:id="face.datamodel.platform.Characteristic.rolename"

name="rolename" isOrdered="true" default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.Characteristic.upperBound"

name="upperBound" isOrdered="true" default="1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.Characteristic.lowerBound"

name="lowerBound" isOrdered="true" default="1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.Characteristic.specializes"

name="specializes" isOrdered="true" lower="0"

type="face.datamodel.platform.Characteristic" />

 <ownedAttribute xmi:id="face.datamodel.platform.Characteristic.description"

name="description" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

FACE™ Technical Standard, Edition 3.0 413

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Entity"

name="Entity" superClass="face.datamodel.platform.ComposableElement

face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.datamodel.platform.Entity.composition"

name="composition" isOrdered="true" lower="0" upper="*"

type="face.datamodel.platform.Composition" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.platform.Entity.realizes" name="realizes"

isOrdered="true" type="face.datamodel.logical.Entity" />

 <ownedAttribute xmi:id="face.datamodel.platform.Entity.specializes"

name="specializes" isOrdered="true" lower="0" type="face.datamodel.platform.Entity" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Composition"

name="Composition" superClass="face.datamodel.platform.Characteristic">

 <ownedAttribute xmi:id="face.datamodel.platform.Composition.type" name="type"

isOrdered="true" type="face.datamodel.platform.ComposableElement" />

 <ownedAttribute xmi:id="face.datamodel.platform.Composition.realizes"

name="realizes" isOrdered="true" type="face.datamodel.logical.Composition" />

 <ownedAttribute xmi:id="face.datamodel.platform.Composition.precision"

name="precision" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Association"

name="Association" superClass="face.datamodel.platform.Entity">

 <ownedAttribute xmi:id="face.datamodel.platform.Association.participant"

name="participant" isOrdered="true" lower="0" upper="*"

type="face.datamodel.platform.Participant" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Participant"

name="Participant" superClass="face.datamodel.platform.Characteristic">

 <ownedAttribute xmi:id="face.datamodel.platform.Participant.type" name="type"

isOrdered="true" type="face.datamodel.platform.Entity" />

 <ownedAttribute xmi:id="face.datamodel.platform.Participant.realizes"

name="realizes" isOrdered="true" type="face.datamodel.logical.Participant" />

 <ownedAttribute xmi:id="face.datamodel.platform.Participant.sourceLowerBound"

name="sourceLowerBound" isOrdered="true" default="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.Participant.sourceUpperBound"

name="sourceUpperBound" isOrdered="true" default="-1">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.Participant.path" name="path"

isOrdered="true" lower="0" type="face.datamodel.platform.PathNode" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.PathNode"

name="PathNode" isAbstract="true">

 <ownedAttribute xmi:id="face.datamodel.platform.PathNode.node" name="node"

isOrdered="true" lower="0" type="face.datamodel.platform.PathNode" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.platform.ParticipantPathNode" name="ParticipantPathNode"

superClass="face.datamodel.platform.PathNode">

 <ownedAttribute

xmi:id="face.datamodel.platform.ParticipantPathNode.projectedParticipant"

name="projectedParticipant" isOrdered="true" type="face.datamodel.platform.Participant"

/>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.platform.CharacteristicPathNode" name="CharacteristicPathNode"

superClass="face.datamodel.platform.PathNode">

 <ownedAttribute

xmi:id="face.datamodel.platform.CharacteristicPathNode.projectedCharacteristic"

name="projectedCharacteristic" isOrdered="true"

type="face.datamodel.platform.Characteristic" />

 </ownedType>

414 Open Group Standard (2017)

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.View" name="View"

isAbstract="true" superClass="face.datamodel.platform.Element

face.traceability.TraceableElement" />

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Query"

name="Query" superClass="face.datamodel.platform.Element

face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.datamodel.platform.Query.realizes" name="realizes"

isOrdered="true" lower="0" type="face.datamodel.logical.Query" />

 <ownedAttribute xmi:id="face.datamodel.platform.Query.specification"

name="specification" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.CompositeTemplate"

name="CompositeTemplate" superClass="face.datamodel.platform.Element

face.datamodel.platform.View">

 <ownedAttribute xmi:id="face.datamodel.platform.CompositeTemplate.composition"

name="composition" isOrdered="true" lower="2" upper="*"

type="face.datamodel.platform.TemplateComposition" isComposite="true" />

 <ownedAttribute xmi:id="face.datamodel.platform.CompositeTemplate.realizes"

name="realizes" isOrdered="true" lower="0" type="face.datamodel.logical.CompositeQuery"

/>

 <ownedAttribute xmi:id="face.datamodel.platform.CompositeTemplate.isUnion"

name="isUnion" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Boolean" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class"

xmi:id="face.datamodel.platform.TemplateComposition" name="TemplateComposition">

 <ownedAttribute xmi:id="face.datamodel.platform.TemplateComposition.rolename"

name="rolename" isOrdered="true" default="">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.TemplateComposition.realizes"

name="realizes" isOrdered="true" lower="0" type="face.datamodel.logical.QueryComposition"

/>

 <ownedAttribute xmi:id="face.datamodel.platform.TemplateComposition.type"

name="type" isOrdered="true" type="face.datamodel.platform.View" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.datamodel.platform.Template"

name="Template" superClass="face.datamodel.platform.View">

 <ownedAttribute xmi:id="face.datamodel.platform.Template.specification"

name="specification" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.datamodel.platform.Template.boundQuery"

name="boundQuery" isOrdered="true" lower="0" type="face.datamodel.platform.Query" />

 <ownedAttribute xmi:id="face.datamodel.platform.Template.effectiveQuery"

name="effectiveQuery" isOrdered="true" lower="0" type="face.datamodel.platform.Query" />

 </ownedType>

 </nestedPackage>

 </nestedPackage>

 <nestedPackage xmi:id="face.uop" name="uop" uri="http://www.opengroup.us/face/uop/3.0">

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.UoPModel" name="UoPModel"

superClass="face.Element">

 <ownedAttribute xmi:id="face.uop.UoPModel.element" name="element" lower="0"

upper="*" type="face.uop.Element" isComposite="true" />

 <ownedAttribute xmi:id="face.uop.UoPModel.um" name="um" lower="0" upper="*"

type="face.uop.UoPModel" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.Element" name="Element"

isAbstract="true" superClass="face.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.SupportingComponent"

name="SupportingComponent" isAbstract="true" superClass="face.uop.Element">

 <ownedAttribute xmi:id="face.uop.SupportingComponent.version" name="version"

isOrdered="true">

FACE™ Technical Standard, Edition 3.0 415

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.LanguageRunTime"

name="LanguageRunTime" superClass="face.uop.SupportingComponent" />

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.ComponentFramework"

name="ComponentFramework" superClass="face.uop.SupportingComponent" />

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.ClientServerRole"

name="ClientServerRole">

 <ownedLiteral xmi:id="face.uop.ClientServerRole.Client" name="Client" />

 <ownedLiteral xmi:id="face.uop.ClientServerRole.Server" name="Server" />

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.FaceProfile"

name="FaceProfile">

 <ownedLiteral xmi:id="face.uop.FaceProfile.GeneralPurpose" name="GeneralPurpose" />

 <ownedLiteral xmi:id="face.uop.FaceProfile.Security" name="Security" />

 <ownedLiteral xmi:id="face.uop.FaceProfile.SafetyBase" name="SafetyBase" />

 <ownedLiteral xmi:id="face.uop.FaceProfile.SafetyExtended" name="SafetyExtended" />

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.DesignAssuranceLevel"

name="DesignAssuranceLevel">

 <ownedLiteral xmi:id="face.uop.DesignAssuranceLevel.A" name="A" />

 <ownedLiteral xmi:id="face.uop.DesignAssuranceLevel.B" name="B" />

 <ownedLiteral xmi:id="face.uop.DesignAssuranceLevel.C" name="C" />

 <ownedLiteral xmi:id="face.uop.DesignAssuranceLevel.D" name="D" />

 <ownedLiteral xmi:id="face.uop.DesignAssuranceLevel.E" name="E" />

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.DesignAssuranceStandard"

name="DesignAssuranceStandard">

 <ownedLiteral xmi:id="face.uop.DesignAssuranceStandard.DO_178B_ED_12B"

name="DO_178B_ED_12B" literal="DO_178B_ED_12B" />

 <ownedLiteral xmi:id="face.uop.DesignAssuranceStandard.DO_178C_ED_12C"

name="DO_178C_ED_12C" literal="DO_178C_ED_12C" />

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.MessageExchangeType"

name="MessageExchangeType">

 <ownedLiteral xmi:id="face.uop.MessageExchangeType.InboundMessage"

name="InboundMessage" />

 <ownedLiteral xmi:id="face.uop.MessageExchangeType.OutboundMessage"

name="OutboundMessage" />

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.PartitionType"

name="PartitionType">

 <ownedLiteral xmi:id="face.uop.PartitionType.POSIX" name="POSIX" />

 <ownedLiteral xmi:id="face.uop.PartitionType.ARINC653" name="ARINC653" />

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.ProgrammingLanguage"

name="ProgrammingLanguage">

 <ownedLiteral xmi:id="face.uop.ProgrammingLanguage.C" name="C" />

 <ownedLiteral xmi:id="face.uop.ProgrammingLanguage.CPP" name="CPP" />

 <ownedLiteral xmi:id="face.uop.ProgrammingLanguage.Java" name="Java" />

 <ownedLiteral xmi:id="face.uop.ProgrammingLanguage.Ada" name="Ada" />

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.SynchronizationStyle"

name="SynchronizationStyle">

 <ownedLiteral xmi:id="face.uop.SynchronizationStyle.Blocking" name="Blocking" />

 <ownedLiteral xmi:id="face.uop.SynchronizationStyle.NonBlocking" name="NonBlocking"

/>

 </ownedType>

 <ownedType xmi:type="emof:Enumeration" xmi:id="face.uop.ThreadType"

name="ThreadType">

 <ownedLiteral xmi:id="face.uop.ThreadType.Foreground" name="Foreground" />

 <ownedLiteral xmi:id="face.uop.ThreadType.Background" name="Background" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.AbstractUoP" name="AbstractUoP"

superClass="face.uop.Element face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.uop.AbstractUoP.connection" name="connection"

lower="0" upper="*" type="face.uop.AbstractConnection" isComposite="true" />

 </ownedType>

416 Open Group Standard (2017)

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.AbstractConnection"

name="AbstractConnection" superClass="face.Element face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.uop.AbstractConnection.conceptualView"

name="conceptualView" isOrdered="true" lower="0" type="face.datamodel.conceptual.View" />

 <ownedAttribute xmi:id="face.uop.AbstractConnection.logicalView" name="logicalView"

isOrdered="true" lower="0" type="face.datamodel.logical.View" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.UnitOfPortability"

name="UnitOfPortability" isAbstract="true" superClass="face.uop.Element

face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.supportingComponent"

name="supportingComponent" lower="0" upper="*" type="face.uop.SupportingComponent" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.thread" name="thread" upper="*"

type="face.uop.Thread" isComposite="true" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.memoryRequirements"

name="memoryRequirements" isOrdered="true" type="face.uop.RAMMemoryRequirements"

isComposite="true" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.realizes" name="realizes"

isOrdered="true" lower="0" type="face.uop.AbstractUoP" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.connection" name="connection"

upper="*" type="face.uop.Connection" isComposite="true" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.transportAPILanguage"

name="transportAPILanguage" isOrdered="true" type="face.uop.ProgrammingLanguage" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.designAssuranceLevel"

name="designAssuranceLevel" isOrdered="true" lower="0"

type="face.uop.DesignAssuranceLevel" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.partitionType"

name="partitionType" isOrdered="true" type="face.uop.PartitionType" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.designAssuranceStandard"

name="designAssuranceStandard" isOrdered="true" lower="0"

type="face.uop.DesignAssuranceStandard" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.faceProfile" name="faceProfile"

isOrdered="true" type="face.uop.FaceProfile" />

 <ownedAttribute xmi:id="face.uop.UnitOfPortability.lcmPort" name="lcmPort"

lower="0" upper="2" type="face.uop.LifeCycleManagementPort" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.PortableComponent"

name="PortableComponent" superClass="face.uop.UnitOfPortability" />

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.PlatformSpecificComponent"

name="PlatformSpecificComponent" superClass="face.uop.UnitOfPortability" />

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.Thread" name="Thread">

 <ownedAttribute xmi:id="face.uop.Thread.period" name="period" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.Thread.timeCapacity" name="timeCapacity"

isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.Thread.relativePriority" name="relativePriority"

isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.Thread.relativeCoreAffinity"

name="relativeCoreAffinity" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.Thread.threadType" name="threadType"

isOrdered="true" type="face.uop.ThreadType" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.RAMMemoryRequirements"

name="RAMMemoryRequirements">

 <ownedAttribute xmi:id="face.uop.RAMMemoryRequirements.heapStackMin"

name="heapStackMin" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

FACE™ Technical Standard, Edition 3.0 417

 <ownedAttribute xmi:id="face.uop.RAMMemoryRequirements.heapStackMax"

name="heapStackMax" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.RAMMemoryRequirements.heapStackTypical"

name="heapStackTypical" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.RAMMemoryRequirements.textMax" name="textMax"

isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.RAMMemoryRequirements.roDataMax" name="roDataMax"

isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.RAMMemoryRequirements.dataMax" name="dataMax"

isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.RAMMemoryRequirements.bssMax" name="bssMax"

isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.Connection" name="Connection"

isAbstract="true" superClass="face.traceability.TraceableElement face.Element">

 <ownedAttribute xmi:id="face.uop.Connection.realizes" name="realizes"

isOrdered="true" lower="0" type="face.uop.AbstractConnection" />

 <ownedAttribute xmi:id="face.uop.Connection.period" name="period" isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://www.eclipse.org/emf/2002/Ecore.emof#ecore.EFloat" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.uop.Connection.synchronizationStyle"

name="synchronizationStyle" isOrdered="true" type="face.uop.SynchronizationStyle" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.ClientServerConnection"

name="ClientServerConnection" superClass="face.uop.Connection">

 <ownedAttribute xmi:id="face.uop.ClientServerConnection.requestType"

name="requestType" isOrdered="true" type="face.datamodel.platform.View" />

 <ownedAttribute xmi:id="face.uop.ClientServerConnection.responseType"

name="responseType" isOrdered="true" type="face.datamodel.platform.View" />

 <ownedAttribute xmi:id="face.uop.ClientServerConnection.role" name="role"

isOrdered="true" type="face.uop.ClientServerRole" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.PubSubConnection"

name="PubSubConnection" isAbstract="true" superClass="face.uop.Connection">

 <ownedAttribute xmi:id="face.uop.PubSubConnection.messageType" name="messageType"

isOrdered="true" type="face.datamodel.platform.View" />

 <ownedAttribute xmi:id="face.uop.PubSubConnection.messageExchangeType"

name="messageExchangeType" isOrdered="true" type="face.uop.MessageExchangeType" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.QueuingConnection"

name="QueuingConnection" superClass="face.uop.PubSubConnection">

 <ownedAttribute xmi:id="face.uop.QueuingConnection.depth" name="depth"

isOrdered="true">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#Integer" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.SingleInstanceMessageConnection"

name="SingleInstanceMessageConnection" superClass="face.uop.PubSubConnection" />

 <ownedType xmi:type="emof:Class" xmi:id="face.uop.LifeCycleManagementPort"

name="LifeCycleManagementPort">

418 Open Group Standard (2017)

 <ownedAttribute xmi:id="face.uop.LifeCycleManagementPort.messageExchangeType"

name="messageExchangeType" isOrdered="true" type="face.uop.MessageExchangeType" />

 <ownedAttribute xmi:id="face.uop.LifeCycleManagementPort.lcmMessageType"

name="lcmMessageType" isOrdered="true" type="face.datamodel.platform.View" />

 </ownedType>

 </nestedPackage>

 <nestedPackage xmi:id="face.integration" name="integration"

uri="http://www.opengroup.us/face/integration/3.0">

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.IntegrationModel"

name="IntegrationModel" superClass="face.Element">

 <ownedAttribute xmi:id="face.integration.IntegrationModel.im" name="im" lower="0"

upper="*" type="face.integration.IntegrationModel" isComposite="true" />

 <ownedAttribute xmi:id="face.integration.IntegrationModel.element" name="element"

lower="0" upper="*" type="face.integration.Element" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.Element" name="Element"

isAbstract="true" superClass="face.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.IntegrationContext"

name="IntegrationContext" superClass="face.integration.Element">

 <ownedAttribute xmi:id="face.integration.IntegrationContext.connection"

name="connection" lower="0" upper="*" type="face.integration.TSNodeConnection"

isComposite="true" />

 <ownedAttribute xmi:id="face.integration.IntegrationContext.node" name="node"

lower="0" upper="*" type="face.integration.TransportNode" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.TSNodeConnection"

name="TSNodeConnection">

 <ownedAttribute xmi:id="face.integration.TSNodeConnection.source" name="source"

isOrdered="true" type="face.integration.TSNodePortBase" />

 <ownedAttribute xmi:id="face.integration.TSNodeConnection.destination"

name="destination" isOrdered="true" type="face.integration.TSNodePortBase" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.TSNodePortBase"

name="TSNodePortBase" isAbstract="true" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.UoPInstance"

name="UoPInstance" superClass="face.integration.Element">

 <ownedAttribute xmi:id="face.integration.UoPInstance.realizes" name="realizes"

isOrdered="true" type="face.uop.UnitOfPortability" />

 <ownedAttribute xmi:id="face.integration.UoPInstance.output" name="output"

lower="0" upper="*" type="face.integration.UoPOutputEndPoint" isComposite="true" />

 <ownedAttribute xmi:id="face.integration.UoPInstance.input" name="input" lower="0"

upper="*" type="face.integration.UoPInputEndPoint" isComposite="true" />

 <ownedAttribute xmi:id="face.integration.UoPInstance.configurationURI"

name="configurationURI" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.UoPEndPoint"

name="UoPEndPoint" isAbstract="true" superClass="face.integration.TSNodePortBase">

 <ownedAttribute xmi:id="face.integration.UoPEndPoint.connection" name="connection"

isOrdered="true" type="face.uop.Connection" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.UoPInputEndPoint"

name="UoPInputEndPoint" superClass="face.integration.UoPEndPoint" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.UoPOutputEndPoint"

name="UoPOutputEndPoint" superClass="face.integration.UoPEndPoint" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.TransportNode"

name="TransportNode" isAbstract="true" superClass="face.Element">

 <ownedAttribute xmi:id="face.integration.TransportNode.outPort" name="outPort"

isOrdered="true" lower="0" type="face.integration.TSNodeOutputPort" isComposite="true" />

 <ownedAttribute xmi:id="face.integration.TransportNode.inPort" name="inPort"

lower="0" upper="*" type="face.integration.TSNodeInputPort" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.TSNodePort"

name="TSNodePort" isAbstract="true" superClass="face.integration.TSNodePortBase">

 <ownedAttribute xmi:id="face.integration.TSNodePort.view" name="view"

isOrdered="true" type="face.datamodel.platform.View" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.TSNodeInputPort"

name="TSNodeInputPort" superClass="face.integration.TSNodePort" />

FACE™ Technical Standard, Edition 3.0 419

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.TSNodeOutputPort"

name="TSNodeOutputPort" superClass="face.integration.TSNodePort" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.ViewAggregation"

name="ViewAggregation" superClass="face.integration.TransportNode" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.ViewFilter"

name="ViewFilter" superClass="face.integration.TransportNode" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.ViewSource"

name="ViewSource" superClass="face.integration.TransportNode" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.ViewSink" name="ViewSink"

superClass="face.integration.TransportNode" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.ViewTransformation"

name="ViewTransformation" superClass="face.integration.TransportNode" />

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.ViewTransporter"

name="ViewTransporter" superClass="face.integration.TransportNode">

 <ownedAttribute xmi:id="face.integration.ViewTransporter.channel" name="channel"

isOrdered="true" type="face.integration.TransportChannel" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.integration.TransportChannel"

name="TransportChannel" superClass="face.integration.Element" />

 </nestedPackage>

 <nestedPackage xmi:id="face.traceability" name="traceability"

uri="http://www.opengroup.us/face/traceability/3.0">

 <ownedType xmi:type="emof:Class" xmi:id="face.traceability.TraceabilityModel"

name="TraceabilityModel" superClass="face.Element">

 <ownedAttribute xmi:id="face.traceability.TraceabilityModel.element" name="element"

lower="0" upper="*" type="face.traceability.Element" isComposite="true" />

 <ownedAttribute xmi:id="face.traceability.TraceabilityModel.tm" name="tm" lower="0"

upper="*" type="face.traceability.TraceabilityModel" isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.traceability.Element" name="Element"

isAbstract="true" superClass="face.Element" />

 <ownedType xmi:type="emof:Class" xmi:id="face.traceability.TraceableElement"

name="TraceableElement" isAbstract="true">

 <ownedAttribute xmi:id="face.traceability.TraceableElement.traceabilityPoint"

name="traceabilityPoint" lower="0" upper="*" type="face.traceability.TraceabilityPoint"

isComposite="true" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.traceability.TraceabilityPoint"

name="TraceabilityPoint">

 <ownedAttribute xmi:id="face.traceability.TraceabilityPoint.rationale"

name="rationale" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 <ownedAttribute xmi:id="face.traceability.TraceabilityPoint.reference"

name="reference" isOrdered="true" lower="0">

 <type xmi:type="emof:PrimitiveType"

href="http://schema.omg.org/spec/MOF/2.0/emof.xml#String" />

 </ownedAttribute>

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.traceability.UoPTraceabilitySet"

name="UoPTraceabilitySet" superClass="face.traceability.Element

face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.traceability.UoPTraceabilitySet.uop" name="uop"

lower="0" upper="*" type="face.uop.UnitOfPortability" />

 <ownedAttribute xmi:id="face.traceability.UoPTraceabilitySet.abstractUoP"

name="abstractUoP" lower="0" upper="*" type="face.uop.AbstractUoP" />

 </ownedType>

 <ownedType xmi:type="emof:Class" xmi:id="face.traceability.ConnectionTraceabilitySet"

name="ConnectionTraceabilitySet" superClass="face.traceability.Element

face.traceability.TraceableElement">

 <ownedAttribute xmi:id="face.traceability.ConnectionTraceabilitySet.connection"

name="connection" lower="0" upper="*" type="face.uop.Connection" />

 <ownedAttribute

xmi:id="face.traceability.ConnectionTraceabilitySet.abstractConnection"

name="abstractConnection" lower="0" upper="*" type="face.uop.AbstractConnection" />

 </ownedType>

 </nestedPackage>

</emof:Package>

420 Open Group Standard (2017)

J.6 Object Constraint Language Constraints

The OCL constraints governing USM and DSDM content are detailed in this section. These

constraints are using the OMG Object Constraint Language (OCL), Version 2.4.

J.6.1 OCL Constraint Helper Methods

package face

 context Element

 /*

 * Helper method that determines if a string is a valid identifier.

 * An identifier is valid if it consists of alphanumeric characters.

 */

 static def: isValidIdentifier(str : String) : Boolean =

 str.size() > 0 and

 str.replaceAll('[a-zA-Z][_a-zA-Z0-9]*', '').size() = 0

 /*

 * Helper method that determines if a string is an IDL 4.1 keyword.

 */

 static def: isReservedWord(str : String) : Boolean =

 let strLower: String = str.toLowerCase() in

 strLower = 'abstract' or

 strLower = 'alias' or

 strLower = 'any' or

 strLower = 'attribute' or

 strLower = 'bitfield' or

 strLower = 'bitmask' or

 strLower = 'bitset' or

 strLower = 'boolean' or

 strLower = 'case' or

 strLower = 'char' or

 strLower = 'component' or

 strLower = 'connector' or

 strLower = 'const' or

 strLower = 'consumes' or

 strLower = 'context' or

 strLower = 'custom' or

 strLower = 'default' or

 strLower = 'double' or

 strLower = 'emits' or

 strLower = 'enum' or

 strLower = 'eventtype' or

 strLower = 'exception' or

 strLower = 'factory' or

 strLower = 'false' or

 strLower = 'finder' or

 strLower = 'fixed' or

 strLower = 'float' or

 strLower = 'getraises' or

 strLower = 'home' or

 strLower = 'import' or

 strLower = 'in' or

 strLower = 'inout' or

 strLower = 'interface' or

 strLower = 'local' or

 strLower = 'long' or

 strLower = 'manages' or

 strLower = 'map' or

 strLower = 'mirrorport' or

 strLower = 'module' or

 strLower = 'multiple' or

 strLower = 'native' or

 strLower = 'object' or

 strLower = 'octet' or

 strLower = 'oneway' or

 strLower = 'out' or

 strLower = 'port' or

FACE™ Technical Standard, Edition 3.0 421

 strLower = 'porttype' or

 strLower = 'primarykey' or

 strLower = 'private' or

 strLower = 'provides' or

 strLower = 'public' or

 strLower = 'publishes' or

 strLower = 'raises' or

 strLower = 'readonly' or

 strLower = 'sequence' or

 strLower = 'setraises' or

 strLower = 'short' or

 strLower = 'string' or

 strLower = 'struct' or

 strLower = 'supports' or

 strLower = 'switch' or

 strLower = 'true' or

 strLower = 'truncatable' or

 strLower = 'typedef' or

 strLower = 'typeid' or

 strLower = 'typename' or

 strLower = 'typeprefix' or

 strLower = 'union' or

 strLower = 'unsigned' or

 strLower = 'uses' or

 strLower = 'valuebase' or

 strLower = 'valuetype' or

 strLower = 'void' or

 strLower = 'wchar' or

 strLower = 'wstring'

endpackage

J.6.2 OCL Constraints for face Package

package face

 context Element

 /*

 * The name of an Element is a valid identifier.

 */

 inv nameIsValidIdentifier:

 Element::isValidIdentifier(self.name)

 /*

 * The following elements have a non-empty description:

 * - Observable

 * - Unit

 * - Landmark

 * - ReferencePoint

 * - MeasurementSystem

 * - MeasurementSystemAxis

 * - CoordinateSystem

 * - CoordinateSystemAxis

 * - MeasurementSystemConversion

 * - Boolean

 * - Character

 * - Numeric

 * - Integer

 * - Natural

 * - NonNegativeReal

 * - Real

 * - String

 */

 inv nonEmptyDescription:

 (self.oclIsTypeOf(datamodel::conceptual::Observable) or

 self.oclIsTypeOf(datamodel::logical::Unit) or

 self.oclIsTypeOf(datamodel::logical::Landmark) or

 self.oclIsTypeOf(datamodel::logical::ReferencePoint) or

 self.oclIsTypeOf(datamodel::logical::MeasurementSystem) or

 self.oclIsTypeOf(datamodel::logical::MeasurementSystemAxis) or

 self.oclIsTypeOf(datamodel::logical::CoordinateSystem) or

422 Open Group Standard (2017)

 self.oclIsTypeOf(datamodel::logical::CoordinateSystemAxis) or

 self.oclIsTypeOf(datamodel::logical::MeasurementSystemConversion) or

 self.oclIsTypeOf(datamodel::logical::Boolean) or

 self.oclIsTypeOf(datamodel::logical::Character) or

 self.oclIsTypeOf(datamodel::logical::Numeric) or

 self.oclIsTypeOf(datamodel::logical::Integer) or

 self.oclIsTypeOf(datamodel::logical::Natural) or

 self.oclIsTypeOf(datamodel::logical::NonNegativeReal) or

 self.oclIsTypeOf(datamodel::logical::Real) or

 self.oclIsTypeOf(datamodel::logical::String))

 implies

 self.description.size() > 0

 context ArchitectureModel

 /*

 * Every Element in an ArchitectureModel has a unique name.

 */

 inv hasUniqueName:

 let children : Bag(String)=

 self.dm->collect(name.toLowerCase())->union(

 self.um->collect(name.toLowerCase())->union(

 self.im->collect(name.toLowerCase())->union(

 self.tm->collect(name.toLowerCase())))) in

 children->size() = children->asSet()->size()

endpackage

J.6.3 OCL Constraints for face::datamodel Package

package face::datamodel

 context DataModel

 /*

 * Every Element in an DataModel has a unique name.

 */

 inv hasUniqueName:

 let children : Bag(String)=

 self.cdm->collect(name.toLowerCase())->union(

 self.pdm->collect(name.toLowerCase())->union(

 self.ldm->collect(name.toLowerCase()))) in

 children->size() = children->asSet()->size()

endpackage

J.6.4 OCL Constraints for face::datamodel::conceptual Package

package face::datamodel::conceptual

 context Element

 /*

 * Every Conceptual Element has a unique name.

 */

 inv hasUniqueName:

 not Element.allInstances()->excluding(self)

 ->collect(name.toLowerCase())

 ->includes(self.name.toLowerCase())

 context ComposableElement

 /*

 * Helper method that determines if a ComposableElement is a

 * specialization of another ComposableElement.

 */

 def: isSpecializationOf(ce : ComposableElement) : Boolean =

 self.oclIsKindOf(Entity) and

 ce.oclIsKindOf(Entity) and

 self.oclAsType(Entity).specializes->closure(specializes)->includes(ce)

 context Entity

FACE™ Technical Standard, Edition 3.0 423

 /*

 * Helper method that gets the Characteristics contained in an Entity.

 */

 def: getLocalCharacteristics() : Set(Characteristic) =

 if self.oclIsTypeOf(Association) then

 self.composition

 ->union(self.oclAsType(Association).participant)

 ->oclAsType(Set(Characteristic))

 else

 self.composition->oclAsType(Set(Characteristic))

 endif

 /*

 * Helper method that gets the Characteristics of an Entity,

 * including those from specialized Entities.

 */

 def: getAllCharacteristics() : Set(Characteristic) =

 let allCharacteristics : Set(Characteristic) =

 self->closure(specializes)

 ->collect(getLocalCharacteristics())

 ->asSet() in

 -- get all characteristics that have been specialized

 let specializedCharacteristics : Set(Characteristic) =

 allCharacteristics->collect(specializes)

 ->asSet() in

 -- return all characteristics that have not been specialized

 allCharacteristics - specializedCharacteristics

 /*

 * Helper method that gets the identity of a conceptual Entity.

 */

 def: getEntityIdentity() : Bag(OclAny) =

 self.getAllCharacteristics()

 ->collectNested(getIdentityContribution())

 ->union(self.getBasisEntities())

 /*

 * Helper method to retrieve the BasisEntities of an Entity,

 * including those from specialized Entities.

 */

 def: getBasisEntities() : Bag(BasisEntity) =

 self->closure(specializes)

 ->collect(basisEntity)

 /*

 * Helper method that determines whether or not

 * an Entity is part of a specialization cycle.

 */

 def: isPartOfSpecializationCycle() : Boolean =

 self.specializes->closure(specializes)->includes(self)

 /*

 * A Characteristic's rolename is unique within an Entity.

 */

 inv characteristicsHaveUniqueRolenames:

 self.getAllCharacteristics()->isUnique(rolename)

 /*

 * A Conceptual Entity contains a Composition whose type

 * is an Observable named 'UniqueIdentifier'.

 */

 inv hasUniqueID:

 self.getAllCharacteristics()

 ->selectByType(Composition)

 ->collect(type)

 ->exists(a | a.oclIsTypeOf(Observable)

 and a.name = 'UniqueIdentifier')

 /*

424 Open Group Standard (2017)

 * If Entity A' specializes Entity A, all characteristics

 * in A' specialize nothing, specialize characteristics from A,

 * or specialize characteristics from an Entity that is a generalization of

 * A. (If A' does not specialize, none of its characteristics specialize.)

 */

 inv specializingCharacteristicsConsistent:

 if self.specializes = null then

 self.getLocalCharacteristics()

 ->select(specializes <> null)

 ->isEmpty()

 else

 self.getLocalCharacteristics()

 ->select(specializes <> null)

 ->forAll(c | self.specializes

 ->closure(specializes)

 ->collect(getLocalCharacteristics())

 ->exists(sc | c.specializes = sc))

 endif

 /*

 * An Entity is not a specialization of itself.

 */

 inv noCyclesInSpecialization:

 not isPartOfSpecializationCycle()

 /*

 * An Entity has at least one Characteristic defined

 * locally (not through generalization).

 */

 inv hasAtLeastOneLocalCharacteristic:

 self.getLocalCharacteristics()->size() >= 1

 context Association

 /*

 * An Association has at least two Participants.

 */

 inv hasAtLeastTwoParticipants:

 self.getAllCharacteristics()

 ->selectByKind(Participant)

 ->size() >= 2

 context Characteristic

 /*

 * Helper method that gets the rolename of a Characteristic.

 */

 def: getRolename() : String =

 if self.oclIsKindOf(Composition) then

 self.oclAsType(Composition).rolename

 else

 self.oclAsType(Participant).getRolename()

 endif

 /*

 * Helper method that gets the type of a Characteristic.

 */

 def: getType() : ComposableElement =

 if self.oclIsTypeOf(Composition) then

 self.oclAsType(Composition).type

 else

 self.oclAsType(Participant).getResolvedType()

 endif

 /*

 * Helper method that gets the contribution a Characteristic makes

 * to an Entity's uniqueness.

 */

 def: getIdentityContribution() : Sequence(OclAny) =

 if self.oclIsTypeOf(Composition) then

 self.oclAsType(Composition).getIdentityContribution()

 else

 self.oclAsType(Participant).getIdentityContribution()

FACE™ Technical Standard, Edition 3.0 425

 endif

 /*

 * Helper method that determines if one upper bound is

 * more restrictive than another.

 */

 def: upperBound_LTE(testUpperBound : Integer,

 baselineUpperBound : Integer) : Boolean =

 if baselineUpperBound = -1 then

 testUpperBound >= baselineUpperBound

 else

 testUpperBound <= baselineUpperBound

 endif

 /*

 * Helper method that determines if a Characteristic is a

 * specialization of another Characteristic.

 */

 def: isSpecializationOf(cp : Characteristic) : Boolean =

 self->closure(specializes)

 ->exists(sc : Characteristic |

 sc = cp.oclAsType(Characteristic))

 /*

 * The rolename of a Characteristic is a valid identifier.

 */

 inv rolenameIsValidIdentifier:

 self.getRolename() <> null implies

 Element::isValidIdentifier(self.getRolename())

 /*

 * A Characteristic's lowerBound is less than or equal to its upperBound,

 * unless its upperBound is -1.

 */

 inv lowerBound_LTE_UpperBound:

 self.upperBound <> -1 implies self.lowerBound <= self.upperBound

 /*

 * A Characteristic's upperBound is equal to -1 or greater than 1.

 */

 inv upperBoundValid:

 self.upperBound = -1 or self.upperBound >= 1

 /*

 * A Characteristic's lowerBound is greater than or equal to zero.

 */

 inv lowerBoundValid:

 self.lowerBound >= 0

 /*

 * A Characteristic is specialized once in a generalization hierarchy.

 */

 inv specializeCharacteristicOnce:

 self.specializes <> null implies

 (let containingEntity

 = Entity.allInstances()->any(e | e.getLocalCharacteristics()

 ->includes(self)) in

 containingEntity.specializes <> null implies

 containingEntity.getAllCharacteristics()

 ->reject(c | c = self)

 ->forAll(c | c.specializes <> self.specializes)

)

 context Composition

 /*

 * Helper method that gets the contribution a Composition makes

 * to an Entity's uniqueness (type and multiplicity).

 */

 def: getIdentityContribution() : Sequence(OclAny) =

426 Open Group Standard (2017)

 Sequence{self.type,

 self.lowerBound,

 self.upperBound}

 /*

 * If a Composition specializes, its multiplicity is

 * at least as restrictive as the Composition it specializes.

 */

 inv multiplicityConsistentWithSpecialization:

 self.specializes <> null implies

 self.lowerBound >= self.specializes.lowerBound and

 upperBound_LTE(self.upperBound, self.specializes.upperBound)

 /*

 * If a Composition specializes, it specializes a Composition.

 * If Composition "A" specializes Composition "B",

 * then A's type is B's type or a specialization of B's type.

 */

 inv typeConsistentWithSpecialization:

 self.specializes <> null implies

 self.specializes.oclIsTypeOf(Composition) and

 (self.type = self.specializes.oclAsType(Composition).type or

 self.type

 .isSpecializationOf(self.specializes.oclAsType(Composition).type))

 /*

 * If a Composition specializes, its type or multiplicity is

 * different from the Composition it specializes.

 */

 inv specializationDistinct:

 self.specializes <> null and

 self.specializes.oclIsTypeOf(Composition) implies

 self.type <> self.specializes.getType() or

 self.lowerBound <> self.specializes.lowerBound or

 self.upperBound <> self.specializes.upperBound

 context Participant

 /*

 * Helper method that gets a Participant's PathNode sequence.

 */

 def: getPathSequence() : OrderedSet(PathNode) =

 self.path

 ->asOrderedSet()

 ->closure(pn : PathNode |

 let projectedParticipantPath =

 if pn.projectsParticipant() then

 pn.projectedParticipant().path

 else

 null

 endif in

 OrderedSet{projectedParticipantPath,

 pn.node}

 ->reject(oclIsUndefined()))

 /*

 * Helper method that determines if a Participant's

 * path sequence contains a cycle.

 */

 def: hasCycleInPath() : Boolean =

 self.getPathSequence()

 ->collect(getProjectedCharacteristic())

 ->includes(self)

 /*

 * Helper method that gets the element projected by a Participant.

 * Returns a ComposableElement.

 */

 def: getResolvedType() : ComposableElement =

 if self.hasCycleInPath() then

 null

FACE™ Technical Standard, Edition 3.0 427

 else if self.path = null then

 self.type

 else

 self.getPathSequence()->last().getNodeType()

 endif

 endif

 /*

 * Helper method that gets the rolename of a Participant.

 * (A Participant's rolename is either projected from a

 * characteristic or defined directly on the Participant.)

 */

 def: getRolename() : String =

 if self.rolename.size() > 0 then

 self.rolename

 else if self.path <> null and

 self.getPathSequence()->last()

 .oclIsTypeOf(CharacteristicPathNode) then

 self.getPathSequence()->last()

 .oclAsType(CharacteristicPathNode)

 .projectedCharacteristic.getRolename()

 else

 null

 endif

 endif

 /*

 * Helper method that gets the contribution a Participant makes

 * to an Entity's uniqueness (type, path sequence, and multiplicity).

 */

 def: getIdentityContribution() : Sequence(OclAny) =

 Sequence{self.type,

 self.getPathSequence()->collect(getProjectedCharacteristic()),

 self.lowerBound,

 self.upperBound}

 /*

 * Helper method that determines if a Participant's path sequence

 * is "equal" to another path sequence.

 * (A PathNode sequence "A" is "equal" a sequence "B" if

 * the projected element of each PathNode in A is the same

 * projected element of the corresponding PathNode in B.)

 */

 def: pathIsEqualTo(otherPath : OrderedSet(PathNode))

 : Boolean =

 let path = self.getPathSequence() in

 path->size() = otherPath->size() and

 Sequence{1..path->size()}->forAll(index : Integer |

 let pathNode = path->at(index) in

 let specializedPathNode = otherPath->at(index) in

 pathNode.getProjectedCharacteristic()

 = specializedPathNode.getProjectedCharacteristic())

 /*

 * Helper method that determines if a Participant's path sequence

 * correctly "specializes" another path sequence.

 * (A PathNode sequence "A" "specializes" a sequence "B" if

 * the projected element of each PathNode in A specializes the

 * projected element of the corresponding PathNode in B.)

 */

 def: pathIsSpecializationOf(specializedPath : OrderedSet(PathNode))

 : Boolean =

 let path = self.getPathSequence() in

 path->size() > 0 and

 path->size() = specializedPath->size() and

 Sequence{1..path->size()}->forAll(index : Integer |

 let pathNode = path->at(index) in

 let specializedPathNode = specializedPath->at(index) in

 pathNode.getProjectedCharacteristic()

428 Open Group Standard (2017)

 .isSpecializationOf(specializedPathNode

 .getProjectedCharacteristic()))

 /*

 * A Participant has a rolename, either projected from a

 * characteristic or defined directly on the Participant.

 */

 inv rolenameDefined:

 self.getRolename() <> null

 /*

 * If a Participant has a path sequence, the first PathNode in the sequence

 * is resolvable from the type of the Participant.

 */

 inv pathNodeResolvable:

 self.path <> null implies

 self.path.isResolvableFromEntity(self.type)

 /*

 * If a Participant specializes, its multiplicity is

 * at least as restrictive as the Participant it specializes.

 */

 inv multiplicityConsistentWithSpecialization:

 self.specializes <> null and

 self.specializes.oclIsTypeOf(Participant) implies

 let specializedParticipant = self.specializes.oclAsType(Participant) in

 self.lowerBound >= specializedParticipant.lowerBound and

 self.sourceLowerBound >= specializedParticipant.sourceLowerBound and

 upperBound_LTE(self.upperBound, specializedParticipant.upperBound) and

 upperBound_LTE(self.sourceUpperBound,

 specializedParticipant.sourceUpperBound)

 /*

 * If a Participant specializes, it specializes a Participant.

 * If Participant "A" specializes Participant "B",

 * then A's type is the same or a specialization of B's type,

 * and A's PathNode sequence is "equal to" or "specializes" B's

 * PathNode sequence (see "pathIsEqual" and

 * "pathIsSpecializationOf" helper methods).

 */

 inv typeConsistentWithSpecialization:

 self.specializes <> null and

 self.specializes.oclIsTypeOf(Participant) implies

 let specializedParticipant = self.specializes.oclAsType(Participant) in

 self.specializes.oclIsTypeOf(Participant)

 and

 (self.type = specializedParticipant.type or

 self.type.isSpecializationOf(specializedParticipant.type))

 and

 (self.pathIsEqualTo(specializedParticipant.getPathSequence()) or

 self.pathIsSpecializationOf(specializedParticipant.getPathSequence()))

 /*

 * If a Participant specializes, its type, PathNode sequence,

 * or multiplicity is different from the Participant it specializes.

 */

 inv specializationDistinct:

 self.specializes <> null and

 self.specializes.oclIsTypeOf(Participant)

 implies

 let specializedParticipant = self.specializes.oclAsType(Participant) in

 self.type <> self.specializes.getType() or

 self.pathIsSpecializationOf(specializedParticipant.getPathSequence()) or

 self.lowerBound <> self.specializes.lowerBound or

 self.upperBound <> self.specializes.upperBound or

 self.sourceLowerBound <> specializedParticipant.oclAsType(Participant)

 .sourceLowerBound or

 self.sourceUpperBound <> specializedParticipant.oclAsType(Participant)

 .sourceUpperBound

FACE™ Technical Standard, Edition 3.0 429

 context CompositeQuery

 /*

 * A QueryComposition's rolename is unique within a CompositeQuery.

 */

 inv compositionsHaveUniqueRolenames:

 self.composition->collect(rolename)

 ->isUnique(rn | rn)

 /*

 * A CompositeQuery does not compose itself.

 */

 inv noCyclesInConstruction:

 let composedQueries = self.composition

 ->collect(type)

 ->selectByKind(CompositeQuery)

 ->closure(composition

 ->collect(type)

 ->selectByKind(CompositeQuery)) in

 not composedQueries->includes(self)

 /*

 * A CompositeQuery does not compose the same View more than once.

 */

 inv viewComposedOnce:

 self.composition->collect(type)->isUnique(view | view)

 context QueryComposition

 /*

 * The rolename of a QueryComposition is a valid identifier.

 */

 inv rolenameIsValidIdentifier:

 Element::isValidIdentifier(self.rolename)

 context PathNode

 /*

 * Helper method that gets the Characteristic projected by a PathNode.

 */

 def: getProjectedCharacteristic() : Characteristic =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 self.oclAsType(CharacteristicPathNode).projectedCharacteristic

 else -- ParticipantPathNode

 self.oclAsType(ParticipantPathNode).projectedParticipant

 endif

 /*

 * Helper method that determines if a PathNode projects a Participant.

 */

 def: projectsParticipant() : Boolean =

 self.oclIsTypeOf(CharacteristicPathNode) and

 self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .oclIsTypeOf(Participant)

 /*

 * Helper method that gets the Participant projected by a PathNode.

 * Returns null if no Participant is projected.

 */

 def: projectedParticipant() : Participant =

 let pp = self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .oclAsType(Participant) in

 if not pp.oclIsInvalid() then

 pp

 else

 null

 endif

 /*

 * Helper method that gets the "node type" of a PathNode. For a

430 Open Group Standard (2017)

 * CharacteristicPathNode, the node type is the type of the projected

 * characteristic. For a ParticipantPathNode, the node type is the

 * Association containing the projected Participant.

 * Returns a ComposableElement.

 */

 def: getNodeType() : ComposableElement =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .getType()

 else

 -- get Association that contains projectedCharacteristic

 Association.allInstances()

 ->select(participant->includes(self.oclAsType(ParticipantPathNode)

 .projectedParticipant))

 ->any(true)

 endif

 /*

 * Helper method that determines if a PathNode is resolvable from a

 * given Entity.

 */

 def: isResolvableFromEntity(entity : Entity) : Boolean =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 entity.getAllCharacteristics()

 ->includes(self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic)

 else

 entity = self.oclAsType(ParticipantPathNode)

 .projectedParticipant

 .type

 endif

 /*

 * Helper method that determines if the resolved characteristic has a

 * multiplicity with upper bound greater than 1.

 */

 def: projectsAcrossCollection() : Boolean =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 let projectedCharacteristic = self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic in

 projectedCharacteristic.oclIsKindOf(Characteristic) and

 projectedCharacteristic.oclAsType(Characteristic).upperBound <> 1

 else -- ParticipantPathNode

 let projectedParticipant = self.oclAsType(ParticipantPathNode)

 .projectedParticipant in

 projectedParticipant.sourceLowerBound <> 1 or

 projectedParticipant.sourceUpperBound <> 1

 endif

 /*

 * If a CharacteristicPathNode projects a Characteristic with upper or

 * lower bounds not equal to 1, then it is the end of a PathNode sequence.

 * If a ParticipantPathNode projects a Participant with source lower or

 * upper bounds not equal to 1, then it is the end of a PathNode sequence.

 */

 inv noProjectionAcrossCollection:

 self.projectsAcrossCollection() implies

 self.node = null

 /*

 * If a PathNode "A" is not the last in a path sequence, the next PathNode

 * in the sequence is resolvable from the "node type" of A.

 */

 inv pathNodeResolvable:

 self.node <> null implies

 if self.getNodeType() = null then

 false

 else

 self.getNodeType().oclIsKindOf(Entity) and

 self.node.isResolvableFromEntity(self.getNodeType().oclAsType(Entity))

FACE™ Technical Standard, Edition 3.0 431

 endif

endpackage

J.6.5 OCL Constraints for face::datamodel::logical Package

package face::datamodel::logical

 context Element

 /*

 * Every Logical Element has a unique name,

 * with the exception of Constraints.

 */

 inv hasUniqueName:

 not self.oclIsTypeOf(Constraint) implies

 not Element.allInstances()->excluding(self)

 ->collect(name.toLowerCase())

 ->includes(self.name.toLowerCase())

 context Entity

 /*

 * Helper method that gets the Characteristics contained in an Entity.

 */

 def: getLocalCharacteristics() : Set(Characteristic) =

 if self.oclIsTypeOf(Association) then

 self.composition

 ->union(self.oclAsType(Association).participant)

 ->oclAsType(Set(Characteristic))

 else

 self.composition->oclAsType(Set(Characteristic))

 endif

 /*

 * Helper method that gets the Characteristics of an Entity,

 * including those from specialized Entities.

 */

 def: getAllCharacteristics() : Set(Characteristic) =

 let allCharacteristics : Set(Characteristic) =

 self->closure(specializes)

 ->collect(getLocalCharacteristics())

 ->asSet() in

 -- get all characteristics that have been specialized

 let specializedCharacteristics : Set(Characteristic) =

 allCharacteristics->collect(specializes)

 ->asSet() in

 -- return all characteristics that have not been specialized

 allCharacteristics - specializedCharacteristics

 /*

 * A Characteristic's rolename is unique within an Entity.

 */

 inv characteristicsHaveUniqueRolenames:

 self.getAllCharacteristics()->isUnique(rolename)

 /*

 * Compositions in a logical Entity realize Compositions in

 * the conceptual Entity that the logical Entity realizes.

 */

 inv compositionsConsistentWithRealization:

 self.composition

 ->collect(realizes)

 ->forAll(c | self.realizes.composition->exists(c2 | c = c2))

 /*

 * An Entity does not contain two Compositions that realize the same

 * conceptual Composition unless their types are different Measurements

 * and their multiplicities are equal.

 */

432 Open Group Standard (2017)

 inv realizedCompositionsHaveDifferentTypes:

 self.composition->forAll(c1, c2 | c1 <> c2 and

 c1.realizes = c2.realizes

 implies

 c1.type.oclIsTypeOf(Measurement) and

 c2.type.oclIsTypeOf(Measurement) and

 c1.type <> c2.type and

 c1.lowerBound = c2.lowerBound and

 c1.upperBound = c2.upperBound)

 /*

 * If an Entity specializes, its specialization is

 * consistent with its realization's specialization.

 */

 inv specializationConsistentWithRealization:

 self.specializes <> null implies

 self.specializes.realizes = self.realizes.specializes

 /*

 * An Entity has at least one Characteristic defined

 * locally (not through generalization), unless the

 * Entity is in the "middle" of a generalization hierarchy.

 */

 inv hasAtLeastOneLocalCharacteristic:

 let inMiddleOfGeneralizationHierarchy =

 self.specializes <> null and

 Entity.allInstances()->collect(specializes)

 ->includes(self) in

 not inMiddleOfGeneralizationHierarchy

 implies

 self.getLocalCharacteristics()->size() >= 1

 context Association

 /*

 * Participants in a logical Association realize Participants in

 * the conceptual Association that the logical Association realizes.

 */

 inv participantsConsistentWithRealization:

 self.participant

 ->collect(realizes)

 ->forAll(ae | self.realizes.oclAsType(face::datamodel::conceptual

 ::Association)

 .participant

 ->exists(ae2 | ae = ae2))

 /*

 * Participants in an Association realize unique Participants.

 */

 inv participantsRealizeUniquely:

 self.participant->forAll(p1, p2 | p1 <> p2 implies

 p1.realizes <> p2.realizes)

 context Characteristic

 /*

 * Helper method that gets the rolename of a Characteristic.

 */

 def: getRolename() : String =

 if self.oclIsKindOf(Composition) then

 self.oclAsType(Composition).rolename

 else

 self.oclAsType(Participant).getRolename()

 endif

 /*

 * Helper method that gets the type of a Characteristic.

 */

 def: getType() : ComposableElement =

 if self.oclIsTypeOf(Composition) then

 self.oclAsType(Composition).type

 else

FACE™ Technical Standard, Edition 3.0 433

 self.oclAsType(Participant).getResolvedType()

 endif

 /*

 * Helper method that gets the conceptual Characteristic a

 * logical Characteristic realizes.

 */

 def: getRealizes() : face::datamodel::conceptual::Characteristic =

 if self.oclIsTypeOf(Composition) then

 self.oclAsType(Composition).realizes

 else

 self.oclAsType(Participant).realizes

 endif

 /*

 * The rolename of a Characteristic is a valid identifier.

 */

 inv rolenameIsValidIdentifier:

 self.getRolename() <> null implies

 Element::isValidIdentifier(self.getRolename())

 /*

 * A Characteristic's lowerBound is less than or equal to its upperBound,

 * unless its upperBound is -1.

 */

 inv lowerBound_LTE_UpperBound:

 self.upperBound <> -1 implies self.lowerBound <= self.upperBound

 /*

 * A Characteristic's upperBound is equal to -1 or greater than 1.

 */

 inv upperBoundValid:

 self.upperBound = -1 or self.upperBound >= 1

 /*

 * If a Characteristic specializes, its specialization is

 * consistent with its realization's specialization.

 */

 inv specializationConsistentWithRealization:

 self.specializes <> null implies

 self.specializes.getRealizes() = self.getRealizes().specializes

 context Composition

 /*

 * A Composition's type is consistent with its realization's type.

 */

 inv typeConsistentWithRealization:

 if self.type.oclIsKindOf(Entity) then

 self.type.oclAsType(Entity).realizes = self.realizes.type

 else

 if self.type.oclIsKindOf(Measurement) then

 self.type.oclAsType(Measurement).realizes = self.realizes.type

 else

 false

 endif

 endif

 /*

 * A Composition's multiplicity is at least as

 * restrictive as the Composition it realizes.

 */

 inv multiplicityConsistentWithRealization:

 self.lowerBound >= self.realizes.lowerBound and

 if self.realizes.upperBound = -1 then

 self.upperBound >= self.realizes.upperBound

 else

 self.upperBound <= self.realizes.upperBound

 endif

 /*

 * A Composition's multiplicity is at least as

434 Open Group Standard (2017)

 * restrictive as the Composition it specialization.

 */

 inv multiplicityConsistentWithSpecialization:

 self.specializes <> null implies

 self.lowerBound >= self.specializes.lowerBound and

 if self.specializes.upperBound = -1 then

 self.upperBound >= self.specializes.upperBound

 else

 self.upperBound <= self.specializes.upperBound

 endif

 context Participant

 /*

 * Helper method that gets a Participant's PathNode sequence.

 */

 def: getPathSequence() : OrderedSet(PathNode) =

 self.path

 ->asOrderedSet()

 ->closure(pn : PathNode |

 let projectedParticipantPath =

 if pn.projectsParticipant() then

 pn.projectedParticipant().path

 else

 null

 endif in

 OrderedSet{projectedParticipantPath,

 pn.node}

 ->reject(oclIsUndefined()))

 /*

 * Helper method that determines if a Participant's

 * path sequence contains a cycle.

 */

 def: hasCycleInPath() : Boolean =

 self.getPathSequence()

 ->collect(getProjectedCharacteristic())

 ->includes(self)

 /*

 * Helper method that gets the element projected by a Participant.

 * Returns a ComposableElement.

 */

 def: getResolvedType() : ComposableElement =

 if self.hasCycleInPath() then

 null

 else if self.path = null then

 self.type

 else

 self.getPathSequence()->last().getNodeType()

 endif

 endif

 /*

 * Helper method that gets the rolename of a Participant.

 * (A Participant's rolename is either projected from a

 * characteristic or defined directly on the Participant.)

 */

 def: getRolename() : String =

 if self.rolename.size() > 0 then

 self.rolename

 else if self.path <> null and

 self.getPathSequence()->last()

 .oclIsTypeOf(CharacteristicPathNode) then

 self.getPathSequence()->last()

 .oclAsType(CharacteristicPathNode)

 .projectedCharacteristic.getRolename()

 else

 null

 endif

 endif

FACE™ Technical Standard, Edition 3.0 435

 /*

 * A Participant has a rolename, either projected from a

 * characteristic or defined directly on the Participant.

 */

 inv rolenameDefined:

 self.getRolename() <> null

 /*

 * If Participant "A" realizes Participant "B",

 * then A's type realizes B's type,

 * and A's PathNode sequence "realizes" B's PathNode sequence.

 * (A PathNode sequence "A" "realizes" a sequence "B" if

 * the projected element of each PathNode in A realizes the

 * projected element of the corresponding PathNode in B.)

 */

 inv typeConsistentWithRealization:

 self.type.realizes = self.realizes.type

 and

 self.getPathSequence()->collect(getProjectedCharacteristic()

 .getRealizes()) =

 self.realizes.getPathSequence()->collect(getProjectedCharacteristic())

 /*

 * A Participant's multiplicity is at least as

 * restrictive as the Participant it realizes.

 */

 inv multiplicityConsistentWithRealization:

 self.lowerBound >= self.realizes.lowerBound and

 if self.realizes.upperBound = -1 then

 self.upperBound >= self.realizes.upperBound

 else

 self.upperBound <= self.realizes.upperBound

 endif

 and

 self.sourceLowerBound >= self.realizes.sourceLowerBound and

 if self.realizes.sourceUpperBound = -1 then

 self.sourceUpperBound >= self.realizes.sourceUpperBound

 else

 self.sourceUpperBound <= self.realizes.sourceUpperBound

 endif

 /*

 * A Participant's multiplicity is at least as

 * restrictive as the Participant it specializes.

 */

 inv multiplicityConsistentWithSpecialization:

 (self.specializes <> null and

 self.specializes.oclIsTypeOf(Participant))

 implies

 let specializedParticipant = self.specializes.oclAsType(Participant) in

 self.lowerBound >= specializedParticipant.lowerBound and

 if specializedParticipant.upperBound = -1 then

 self.upperBound >= specializedParticipant.upperBound

 else

 self.upperBound <= specializedParticipant.upperBound

 endif

 and

 self.sourceLowerBound >= specializedParticipant.sourceLowerBound and

 if specializedParticipant.sourceUpperBound = -1 then

 self.sourceUpperBound >= specializedParticipant.sourceUpperBound

 else

 self.sourceUpperBound <= specializedParticipant.sourceUpperBound

 endif

 context View

436 Open Group Standard (2017)

 /*

 * Helper method that gets the View realized by a View.

 */

 def: getRealizes() : face::datamodel::conceptual::View =

 if self.oclIsKindOf(Query) then

 self.oclAsType(Query).realizes

 else

 self.oclAsType(CompositeQuery).realizes

 endif

 context CompositeQuery

 /*

 * A QueryComposition's rolename is unique within a CompositeQuery.

 */

 inv compositionsHaveUniqueRolenames:

 self.composition->collect(rolename)

 ->isUnique(rn | rn)

 /*

 * A CompositeQuery does not compose itself.

 */

 inv noCyclesInConstruction:

 let composedQueries = self.composition

 ->collect(type)

 ->selectByKind(CompositeQuery)

 ->closure(composition

 ->collect(type)

 ->selectByKind(CompositeQuery)) in

 not composedQueries->includes(self)

 /*

 * A CompositeQuery does not compose the same View more than once.

 */

 inv viewComposedOnce:

 self.composition->collect(type)->isUnique(view | view)

 /*

 * QueryCompositions in a logical CompositeQuery realize QueryCompositions

 * in the conceptual CompositeQuery that the logical CompositeQuery

 * realizes.

 */

 inv compositionsConsistentWithRealization:

 if self.realizes = null

 then

 self.composition->forAll(c | c.realizes = null)

 else

 self.composition->forAll(c |

 self.realizes.composition->exists(c2 | c.realizes = c2)

)

 endif

 /*

 * A CompositeQuery that realizes has the same "isUnion" property

 * as the CompositeQuery it realizes.

 */

 inv realizationUnionConsistent:

 self.realizes->forAll(realized | self.isUnion = realized.isUnion)

 /*

 * A CompositeQuery does not contain two QueryCompositions that realize the

 * same QueryComposition.

 */

 inv realizedCompositionsHaveDifferentTypes:

 self.realizes <> null implies

 self.composition->forAll(c1, c2 | c1 <> c2 implies

 c1.realizes <> c2.realizes)

 context QueryComposition

 /*

 * The rolename of a QueryComposition is a valid identifier.

FACE™ Technical Standard, Edition 3.0 437

 */

 inv rolenameIsValidIdentifier:

 Element::isValidIdentifier(self.rolename)

 /*

 * If QueryComposition "A" realizes QueryComposition "B",

 * then A's type realizes B's type.

 */

 inv typeConsistentWithRealization:

 self.realizes <> null implies

 self.type.getRealizes() = self.realizes.type

 context PathNode

 /*

 * Helper method that gets the Characteristic projected by a PathNode.

 */

 def: getProjectedCharacteristic() : Characteristic =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 self.oclAsType(CharacteristicPathNode).projectedCharacteristic

 else -- ParticipantPathNode

 self.oclAsType(ParticipantPathNode).projectedParticipant

 endif

 /*

 * Helper method that determines if a PathNode projects a Participant.

 */

 def: projectsParticipant() : Boolean =

 self.oclIsTypeOf(CharacteristicPathNode) and

 self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .oclIsTypeOf(Participant)

 /*

 * Helper method that gets the Participant projected by a PathNode.

 * Returns null if no Participant is projected.

 */

 def: projectedParticipant() : Participant =

 let pp = self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .oclAsType(Participant) in

 if not pp.oclIsInvalid() then

 pp

 else

 null

 endif

 /*

 * Helper method that gets the "node type" of a PathNode. For a

 * CharacteristicPathNode, the node type is the type of the projected

 * characteristic. For a ParticipantPathNode, the node type is the

 * Association containing the projected Participant.

 * Returns a ComposableElement.

 */

 def: getNodeType() : ComposableElement =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .getType()

 else

 -- get Association that contains projectedCharacteristic

 Association.allInstances()

 ->select(participant->includes(self.oclAsType(ParticipantPathNode)

 .projectedParticipant))

 ->any(true)

 endif

 context ValueTypeUnit

 /*

 * If a ValueTypeUnit "A" contains an EnumerationConstraint,

 * then A's valueType is an Enumerated, and the constraint's

 * allowedValues are EnumerationLabels from that Enumerated.

438 Open Group Standard (2017)

 */

 inv appropriateLabelsForEnumeratedConstraint:

 self.constraint <> null and

 self.constraint.oclIsTypeOf(EnumerationConstraint)

 implies

 self.valueType.oclIsTypeOf(Enumerated) and

 self.constraint

 .oclAsType(EnumerationConstraint)

 .allowedValue

 ->forAll(allowedValue | self.valueType

 .oclAsType(Enumerated)

 .label

 ->exists(label | label = allowedValue))

 context ValueType

 /*

 * A ValueType is named the same as its metatype.

 * (e.g. a String is named "String")

 */

 inv nameOfValueTypeMatchesNameOfMetaclass:

 self.oclIsTypeOf(Enumerated) or

 self.name = self.oclType().name

 context FixedLengthStringConstraint

 /*

 * A FixedLengthStringConstraint's length is greater than zero.

 */

 inv nonNegativeLength:

 self.length > 0

 context Enumerated

 /*

 * An Enumerated's name is not an IDL reserved word.

 */

 inv nameIsNotReservedWord:

 not Element::isReservedWord(self.name)

 /*

 * An EnumerationLabel's name is unique within an Enumerated.

 */

 inv enumerationLabelNameUnique:

 self.label->isUnique(name)

 context EnumerationLabel

 /*

 * An EnumerationLabel's name is not an IDL reserved word.

 */

 inv nameIsNotReservedWord:

 not Element::isReservedWord(self.name)

 context MeasurementSystem

 /*

 * Helper method that determines if a MeasurementSystem

 * uses an Enumerated ValueType in any of its axes.

 */

 def: hasAnEnumeratedValueType() : Boolean =

 let valueTypes: Collection(ValueType) =

 self.measurementSystemAxis.defaultValueTypeUnit.valueType in

 valueTypes->exists(vt | vt.oclIsTypeOf(Enumerated))

 /*

 * There is one MeasurementSystem that uses an Enumerated ValueType

 * in any of its axes. Its name is "AbstractDiscreteSet",

 * and it has one axis.

 */

 inv onlyOneEnumeratedMeasurementSystem:

 if self.name = 'AbstractDiscreteSetMeasurementSystem' then

 self.hasAnEnumeratedValueType() and

 self.measurementSystemAxis.defaultValueTypeUnit->size() = 1

FACE™ Technical Standard, Edition 3.0 439

 else

 not self.hasAnEnumeratedValueType()

 endif

 /*

 * If a MeasurementSystem "A" is based on CoordinateSystem "B",

 * then A and B have the same number of axes,

 * and every MeasurementSystemAxis in A is based on a unique

 * CoordinateSystemAxis in B.

 */

 inv measurementSystemConsistentWithCoordinateSystem:

 self.measurementSystemAxis->collect(axis)

 = coordinateSystem.axis->asBag()

 /*

 * A ReferencePoint in a MeasurementSystem contains ReferencePointParts

 * that use MeasurementSystemAxes used by that MeasurementSystem.

 */

 inv referencePointPartsConsistentWithAxes:

 self.referencePoint->forAll(rp |

 rp.referencePointPart->collect(axis)->forAll(rppAxis |

 rppAxis <> null implies

 self.measurementSystemAxis->exists(msa | msa = rppAxis)

)

)

 /*

 * In a MeasurementSystem, each ReferencePoints' parts use the same

 * set of VTUs as the MeasurementSystem's axes.

 */

 inv referencePointPartsCoverAllAxes:

 self.referencePoint->forAll(rp |

 rp.referencePointPart->collect(valueTypeUnit)

 = self.measurementSystemAxis->collect(defaultValueTypeUnit)

)

 /*

 * If a MeasurementSystem has ReferencePoints, then it has

 * at least as many ReferencePoints as it has axes.

 */

 inv hasSufficientReferencePoints:

 self.referencePoint->notEmpty() implies

 self.referencePoint->size() >= self.measurementSystemAxis->size()

 context ReferencePoint

 /*

 * If two ReferencePointParts in a ReferencePoint refer to the same

 * VTU, then they refer to distinct (non-null) axes.

 */

 inv noAmbiguousVTUReference:

 let allVTUs = self.referencePointPart->collect(valueTypeUnit) in

 let vtusUsedMoreThanOnce = allVTUs->reject(vtu |

 allVTUs->count(vtu) = 1) in

 vtusUsedMoreThanOnce->forAll(vtu |

 let rppsThatUseTheVTU

 = self.referencePointPart

 ->select(rpp |

 vtusUsedMoreThanOnce->includes(rpp.valueTypeUnit)) in

 rppsThatUseTheVTU->forAll(rpp | rpp.axis <> null) and

 rppsThatUseTheVTU->collect(axis)

 ->asSet()

 ->size() = rppsThatUseTheVTU->collect(axis)->size()

)

 context Measurement

 /*

 * Helper method that determines if a Measurement

 * uses an Enumerated ValueType in any of its axes.

 */

440 Open Group Standard (2017)

 def: hasAnEnumeratedValueType() : Boolean =

 let valueTypes: Collection(ValueType) =

 self.measurementAxis.valueTypeUnit.valueType in

 valueTypes->exists(vt | vt.oclIsTypeOf(Enumerated))

 /*

 * Helper method that determines if a Measurement is

 * based on a StandardMeasurementSystem.

 */

 def: isStandardMeasurement() : Boolean =

 self.measurementSystem.oclIsTypeOf(StandardMeasurementSystem)

 /*

 * A Measurement that uses an Enumerated ValueType in any of its axes

 * is based on the 'AbstractDiscreteSet' MeasurementSystem.

 */

 inv enumeratedMeasurementUsesEnumeratedMeasurementSystem:

 if self.hasAnEnumeratedValueType() then

 self.measurementSystem.name = 'AbstractDiscreteSetMeasurementSystem'

 else

 self.measurementSystem.name <> 'AbstractDiscreteSetMeasurementSystem'

 endif

 /*

 * If a Measurement "A" is based on MeasurementSystem "B",

 * then A and B have the same number of axes,

 * and every MeasurementAxis in A is based on a unique

 * MeasurementSystemAxis in B.

 * If a Measurement is based on a StandardMeasurementSystem,

 * then it has no axes.

 */

 inv measurementConsistentWithMeasurementSystem:

 if self.isStandardMeasurement() then

 self.measurementAxis->isEmpty()

 else

 self.measurementAxis->collect(measurementSystemAxis)

 = self.measurementSystem.oclAsType(MeasurementSystem)

 .measurementSystemAxis->asBag()

 endif

 /*

 * A Measurement does not use itself as a MeasurementAttribute.

 */

 inv noCyclesInMeasurements:

 not self.attribute.type->closure(attribute.type)->includes(self)

 /*

 * A Measurement's attributes have unique rolenames.

 */

 inv measurementAttributesHaveUniqueRolenames:

 self.attribute->isUnique(rolename)

 context MeasurementAxis

 /*

 * Helper method that gets the ValueTypeUnits used in a MeasurementAxis.

 */

 def: getValueTypeUnits() : Set(ValueTypeUnit) =

 if self.valueTypeUnit->isEmpty() then

 self.measurementSystemAxis.defaultValueTypeUnit

 else

 -- the MeasurementSystem's default ValueTypeUnit is overridden

 self.valueTypeUnit

 endif

endpackage

J.6.6 OCL Constraints for face::datamodel::platform Package

package face::datamodel::platform

FACE™ Technical Standard, Edition 3.0 441

 context Element

 /*

 * All Platform Elements have a unique name.

 */

 inv hasUniqueName:

 not Element.allInstances()->excluding(self)

 ->collect(name.toLowerCase())

 ->includes(self.name.toLowerCase())

 /*

 * A Platform Element's name is not an IDL reserved word.

 */

 inv nameIsNotReservedWord:

 not Element::isReservedWord(self.name)

 context Entity

 /*

 * Helper method that gets the Characteristics contained in an Entity.

 * (Platform Characteristics are ordered with Participants first,

 * then Compositions.)

 */

 def: getLocalCharacteristics() : OrderedSet(Characteristic) =

 if self.oclIsTypeOf(Association) and not self.oclAsType(Association)

 .participant

 ->isEmpty() then

 self.oclAsType(Association)

 .participant

 ->iterate(c : Characteristic;

 acc : OrderedSet(Characteristic) = self.composition |

 acc->append(c))

 else

 self.composition

 endif

 /*

 * Helper method that gets the Characteristics of an Entity,

 * including those from specialized Entities.

 * (Platform Characteristics are ordered with the Characteristics

 * of the "top-most" Entity in a generalization hierarchy first,

 * then the "second-top-most", etc.)

 */

 def: getAllCharacteristics() : OrderedSet(Characteristic) =

 let allCharacteristics : OrderedSet(Characteristic) =

 self->asOrderedSet()

 ->closure(specializes)

 ->collect(getLocalCharacteristics())

 ->asOrderedSet() in

 -- get all characteristics that have been specialized

 let specializedCharacteristics : OrderedSet(Characteristic) =

 allCharacteristics->collect(specializes)

 ->asOrderedSet() in

 -- return all characteristics that have not been specialized

 specializedCharacteristics->iterate(c : Characteristic;

 acc : OrderedSet(Characteristic)

 = allCharacteristics |

 acc->excluding(c))

 /*

 * A Characteristic's rolename is unique within an Entity.

 */

 inv characteristicsHaveUniqueRolenames:

 self.getAllCharacteristics()->isUnique(rolename)

 /*

 * Compositions in a platform Entity realize Compositions in

 * the logical Entity that the platform Entity realizes.

 */

 inv compositionsConsistentWithRealization:

 self.composition

442 Open Group Standard (2017)

 ->collect(realizes)

 ->forAll(c | self.realizes.composition->exists(c2 | c = c2))

 /*

 * An Entity does not contain two Compositions that realize the same

 * logical Composition unless their types are different IDLTypes

 * and their multiplicities are equal.

 */

 inv realizedCompositionsHaveDifferentTypes:

 self.composition->forAll(c1, c2 | c1 <> c2 and

 c1.realizes = c2.realizes

 implies

 c1.type.oclIsKindOf(IDLType) and

 c2.type.oclIsKindOf(IDLType) and

 c1.type <> c2.type and

 c1.lowerBound = c2.lowerBound and

 c1.upperBound = c2.upperBound)

 /*

 * If an Entity specializes, its specialization is

 * consistent with its realization's specialization.

 */

 inv specializationConsistentWithRealization:

 self.specializes <> null implies

 self.specializes.realizes = self.realizes.specializes

 /*

 * An Entity has at least one Characteristic defined

 * locally (not through generalization), unless the

 * Entity is in the "middle" of a generalization hierarchy.

 */

 inv hasAtLeastOneLocalCharacteristic:

 not (self.specializes <> null

 or

 Entity.allInstances()->collect(specializes)

 ->includes(self))

 implies

 self.getLocalCharacteristics()->size() >= 1

 context Association

 /*

 * Participants in a logical Association realize Participants in

 * the conceptual Association that the logical Association realizes.

 */

 inv participantsConsistentWithRealization:

 self.participant

 ->collect(realizes)

 ->forAll(ae | self.realizes.oclAsType(face::datamodel::logical

 ::Association)

 .participant

 ->exists(ae2 | ae = ae2))

 /*

 * Participants in an Association realize unique Participants.

 */

 inv participantsRealizeUniquely:

 self.participant->forAll(p1, p2 | p1 <> p2 implies

 p1.realizes <> p2.realizes

)

 context Characteristic

 /*

 * Helper method that gets the rolename of a Characteristic.

 */

 def: getRolename() : String =

 if self.oclIsKindOf(Composition) then

 self.oclAsType(Composition).rolename

 else

 self.oclAsType(Participant).getRolename()

 endif

FACE™ Technical Standard, Edition 3.0 443

 /*

 * Helper method that gets the type of a Characteristic.

 */

 def: getType() : ComposableElement =

 if self.oclIsTypeOf(Composition) then

 self.oclAsType(Composition).type

 else

 self.oclAsType(Participant).getResolvedType()

 endif

 /*

 * Helper method that gets the conceptual Characteristic a

 * logical Characteristic realizes.

 */

 def: getRealizes() : face::datamodel::logical::Characteristic =

 if self.oclIsTypeOf(Composition) then

 self.oclAsType(Composition).realizes

 else

 self.oclAsType(Participant).realizes

 endif

 /*

 * The rolename of a Characteristic is a valid identifier.

 */

 inv rolenameIsValidIdentifier:

 self.getRolename() <> null implies

 Element::isValidIdentifier(self.getRolename())

 /*

 * The rolename of a Characteristic is not an IDL reserved word.

 */

 inv rolenameIsNotReservedWord:

 self.getRolename() <> null implies

 (not Element::isReservedWord(self.getRolename()))

 /*

 * A Characteristic's lowerBound is less than or equal to its upperBound,

 * unless its upperBound is -1.

 */

 inv lowerBound_LTE_UpperBound:

 self.upperBound <> -1 implies self.lowerBound <= self.upperBound

 /*

 * A Characteristic's upperBound is equal to -1 or greater than 1.

 */

 inv upperBoundValid:

 self.upperBound = -1 or self.upperBound >= 1

 /*

 * If a Characteristic specializes, its specialization is

 * consistent with its realization's specialization.

 */

 inv specializationConsistentWithRealization:

 self.specializes <> null implies

 self.specializes.getRealizes() = self.getRealizes().specializes

 context Composition

 /*

 * A Composition's type is consistent with its realization's type.

 */

 inv typeConsistentWithRealization:

 if self.type.oclIsKindOf(Entity) then

 self.type.oclAsType(Entity).realizes = self.realizes.type

 else

 if self.type.oclIsKindOf(IDLType) then

 self.type.oclAsType(IDLType).realizes = self.realizes.type

 else

 false

 endif

 endif

444 Open Group Standard (2017)

 /*

 * A Composition's multiplicity is at least as

 * restrictive as the Composition it realizes.

 */

 inv multiplicityConsistentWithRealization:

 self.lowerBound >= self.realizes.lowerBound and

 if self.realizes.upperBound = -1 then

 self.upperBound >= self.realizes.upperBound

 else

 self.upperBound <= self.realizes.upperBound

 endif

 /*

 * A Composition's multiplicity is at least as

 * restrictive as the Composition it specialization.

 */

 inv multiplicityConsistentWithSpecialization:

 self.specializes <> null implies

 self.lowerBound >= self.specializes.lowerBound and

 if self.specializes.upperBound = -1 then

 self.upperBound >= self.specializes.upperBound

 else

 self.upperBound <= self.specializes.upperBound

 endif

 /*

 * A Composition whose type is an IDLNumber has

 * its precision greater than zero.

 */

 inv composedIDLNumberHasPrecisionSet:

 self.type.oclIsKindOf(IDLNumber)

 implies

 self.precision > 0

 context Participant

 /*

 * Helper method that gets a Participant's PathNode sequence.

 */

 def: getPathSequence() : OrderedSet(PathNode) =

 self.path

 ->asOrderedSet()

 ->closure(pn : PathNode |

 let projectedParticipantPath =

 if pn.projectsParticipant() then

 pn.projectedParticipant().path

 else

 null

 endif in

 OrderedSet{projectedParticipantPath,

 pn.node}

 ->reject(oclIsUndefined()))

 /*

 * Helper method that determines if a Participant's

 * path sequence contains a cycle.

 */

 def: hasCycleInPath() : Boolean =

 self.getPathSequence()

 ->collect(getProjectedCharacteristic())

 ->includes(self)

 /*

 * Helper method that gets the element projected by a Participant.

 * Returns a ComposableElement.

 */

 def: getResolvedType() : ComposableElement =

 if self.hasCycleInPath() then

 null

 else if self.path = null then

 self.type

FACE™ Technical Standard, Edition 3.0 445

 else

 self.getPathSequence()->last().getNodeType()

 endif

 endif

 /*

 * Helper method that gets the rolename of a Participant.

 * (A Participant's rolename is either projected from a

 * characteristic or defined directly on the Participant.)

 */

 def: getRolename() : String =

 if self.rolename.size() > 0 then

 self.rolename

 else if self.path <> null and

 self.getPathSequence()->last()

 .oclIsTypeOf(CharacteristicPathNode) then

 self.getPathSequence()->last()

 .oclAsType(CharacteristicPathNode)

 .projectedCharacteristic.getRolename()

 else

 null

 endif

 endif

 /*

 * A Participant has a rolename, either projected from a

 * characteristic or defined directly on the Participant.

 */

 inv rolenameDefined:

 self.getRolename() <> null

 /*

 * If Participant "A" realizes Participant "B",

 * then A's type realizes B's type,

 * and A's PathNode sequence "realizes" B's PathNode sequence.

 * (A PathNode sequence "A" "realizes" a sequence "B" if

 * the projected element of each PathNode in A realizes the

 * projected element of the corresponding PathNode in B.)

 */

 inv typeConsistentWithRealization:

 self.type.realizes = self.realizes.type

 and

 self.getPathSequence()->collect(getProjectedCharacteristic()

 .getRealizes()) =

 self.realizes.getPathSequence()->collect(getProjectedCharacteristic())

 /*

 * A Participant's multiplicity is at least as

 * restrictive as the Participant it realizes.

 */

 inv multiplicityConsistentWithRealization:

 self.lowerBound >= self.realizes.lowerBound and

 if self.realizes.upperBound = -1 then

 self.upperBound >= self.realizes.upperBound

 else

 self.upperBound <= self.realizes.upperBound

 endif

 and

 self.sourceLowerBound >= self.realizes.sourceLowerBound and

 if self.realizes.sourceUpperBound = -1 then

 self.sourceUpperBound >= self.realizes.sourceUpperBound

 else

 self.sourceUpperBound <= self.realizes.sourceUpperBound

 endif

 /*

 * A Participant's multiplicity is at least as

 * restrictive as the Participant it specializes.

 */

446 Open Group Standard (2017)

 inv multiplicityConsistentWithSpecialization:

 self.specializes <> null and

 self.specializes.oclIsTypeOf(Participant)

 implies

 let specializedParticipant = self.specializes.oclAsType(Participant) in

 self.lowerBound >= specializedParticipant.lowerBound and

 if specializedParticipant.upperBound = -1 then

 self.upperBound >= specializedParticipant.upperBound

 else

 self.upperBound <= specializedParticipant.upperBound

 endif

 and

 self.sourceLowerBound >= specializedParticipant.sourceLowerBound and

 if specializedParticipant.sourceUpperBound = -1 then

 self.sourceUpperBound >= specializedParticipant.sourceUpperBound

 else

 self.sourceUpperBound <= specializedParticipant.sourceUpperBound

 endif

 context Template

 /*

 * Helper method that determines if a Template is an

 * Equivalent Entity Template.

 */

 def: isEquivalentEntityTemplate() : Boolean =

 self.specification.replaceAll('[^<]','').size() > 0

 /*

 * A Template whose main_template_method_decl is a

 * main_equivalent_entity_type_template_method_decl

 * does not have its boundQuery or effectiveQuery set.

 * Any other Template has its boundQuery set.

 */

 inv equivalentEntityTemplateHasNoQuery:

 if self.isEquivalentEntityTemplate() then

 (self.boundQuery = null and

 self.effectiveQuery = null)

 else

 self.boundQuery <> null

 endif

 context CompositeTemplate

 /*

 * A TemplateComposition's rolename is unique within a CompositeTemplate.

 */

 inv compositionsHaveUniqueRolenames:

 self.composition->collect(rolename)

 ->isUnique(rn | rn)

 /*

 * A CompositeTemplate does not compose itself.

 */

 inv noCyclesInConstruction:

 let composedTemplates = self.composition

 ->collect(type)

 ->selectByKind(CompositeTemplate)

 ->closure(composition

 ->collect(type)

 ->selectByKind(CompositeTemplate)) in

 not composedTemplates->includes(self)

 /*

 * A CompositeTemplate does not compose the same Template more than once.

 */

 inv viewComposedOnce:

FACE™ Technical Standard, Edition 3.0 447

 self.composition->collect(type)->isUnique(view | view)

 /*

 * TemplateCompositions in a platform CompositeTemplate realize

 * QueryCompositions in the logical CompositeQuery that the platform

 * CompositeTemplate realizes.

 */

 inv compositionsConsistentWithRealization:

 if self.realizes = null

 then

 self.composition->forAll(c | c.realizes = null)

 else

 self.composition->forAll(c |

 self.realizes.composition->exists(c2 | c.realizes = c2)

)

 endif

 /*

 * A CompositeTemplate that realizes has the same "isUnion" property

 * as the CompositeQuery it realizes.

 */

 inv realizationUnionConsistent:

 self.realizes->forAll(realized | self.isUnion = realized.isUnion)

 /*

 * A CompositeTemplate does not contain two TemplateCompositions

 * that realize the same QueryComposition.

 */

 inv realizedCompositionsHaveDifferentTypes:

 self.realizes <> null implies

 self.composition->forAll(c1, c2 | c1 <> c2 implies

 c1.realizes <> c2.realizes)

 context TemplateComposition

 /*

 * The rolename of a TemplateComposition is a valid identifier.

 */

 inv rolenameIsValidIdentifier:

 Element::isValidIdentifier(self.rolename)

 /*

 * The rolename of a TemplateComposition is not an IDL reserved word.

 */

 inv rolenameIsNotReservedWord:

 not Element::isReservedWord(self.rolename)

 /*

 * If TemplateComposition "A" realizes QueryComposition "B", then

 * if A's type is a CompositeTemplate, then A's type realizes B's type, and

 * if A's type is a Template and defines an effectiveQuery,

 * then A's type's effectiveQuery realizes B's type.

 */

 inv typeConsistentWithRealization:

 self.realizes <> null implies

 if self.type.oclIsTypeOf(CompositeTemplate) then

 self.type.oclAsType(CompositeTemplate).realizes

 = self.realizes.type

 else

 self.type.oclAsType(Template).effectiveQuery <> null

 implies

 self.type.oclAsType(Template).effectiveQuery.realizes

 = self.realizes.type

 endif

 context PathNode

 /*

 * Helper method that gets the Characteristic projected by a PathNode.

 */

 def: getProjectedCharacteristic() : Characteristic =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 self.oclAsType(CharacteristicPathNode).projectedCharacteristic

448 Open Group Standard (2017)

 else -- ParticipantPathNode

 self.oclAsType(ParticipantPathNode).projectedParticipant

 endif

 /*

 * Helper method that determines if a PathNode projects a Participant.

 */

 def: projectsParticipant() : Boolean =

 self.oclIsTypeOf(CharacteristicPathNode) and

 self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .oclIsTypeOf(Participant)

 /*

 * Helper method that gets the Participant projected by a PathNode.

 * Returns null if no Participant is projected.

 */

 def: projectedParticipant() : Participant =

 let pp = self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .oclAsType(Participant) in

 if not pp.oclIsInvalid() then

 pp

 else

 null

 endif

 /*

 * Helper method that gets the "node type" of a PathNode. For a

 * CharacteristicPathNode, the node type is the type of the projected

 * characteristic. For a ParticipantPathNode, the node type is the

 * Association containing the projected Participant.

 * Returns a ComposableElement.

 */

 def: getNodeType() : ComposableElement =

 if self.oclIsTypeOf(CharacteristicPathNode) then

 self.oclAsType(CharacteristicPathNode)

 .projectedCharacteristic

 .getType()

 else

 -- get Association that contains projectedCharacteristic

 Association.allInstances()

 ->select(participant->includes(self.oclAsType(ParticipantPathNode)

 .projectedParticipant))

 ->any(true)

 endif

 context IDLType

 /*

 * Helper method that determines if an IDLType realizes a MeasurementAxis.

 */

 def: realizesMeasurementAxis() : Boolean =

 self.realizes.oclIsTypeOf(face::datamodel::logical::MeasurementAxis)

 /*

 * Helper method that gets the MeasurementAxis realized by an IDLType.

 * Returns null if the IDLType does not realize a MeasurementAxis.

 */

 def: realizedMeasurementAxis() : face::datamodel::logical

 ::MeasurementAxis =

 if self.realizesMeasurementAxis() then

 self.realizes.oclAsType(face::datamodel::logical::MeasurementAxis)

 else

 null

 endif

 /*

 * Helper method that determines if an IDLType realizes a Measurement.

 */

 def: realizesMeasurement() : Boolean =

FACE™ Technical Standard, Edition 3.0 449

 self.realizes.oclIsTypeOf(face::datamodel::logical::Measurement)

 /*

 * Helper method that gets the Measurement realized by an IDLType.

 * Returns null if the IDLType does not realize a Measurement.

 */

 def: realizedMeasurement() : face::datamodel::logical::Measurement =

 if self.realizesMeasurement() then

 self.realizes.oclAsType(face::datamodel::logical::Measurement)

 else

 null

 endif

 /*

 * A ValueTypeUnit is realized by an IDLPrimitive.

 */

 inv vtuRealizedByIDLPrimitive:

 self.realizes.oclIsTypeOf(face::datamodel::logical::ValueTypeUnit)

 implies

 self.oclIsKindOf(IDLPrimitive)

 /*

 * An IDLArray or IDLSequence realizes a

 * Measurement based on a StandardMeasurementSystem.

 */

 inv idlCollectionRealizesStandardMeasurement:

 self.oclIsTypeOf(IDLSequence) or self.oclIsTypeOf(IDLArray)

 implies

 self.realizesMeasurement() and

 self.realizedMeasurement().isStandardMeasurement()

 /*

 * If a MeasurementAxis has one ValueTypeUnit (VTU), then

 * it is realized by an IDLPrimitive; if it has multiple VTUs, then

 * it is realized by an IDLStruct with one IDLComposition per VTU.

 * If IDLStruct "A" realizes MeasurementAxis "B",

 * then A has the same number of IDLCompositions as B has VTUs,

 * and every IDLComposition in A realizes a unique VTU in V.

 */

 inv idlTypeConsistentlyRealizesMeasurementAxis:

 self.realizesMeasurementAxis()

 implies

 if self.realizedMeasurementAxis().getValueTypeUnits()->size() = 1 then

 self.oclIsKindOf(IDLPrimitive)

 else

 self.oclIsTypeOf(IDLStruct) and

 self.realizedMeasurementAxis().getValueTypeUnits()->asBag()

 = self.oclAsType(IDLStruct).composition

 ->collect(type.realizes)

 ->asBag()

 endif

 /*

 * A Measurement is realized by an IDLStruct with one IDLComposition

 * per MeasurementAxis. (Each IDLComposition's type realizes a unique axis

 * in the Measurement; every axis is realized.)

 * There are two exceptions:

 * - If a Measurement has one axis with one ValueTypeUnit (VTU)

 * and no MeasurementAttributes, it is realized by an IDLPrimitive.

 * - If a Measurement has one axis with multiple VTUs

 * and no MeasurementAttributes, it is realized by an IDLStruct

 * with one IDLComposition for each VTU in the axis.

 * (Each IDLComposition's type realizes a unique VTU in the axis;

 * every VTU is realized.) Each IDLComposition's type is consistent

 * with the type of the VTU it realizes.

 */

 inv idlTypeConsistentlyRealizesMeasurement:

 self.realizesMeasurement() and

 not self.realizedMeasurement().isStandardMeasurement()

450 Open Group Standard (2017)

 implies

 let realizedAxes = self.realizedMeasurement().measurementAxis in

 if realizedAxes->collect(getValueTypeUnits())->size() = 1 and

 self.realizedMeasurement().attribute->size() = 0 then

 self.oclIsKindOf(IDLPrimitive)

 else if realizedAxes->size() = 1 and

 self.realizedMeasurement().attribute->size() = 0 then

 realizedAxes->collect(getValueTypeUnits())

 = self.oclAsType(IDLStruct).composition->select(realizes = null)

 ->collect(type.realizes)

 ->asBag()

 else

 realizedAxes->asBag()

 = self.oclAsType(IDLStruct).composition->select(realizes = null)

 ->collect(type.realizes)

 ->asBag()

 endif

 endif

 context IDLStruct

 /*

 * A Measurement with MeasurementAttributes is realized by an IDLStruct

 * with one IDLComposition per MeasurementAttribute. (Each IDLComposition

 * (that realizes) realizes a unique attribute in the Measurement;

 * every attribute is realized.)

 */

 inv idlCompositionsConsistentlyRealizeMeasurementAttributes:

 self.realizesMeasurement()

 implies

 self.composition->collect(realizes)->reject(oclIsUndefined())->asBag()

 = self.realizedMeasurement().attribute->asBag()

 context IDLComposition

 /*

 * If an IDLComposition realizes a MeasurementAttribute, then

 * the IDLComposition's type is consistent with its realization's type.

 */

 inv typeConsistentWithRealization:

 self.realizes <> null implies

 self.type.oclAsType(IDLType).realizes = self.realizes.type

 /*

 * An IDLComposition whose type is an IDLNumber has

 * a precision greater than zero.

 */

 inv composedIDLNumberHasPrecisionSet:

 self.type <> null and self.type.oclIsKindOf(IDLNumber)

 implies

 self.precision > 0

endpackage

J.6.7 OCL Constraints for face::uop Package

package face::uop

 context Element

 /*

 * All UoP Elements have a unique name.

 */

 inv hasUniqueName:

 not Element.allInstances()->excluding(self)

 ->collect(name)

 ->includes(self.name)

FACE™ Technical Standard, Edition 3.0 451

 context Connection

 /*

 * Helper method that gets the Views associated with a Connection.

 */

 def: getViews() : Set(face::datamodel::platform::View) =

 if self.oclIsKindOf(PubSubConnection) then

 self.oclAsType(PubSubConnection).messageType.oclAsSet()

 else -- self.oclIsTypeOf(ClientServerConnection)

 self.oclAsType(ClientServerConnection).requestType

 ->including(self.oclAsType(ClientServerConnection).responseType)

 endif

 /*

 * If a Connection realizes an AbstractConnection,

 * its requestType or responseType or both (for ClientServerConnections) or

 * its messageType (for PubSubConnections) realizes either the

 * AbstractConnection's logicalView or a logical View that realizes the

 * AbstractConnection's conceptualView.

 */

 inv realizationTypeConsistent:

 self.realizes <> null implies

 self.getViews()->exists(view |

 if view.oclIsTypeOf(face::datamodel::platform::CompositeTemplate) then

 let cTemplate

 = view.oclAsType(face::datamodel::platform::CompositeTemplate) in

 if self.realizes.logicalView <> null then

 cTemplate.realizes <> null and

 cTemplate.realizes = self.realizes.logicalView

 else -- self.realizes.conceptualView <> null

 cTemplate.realizes <> null and

 cTemplate.realizes.realizes <> null and

 cTemplate.realizes.realizes = self.realizes.conceptualView

 endif

 else -- self.requestType.oclIsTypeOf(Template)

 let lbTemplate = view.oclAsType(face::datamodel::platform::Template) in

 lbTemplate.effectiveQuery <> null implies

 if self.realizes.logicalView <> null then

 lbTemplate.effectiveQuery.realizes <> null and

 lbTemplate.effectiveQuery.realizes = self.realizes.logicalView

 else -- self.realizes.conceptualView <> null

 lbTemplate.effectiveQuery.realizes <> null and

 lbTemplate.effectiveQuery.realizes.realizes <> null and

 lbTemplate.effectiveQuery.realizes.realizes

 = self.realizes.conceptualView

 endif

 endif

)

 context QueuingConnection

 /*

 * A QueuingConnection's queue depth is greater than zero.

 */

 inv depthValid:

 self.depth > 0

 context AbstractUoP

 /*

 * An AbstractUoP is entirely logical or entirely conceptual.

 * (Its AbstractConnections all have their logicalView set and

 * conceptualView not set or all have their conceptualView set and

 * logicalView not set.)

 */

 inv onlyLogicalOrOnlyConceptual:

 self.connection->collect(logicalView)->forAll(lv | lv <> null) xor

 self.connection->collect(conceptualView)->forAll(cv | cv <> null)

452 Open Group Standard (2017)

 context UnitOfPortability

 /*

 * If a UoP "A" realizes an AbstractUoP "B", then A and B

 * have the same number of connections, and every Connection in A

 * realizes a unique AbstractConnection in B.

 * If a UoP does not realize an AbstractUoP, none of its Connections

 * realize.

 */

 inv connectionsConsistentWithUoPRealization:

 if self.realizes <> null then

 self.connection.realizes = self.realizes.connection->asBag()

 else

 self.connection.realizes->forAll(ac | ac = null)

 endif

endpackage

J.6.8 OCL Constraints for face::integration Package

package face::integration

 context Element

 /*

 * All Integration Elements have a unique name.

 */

 inv hasUniqueName:

 not Element.allInstances()->excluding(self)

 ->collect(name.toLowerCase())

 ->includes(self.name.toLowerCase())

 context UoPInstance

 /*

 * If a UoPInstance "A" realizes an UoP "B", then A has one unique

 * UoPEndPoint that realizes each of B's PubSubConnections, one unique

 * UoPInputEndPoint that realizes each of B's ClientServerConnections,

 * and one UoPOutputEndPoint that realizes each of B's

 * ClientServerConnections. A has no additional UoPEndPoints.

 */

 inv endPointsConsistentWithRealization:

 self.output->union(self.input)->collect(connection)

 = self.realizes.connection->asBag()

 ->union(self.realizes

 .connection

 ->asBag()

 ->selectByKind(face::uop::ClientServerConnection))

 and

 self.output->collect(connection)

 ->selectByKind(face::uop::ClientServerConnection)

 = self.input->collect(connection)

 ->selectByKind(face::uop::ClientServerConnection)

 context TSNodePortBase

 /*

 * Helper method that gets the TransportNode containing a given

 * TSNodePortBase

 */

 def: getParentTransportNode() : TransportNode =

 TransportNode.allInstances()->select(tn | tn.inPort->includes(self) or

 tn.outPort->includes(self))

 ->any(true)

 /*

 * Helper method that gets the View used by a TSNodePortBase.

 * If a UoPInputEndPoint's connection is a ClientServerConnection, then

 * its View is the connection's responseType.

 * If a UoPOutputEndPoint's connection is a ClientServerConnection, then

 * its View is the connection's requestType.

FACE™ Technical Standard, Edition 3.0 453

 */

 def: getView() : face::datamodel::platform::View =

 if self.oclIsKindOf(TSNodePort) then

 self.oclAsType(TSNodePort).view

 else -- self.oclIsKindOf(UoPEndPoint)

 let uopConnection = self.oclAsType(UoPEndPoint).connection in

 if uopConnection.oclIsKindOf(face::uop::PubSubConnection) then

 uopConnection.oclAsType(face::uop::PubSubConnection).messageType

 else -- uopConnection.oclIsTypeOf(face::uop::ClientServerConnection)

 let clientServerConnection =

 uopConnection.oclAsType(face::uop::ClientServerConnection) in

 if self.oclIsTypeOf(UoPInputEndPoint) then

 clientServerConnection.responseType

 else

 clientServerConnection.requestType

 endif

 endif

 endif

 /*

 * A TSNodePortBase is connected by a TSNodeConnection.

 */

 inv isConnected:

 TSNodeConnection.allInstances()->collect(source)->union(

 TSNodeConnection.allInstances()->collect(destination))->includes(self)

 context TSNodeConnection

 /*

 * A TSNodeConnection uses the same View on its source and destination.

 */

 inv sourceViewMatchesDestinationView:

 self.source.getView() = self.destination.getView()

 /*

 * A TSNodeConnection's source is an output.

 */

 inv sourceIsOutput:

 self.source.oclIsTypeOf(UoPOutputEndPoint) or

 self.source.oclIsTypeOf(TSNodeOutputPort)

 /*

 * A TSNodeConnection's destination is an input.

 */

 inv destinationIsInput:

 self.destination.oclIsTypeOf(UoPInputEndPoint) or

 self.destination.oclIsTypeOf(TSNodeInputPort)

 /*

 * A TSNodeConnection connects TransportNodes that

 * are in the same IntegrationContext as the TSNodeConnection.

 */

 inv connectWithinSameContext:

 let parentContext

 = IntegrationContext.allInstances()->any(x | x.connection

 ->includes(self)) in

 let ports = parentContext.node->collect(inPort)->union(

 parentContext.node->collect(outPort)) in

 (self.source.oclIsKindOf(TSNodePort)

 implies

 ports->includes(self.source))

 and

 (self.destination.oclIsKindOf(TSNodePort)

 implies

 ports->includes(self.destination))

 /*

 * There is at least one ViewTransporter on a path

 * between any two UoPInstances.

454 Open Group Standard (2017)

 */

 inv transporterOnPath:

 self.destination.oclIsTypeOf(UoPInputEndPoint)

 implies

 self.source.oclIsTypeOf(TSNodeOutputPort) and

 self.source.getParentTransportNode()

 ->closure(getPreviousNodes())

 ->exists(n | n.oclIsTypeOf(ViewTransporter) or

 n.oclIsTypeOf(ViewSource))

 context TSNodeInputPort

 /*

 * A TSNodeInputPort is the destination of at most one TSNodeConnection.

 */

 inv onlyOneConnection:

 TSNodeConnection.allInstances()

 ->select(x | x.destination = self)->size() <= 1

 context UoPInputEndPoint

 /*

 * A UoPInputEndPoint's connection is either a ClientServerConnection

 * or a PubSubConnection whose messageExchangeType is InboundMessage.

 */

 inv uoPEndPointConsistentWithRealization:

 self.connection.oclIsTypeOf(face::uop::ClientServerConnection)

 or

 (self.connection.oclIsKindOf(face::uop::PubSubConnection) and

 self.connection.oclAsType(face::uop::PubSubConnection)

 .messageExchangeType

 = face::uop::MessageExchangeType::InboundMessage)

 /*

 * A UoPInputEndPoint is the destination of at most one TSNodeConnection.

 */

 inv onlyOneConnection:

 TSNodeConnection.allInstances()

 ->select(x | x.destination = self)->size() <= 1

 context UoPOutputEndPoint

 /*

 * A UoPInputEndPoint's connection is either a ClientServerConnection

 * or a PubSubConnection whose messageExchangeType is OutboundMessage.

 */

 inv uoPEndPointConsistentWithRealization:

 self.connection.oclIsTypeOf(face::uop::ClientServerConnection)

 or

 (self.connection.oclIsKindOf(face::uop::PubSubConnection) and

 self.connection.oclAsType(face::uop::PubSubConnection)

 .messageExchangeType

 = face::uop::MessageExchangeType::OutboundMessage)

 context TransportNode

 /*

 * Helper method that gets the set of TransportNodes that are

 * "upstream" from a given TransportNode.

 */

 def: getPreviousNodes() : Set(TransportNode) =

 TSNodeConnection.allInstances()

 ->select(c | self.outPort->includes(c.destination))

 ->collect(source)

 ->selectByKind(TSNodeOutputPort)

 ->collect(getParentTransportNode())

 ->asSet()

 /*

 * Helper method that gets the set of TransportNodes that are

 * "downstream" from a given TransportNode.

 */

FACE™ Technical Standard, Edition 3.0 455

 def: getNextNodes() : Set(TransportNode) =

 TSNodeConnection.allInstances()

 ->select(c | self.outPort->includes(c.source))

 ->collect(destination)

 ->selectByKind(TSNodeInputPort)

 ->collect(getParentTransportNode())

 ->asSet()

 /*

 * An IntegrationContext has no cycles.

 */

 inv noCycles:

 not self.getNextNodes()->closure(getNextNodes())->includes(self)

 /*

 * A ViewSource has no inputs.

 * A ViewSink, ViewFilter, ViewTransformation, or ViewTransporter

 * has one input.

 * A ViewAggregation has more than one input.

 */

 inv hasCorrectInputCount:

 (self.oclIsTypeOf(ViewSource)

 implies

 self.inPort->size() = 0)

 and

 (self.oclIsTypeOf(ViewSink) or

 self.oclIsTypeOf(ViewFilter) or

 self.oclIsTypeOf(ViewTransformation) or

 self.oclIsTypeOf(ViewTransporter)

 implies

 self.inPort->size() = 1)

 and

 (self.oclIsTypeOf(ViewAggregation)

 implies

 self.inPort->size() > 1)

 /*

 * A ViewSink has no outputs.

 * A ViewSource, ViewFilter, ViewAggregation, ViewTransformation,

 * or ViewTransporter has one output.

 */

 inv hasCorrectOutputCount:

 (self.oclIsTypeOf(ViewSink)

 implies

 self.outPort->size() = 0)

 and

 (self.oclIsTypeOf(ViewSource) or

 self.oclIsTypeOf(ViewFilter) or

 self.oclIsTypeOf(ViewAggregation) or

 self.oclIsTypeOf(ViewTransformation) or

 self.oclIsTypeOf(ViewTransporter)

 implies

 self.outPort->size() = 1)

 context ViewSource

 /*

 * A ViewSource is connected to a UoPInputEndPoint.

 */

 inv viewSourceConnectedToUoPInputEndPoint:

 TSNodeConnection.allInstances()

 ->select(x | self.outPort->includes(x.source))

 ->collect(destination)

 ->forAll(oclIsTypeOf(UoPInputEndPoint))

 context ViewSink

456 Open Group Standard (2017)

 /*

 * A ViewSink is connected to a UoPOutputEndPoint.

 */

 inv viewSinkConnectedToUoPOutputEndPoint:

 TSNodeConnection.allInstances()

 ->select(x | self.inPort->includes(x.destination))

 ->collect(source)

 ->forAll(oclIsTypeOf(UoPOutputEndPoint))

 context ViewFilter

 /*

 * A ViewFilter uses the same View on its input and output.

 */

 inv viewIsConsistent:

 self.inPort->size() = 1 and

 self.outPort->size() = 1

 implies

 self.inPort->any(true).view = self.outPort->any(true).view

 context ViewTransporter

 /*

 * A ViewTransporter uses the same View on its input and output.

 */

 inv viewIsConsistent:

 self.inPort->size() = 1 and

 self.outPort->size() = 1

 implies

 self.inPort->any(true).view = self.outPort->any(true).view

endpackage

J.6.9 OCL Constraints for face::traceability Package

package face::traceability

 context Element

 /*

 * All Traceability Elements have a unique name.

 */

 inv hasUniqueName:

 not Element.allInstances()->excluding(self)

 ->collect(name)

 ->includes(self.name)

endpackage

J.7 Conditional OCL Constraints

The conditional OCL constraints governing USM and DSDM content are detailed in this section.

These constraints are using the OMG Object Constraint Language (OCL), Version 2.4. These

constraints are intended to be enforced when required.

J.7.1 Single Observable Constraint

package face::datamodel::conceptual

 context Entity

 /*

 * An Entity does not compose the same Observable more than once.

 */

 inv observableComposedOnce:

 self.getAllCharacteristics()

 ->selectByKind(Composition)

 ->collect(getType())

 ->select(oclIsTypeOf(Observable))

 ->isUnique(obs | obs)

FACE™ Technical Standard, Edition 3.0 457

endpackage

J.7.2 Entity Uniqueness Constraint

package face::datamodel::conceptual

 context Entity

 /*

 * An Entity is unique in a Conceptual Data Model.

 * (An Entity is unique if the set of its Characteristics

 * is different from other Entities' in terms of

 * type, lowerBound, upperBound, and path (for Participants).

 *

 * NOTE: If an Entity is part of a specialization cycle, its uniqueness

 * is undefined. So, if an Entity is part of a specialization cycle,

 * it will not fail entityIsUnique, but will fail noCyclesInSpecialization.

 */

 inv entityIsUnique:

 not self.isPartOfSpecializationCycle() implies

 not Entity.allInstances()

 ->excluding(self)

 ->collectNested(getEntityIdentity())

 ->includes(self.getEntityIdentity())

endpackage

J.8 Platform Data Model to IDL Bindings

LEGEND:

Rule The following identifier is the name of a rule. In most cases, the

identifier is the name of a production rule in the Template grammar. A Rule

will either Emit IDL or Return data (to another Rule), such as values or

references to elements.

Expression The following symbols are the preceding rule's expression. An expression

defines the possible constructions accepted by the rule. In some cases, the

expression is a logical or platform meta-type in the meta-model in the form

of face.datamodel.logical.NAME or face.datamodel.platform.NAME, where NAME

is the name of a meta-type in the qualified namespace of the meta-model. In

other (most) cases, the expression is the right-hand-side of a production

rule in the Template grammar. In these cases, the Rule’s name may be the

name of a production rule in the Template grammar, and the expression is

the right-hand-side of that production rule.

Alternate Some expressions are comprised of two or more alternate sub-expressions. In

this case, the Expression is empty and the alternate sub-expressions are

subsequently listed as Alternates.

Variant Some expressions or sub-expressions are comprised of optional symbols or

symbol groups. In this case, the various combinations of the expression's

symbols with and without the optional symbols are subsequently detailed as

Variants, where each Variant represents one possible construction.

Emit Specifies the Rule or Rules to be followed and/or the IDL to be generated

for a construction based on the preceding Expression, Alternate, or Variant

during any pass of applying this binding to a given Template specification

or platform View.

Emit1 A special case of Emit that specifies the IDL to be generated during the

first pass of applying this binding to a given Template specification.

Emit2 A special case of Emit that specifies the IDL to be generated during the

second pass of applying this binding to a given Template specification.

Condition Identifies relevant procedural or model construct-based conditions that

affect the IDL that is generated.

458 Open Group Standard (2017)

Let The context dependent binding of a value or element reference to a name for

subsequent use. It is often used to reduce verbosity and/or improve the

clarity of the binding specification.

Return Specifies a value or element reference that is being returned by a Rule to

an invoking Rule.

[] An operator that returns a resolved unambiguous reference (by name) to the

enclosed named face.datamodel element or to a property of a face.datamodel

element. For clarity, the element's meta-type is identified before the [],

the name of the face.datamodel element is identified within the [], and a

property, if any, is identified after the []. Example:

face.datamodel.platform.Template[%IDENTIFIER%].name

%% An operator that returns the value(s) associated with the enclosed named

element. The element is either 1) a non-terminal symbol in a modeled

Template specification, 2) a Let-bound name, 3) a face.datamodel element,

or 4) a property of a face.datamodel element. The enclosing %% characters

are not returned.

{V => <Y>} An operator that invokes Rule Y with value V. If a "+" character follows

the {}, then there is a set of Vs in context (reflected in the associated

Expression), and Rule Y is invoked for each V.

<> An operator that invokes the enclosed named Rule with the modeled value(s)

associated with the same named non-terminal symbol. It is syntactic sugar

for { %Y% => <Y> }. If a "+" character follows the <>, then there is a set

of instances associated of the named non-terminal in context (reflected in

the associated Expression), and the Rule is invoked for each instance.

() A grouping operator that encapsulates an ordered set of concatentations of

string-type data, each of which is separated by a comma (,). The result is

a string. The enclosing () characters are not part of the returned value.

"" Represents a string literal value. The enclosing "" characters are not part

of the string literal's value.

? In an Expression or Alternate, a "?" character following a symbol or symbol

group means the preceding symbol or symbol group may be present just once

or not at all. It is syntactically equivalent to "[" S "]" in EBNF, where S

is a set of symbols.

* In an Expression, Alternate or Variant, a "*" character following a symbol

or symbol group means the preceding symbol or symbol group may be present

one or more times or not at all. It is syntactically equivalent to "{" S

"}" in EBNF, where S is a set of symbols.

+ In an Expression, Alternate or Variant, a "+" character following a symbol

or symbol group means the preceding symbol or symbol group is present one

or more times. It is syntactically equivalent to S "{" S "}" in EBNF, where

S is a set of symbols.

THIS Represents a reference to the current construct, which is an instance of

the Rule’s expression.

// The text following the // and up to the end of the line is (part of) an

informative comment or note.

The input to this binding is a face.datamodel.platform.View. IDL types will be generated

for this View and for various elements it directly or indirectly references. A View and

the elements it references may or may not be members of the same

face.datamodel.DataModel.

NOTES TO THE IMPLEMENTER:

For each DataModel element (i.e. the View and elements it references), the IDL types

generated by this binding must be defined in an IDL module (in the FACE::DM namespace)

whose name is the same as the DataModel that the element is a member of. The IDL module

declaration for a DataModel is:

FACE™ Technical Standard, Edition 3.0 459

 "module" "FACE" "{"

 "module" "DM" "{"

 "module" %face.datamodel.DataModel.name% "{"

 // The IDL types defined in this IDL module are those

 // generated by this binding for the DataModel elements

 // that are members of face.datamodel.DataModel.

 "}" ";"

 "}" ";"

 "}" ";"

Because the generated IDL types for various DataModel elements may be in different IDL

modules, an inter-DataModel type reference must manifest in IDL using an IDL module-

scoped name.

This binding may visit a given DataModel element more than once. An IDL type should not

be generated more than once for a given DataModel element.

IDL struct_forward_dcl or union_forward_dcl statements may be needed for recursive types.

BINDING SPECIFICATION:

// CURRENT_TEMPLATE is the current face.datamodel.platform.Template being

// mapped to IDL.

Let:

 CURRENT_TEMPLATE = // nil

// CURRENT_STRUCTURED_TEMPLATE_ELEMENT is the current

// StructuredTemplateElementTypeDecl being processed, and

// CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME is the name of that

// StructuredTemplateElementTypeDecl.

Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT = // nil

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = // nil

Rule: PlatformView

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is not in the Template grammar, but is instead a

 // meta-type in the Data Architecture meta-model.

 Expression: face.datamodel.platform.View

 Let:

 PLATFORM_VIEW = THIS

 Condition: If %PLATFORM_VIEW% is a face.datamodel.platform.CompositeTemplate:

 Emit: { %PLATFORM_VIEW% => <CompositeTemplate> }

 Condition: If %PLATFORM_VIEW% is a face.datamodel.platform.Template::

 Emit: { %PLATFORM_VIEW% => <Template> }

Rule: CompositeTemplate

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is not in the Template grammar, but is instead a

 // meta-type in the Data Architecture meta-model.

 Expression: face.datamodel.platform.CompositeTemplate

 Let:

 COMPOSITE_TEMPLATE = THIS

 // Generate IDL types for its composed member’s types

460 Open Group Standard (2017)

 For each face.datamodel.platform.TemplateComposition in

%%COMPOSITE_TEMPLATE%.composition%:

 Let:

 MEMBER = face.datamodel.platform.TemplateComposition

 Emit: { %%MEMBER%.type% => <PlatformView> }

 // Now generate an IDL Struct for the CompositeTemplate

 Condition: If %%COMPOSITE_TEMPLATE%.isUnion% is false:

 Emit: "struct" %%TEMPLATE%.name% "{"

 Condition: If %%COMPOSITE_TEMPLATE%.isUnion% is true:

 Emit: "union" %%TEMPLATE%.name% "{" "switch" "(" "unsigned" "short" ")" "{"

 // Generate the CompositeTemplate’s members

 Let:

 CASE_NUMBER = 0

 For each face.datamodel.platform.TemplateComposition in

%%COMPOSITE_TEMPLATE%.composition%:

 Let:

 MEMBER = face.datamodel.platform.TemplateComposition

 Condition: If %%COMPOSITE_TEMPLATE%.isUnion% is true:

 // Increment the switch case number.

 Let:

 CASE_NUMBER = %CASE_NUMBER% + 1

 Emit: "case" %CASE_NUMBER% ":"

 Emit: %%MEMBER%.type.name% %%MEMBER%.rolename% ";"

 Condition: If %%COMPOSITE_TEMPLATE%.isUnion% is true:

 Emit: "}"

 Emit: "}" ";"

Rule: Template

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is not in the Template grammar, but is instead a

 // meta-type in the Data Architecture meta-model.

 // Two passes of %%THIS%.specification% over TemplateSpecification are

 // required to generate the IDL for a given Template. The first pass

 // emits (via Emit1:) the supporting IDL types (e.g. the IDL types for

 // any referenced face.datamodel.platform.IDLTypes, etc.). The second

 // pass emits (via Emit2:) the IDL types for the Template’s elements.

 Expression: face.datamodel.platform.Template

 Let:

 PREVIOUS_TEMPLATE = %CURRENT_TEMPLATE%

 CURRENT_TEMPLATE = THIS

 Emit1: { %%CURRENT_TEMPLATE%.specification% => <TemplateSpecification> }

 Condition: If the MainTemplateMethodDecl in %CURRENT_TEMPLATE% is a

MainEntityTypeTemplateMethodDecl:

 Emit2: "module" ("T_" , %%CURRENT_TEMPLATE%.name%) "{"

FACE™ Technical Standard, Edition 3.0 461

 Emit2: { %%CURRENT_TEMPLATE%.specification% => <TemplateSpecification> }

 Condition: If the MainTemplateMethodDecl in %CURRENT_TEMPLATE% is a

MainEntityTypeTemplateMethodDecl:

 Emit2: "}" ";"

 Emit2: "typedef" ("T_" , %%CURRENT_TEMPLATE%.name% , "::" ,

%%CURRENT_TEMPLATE%.name%) %%CURRENT_TEMPLATE%.name% ";"

 Let:

 CURRENT_TEMPLATE = %PREVIOUS_TEMPLATE%

Rule: TemplateSpecification

 Expression: UsingExternalTemplateStatement* StructuredTemplateElementTypeDecl+

 Variant: StructuredTemplateElementTypeDecl+

 Emit: <StructuredTemplateElementTypeDecl>+

 Variant: UsingExternalTemplateStatement+ StructuredTemplateElementTypeDecl+

 Emit1: <UsingExternalTemplateStatement>+

 Emit: <StructuredTemplateElementTypeDecl>+

Rule: UsingExternalTemplateStatement

 Expression: KW_USING ExternalTemplateTypeReference SEMICOLON

 Emit1: { %<ExternalTemplateTypeReference>% => <Template> }

Rule: StructuredTemplateElementTypeDecl

 Expression: // The following Alternates comprise the StructuredTemplateElementTypeDecl

Expression

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT = %StructuredTemplateElementTypeDecl%

 Alternate: MainTemplateMethodDecl

 Emit: <MainTemplateMethodDecl>

 Alternate: SupportingTemplateMethodDecl

 Emit: <SupportingTemplateMethodDecl>

 Alternate: UnionTypeDecl

 Emit: <UnionTypeDecl>

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT = //nil

Rule: MainTemplateMethodDecl

 Expression: // The following Alternates comprise the MainTemplateMethodDecl Expression

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = %CURRENT_TEMPLATE%.name

 Alternate: MainEntityTypeTemplateMethodDecl

 Emit: <MainEntityTypeTemplateMethodDecl>

 Alternate: MainEquivalentEntityTypeTemplateMethodDecl

 Emit: <MainEquivalentEntityTypeTemplateMethodDecl>

462 Open Group Standard (2017)

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = //nil

Rule: MainEntityTypeTemplateMethodDecl

 Expression: KW_MAIN LEFT_PAREN PrimaryEntityTypeTemplateMethodParameter? (COMMA

KW_VARARGS OptionalEntityTypeTemplateMethodParameterList?)? RIGHT_PAREN

EntityTypeTemplateMethodBody

 Emit2: "struct" %CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME%

 Emit: <EntityTypeTemplateMethodBody>

 Emit2: ";"

Rule: MainEquivalentEntityTypeTemplateMethodDecl

 // The Expressions for the EquivalentEntityTypeTemplateMethodDecl and

 // EquivalentEntityTypeTemplateMethodBody Rules are in-lined here to consolidate

multiple emits

 // of the CURRENT_TEMPLATE’s name to one rule, and to allow for multiple emits based on

the

 // modeled EquivalentEntityTypeTemplateMethodMembers.

 Expression: KW_MAIN LEFT_ANGLE_BRACKET EquivalentEntityTypeTemplateMethodParameterList

RIGHT_ANGLE_BRACKET LEFT_BRACE EquivalentEntityTypeTemplateMethodMember+ RIGHT_BRACE

 // Declare an IDL Template Module for this

MainEquivalentEntityTypeTemplateMethodDecl.

 Emit1: "module" (%CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME% , "_Module")

 Emit1: "<"

 // Generate the IDL Template Module's formal parameter list.

 For each EquivalentEntityTypeTemplateMethodMember of

MainEquivalentEntityTypeTemplateMethodDecl:

 Condition: If %EquivalentEntityTypeTemplateMethodMember% is not the first

EquivalentEntityTypeTemplateMethodMember of MainEquivalentEntityTypeTemplateMethodDecl:

 Emit1: ","

 Emit1: { %EquivalentEntityTypeTemplateMethodMember% =>

<GenerateIDLTemplateModuleDeclFormalParameterFromEquivalentEntityTypeTemplateMethodMember

> }

 // Close the IDL Template Module's formal parameter list.

 Emit1: ">"

 Emit1: "{" "struct" %CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME% "{"

<EquivalentEntityTypeTemplateMethodMember>+ "}" ";" "}" ";"

Rule: SupportingTemplateMethodDecl

 Expression: // The following Alternates comprise the SupportingTemplateMethodDecl

Expression

 Alternate: SupportingEntityTypeTemplateMethodDecl

 Emit: <SupportingEntityTypeTemplateMethodDecl>

 Alternate: SupportingEquivalentEntityTypeTemplateMethodDecl

 Emit: <SupportingEquivalentEntityTypeTemplateMethodDecl>

Rule: SupportingEntityTypeTemplateMethodDecl

FACE™ Technical Standard, Edition 3.0 463

 Expression: TemplateElementTypeName LEFT_PAREN PrimaryEntityTypeTemplateMethodParameter

RIGHT_PAREN EntityTypeTemplateMethodBody

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = <TemplateElementTypeName>

 Emit2: "struct" %CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME%

 Emit: <EntityTypeTemplateMethodBody>

 Emit2: ";"

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = // nil

Rule: SupportingEquivalentEntityTypeTemplateMethodDecl

 // The Expressions for the EquivalentEntityTypeTemplateMethodDecl and

 // EquivalentEntityTypeTemplateMethodBody Rules are in-lined here to consolidate

multiple emits

 // of the TemplateElementTypeName to one rule, and to allow for multiple emits based on

the

 // EquivalentEntityTypeTemplateMethodMembers.

 Expression: TemplateElementTypeName LEFT_ANGLE_BRACKET

EquivalentEntityTypeTemplateMethodParameterList RIGHT_ANGLE_BRACKET LEFT_BRACE

EquivalentEntityTypeTemplateMethodMember+ RIGHT_BRACE

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = <TemplateElementTypeName>

 // Declare an IDL Template Module for this

SupportingEquivalentEntityTypeTemplateMethodDecl.

 Emit1: "module" (%CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME% , "_Module")

 Emit1: "<"

 // Generate the IDL Template Module's formal parameter list.

 For each EquivalentEntityTypeTemplateMethodMember of

SupportingEquivalentEntityTypeTemplateMethodDecl:

 Condition: If %EquivalentEntityTypeTemplateMethodMember% is not the first

EquivalentEntityTypeTemplateMethodMember of

SupportingEquivalentEntityTypeTemplateMethodDecl:

 Emit1: ","

 Emit: { %EquivalentEntityTypeTemplateMethodMember% =>

<GenerateIDLTemplateModuleDeclFormalParameterFromEquivalentEntityTypeTemplateMethodMember

> }

 // Close the IDL Template Module's formal parameter list.

 Emit1: ">"

 Emit1: "{" "struct" %CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME% "{"

<EquivalentEntityTypeTemplateMethodMember>+ "}" ";" "}" ";"

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = // nil

Rule:

GenerateIDLTemplateModuleDeclFormalParameterFromEquivalentEntityTypeTemplateMethodMember

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is the EquivalentEntityTypeTemplateMethodMember Rule's

 // Expression in the grammar.

464 Open Group Standard (2017)

 Expression: EquivalentEntityTypeTemplateElementMemberStatement SEMICOLON

 Emit1: { %EquivalentEntityTypeTemplateElementMemberStatement% =>

<GenerateIDLTemplateModuleDeclFormalParameterFromEquivalentEntityTypeTemplateMethodMember

Statement> }

Rule:

GenerateIDLTemplateModuleDeclFormalParameterFromEquivalentEntityTypeTemplateMethodMemberS

tatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is the EquivalentEntityTypeTemplateElementMemberStatement

 // Rule's Expression in the grammar.

 Expression: OptionalAnnotation?

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference (DEREF

IDLStructMemberReference)? (KW_AS StructuredTemplateElementMemberName)?

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference

 Emit1: "typename" (

%<DesignatedEquivalentEntityNonEntityTypeCharacteristicReference>% , "_type")

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference

 Emit1: "typename" (%%<IDLStructMemberReference>%.rolename% , "_type")

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference KW_AS

StructuredTemplateElementMemberName

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference KW_AS

StructuredTemplateElementMemberName

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Emit1: "typename" (%<StructuredTemplateElementMemberName>% , "_type")

Rule: EntityTypeTemplateMethodBody

 Expression: LEFT_BRACE EntityTypeTemplateMethodMember+ RIGHT_BRACE

 Emit2: "{"

 Emit: <EntityTypeTemplateMethodMember>+

 Emit2: "}"

Rule: EntityTypeTemplateMethodMember

 Expression: EntityTypeStructuredTemplateElementMember

 Emit: <EntityTypeStructuredTemplateElementMember>

Rule: EquivalentEntityTypeTemplateMethodMember

 Expression: EquivalentEntityTypeTemplateElementMemberStatement SEMICOLON

 Emit1: <EquivalentEntityTypeTemplateElementMemberStatement>

Rule: EquivalentEntityTypeTemplateElementMemberStatement

FACE™ Technical Standard, Edition 3.0 465

 Expression: OptionalAnnotation?

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference (DEREF

IDLStructMemberReference)? (KW_AS StructuredTemplateElementMemberName)?

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference

 Let:

 TEMPLATE_MODULE_TYPE_MEMBER_NAME =

<DesignatedEquivalentEntityNonEntityTypeCharacteristicReference>

 Emit1: (%TEMPLATE_MODULE_TYPE_MEMBER_NAME% , "_type")

%TEMPLATE_MODULE_TYPE_MEMBER_NAME%

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference

 Let:

 TEMPLATE_MODULE_TYPE_MEMBER_NAME = %<IDLStructMemberReference>%.rolename

 Emit1: (%TEMPLATE_MODULE_TYPE_MEMBER_NAME% , "_type")

%TEMPLATE_MODULE_TYPE_MEMBER_NAME%

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference KW_AS

StructuredTemplateElementMemberName

 Variant: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference KW_AS

StructuredTemplateElementMemberName

 Variant: OptionalAnnotation

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Let:

 TEMPLATE_MODULE_TYPE_MEMBER_NAME = <StructuredTemplateElementMemberName>

 Emit1: (%TEMPLATE_MODULE_TYPE_MEMBER_NAME% , "_type")

%TEMPLATE_MODULE_TYPE_MEMBER_NAME%

Rule: UnionTypeDecl

 Expression: KW_UNION TemplateElementTypeName LEFT_PAREN UnionParameter RIGHT_PAREN

UnionBody

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = <TemplateElementTypeName>

 Emit2: "union" %<TemplateElementTypeName>%

 Emit: <UnionBody>

 Emit2: ";"

 Let:

 CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME = // nil

Rule: UnionBody

 Expression: LEFT_BRACE UnionSwitchStatement RIGHT_BRACE

 Emit2: "{"

 Emit: <UnionSwitchStatement>

 Emit2: "}"

466 Open Group Standard (2017)

Rule: UnionSwitchStatement

 Expression: KW_SWITCH LEFT_PAREN DiscriminatorType RIGHT_PAREN UnionSwitchBody

 Emit2: "switch" "("

 Emit: <DiscriminatorType>

 Emit2: ")"

 Emit: <UnionSwitchBody>

Rule: UnionSwitchBody

 Expression: LEFT_BRACE CaseExpression+ RIGHT_BRACE

 Emit2: "{"

 Emit: <CaseExpression>+

 Emit2: "}"

Rule: DiscriminatorType

 Expression: // The following Alternates comprise the DiscriminatorType Expression

 Alternate: IDLDiscriminatorType

 Emit2: %IDLDiscriminatorType%

 Alternate: DesignatedEntityEnumerationTypeCharacteristicReference

 Emit1: { %%<DesignatedEntityEnumerationTypeCharacteristicReference>%.type% =>

<PlatformIDLType> }

 Emit2: %%<DesignatedEntityEnumerationTypeCharacteristicReference>%.type.name%

Rule: CaseExpression

 Expression: CaseLabel+ UnionMember

 Emit2: <CaseLabel>+

 Emit: <UnionMember>

Rule: CaseLabel

 Expression: // The following Alternates comprise the CaseLabel Expression

 Alternate: KW_CASE CaseLabelLiteral COLON

 Emit2: "case" <CaseLabelLiteral> ":"

 Alternate: KW_DEFAULT COLON

 Emit2: "default" ":"

Rule: CaseLabelLiteral

 Expression: // The following Alternates comprise the CaseLabelLiteral Expression

 Alternate: IDLDiscriminatorTypeLiteral

 Emit2: %IDLDiscriminatorTypeLiteral%

 Alternate: EnumLiteralReferenceExpression

 Emit2: %<EnumLiteralReferenceExpression>%

Rule: UnionMember

FACE™ Technical Standard, Edition 3.0 467

 Expression: EntityTypeStructuredTemplateElementMember

 Emit: <EntityTypeStructuredTemplateElementMember>

Rule: EntityTypeStructuredTemplateElementMember

 Expression: EntityTypeStructuredTemplateElementMemberStatement SEMICOLON

 Emit: <EntityTypeStructuredTemplateElementMemberStatement>

Rule: EntityTypeStructuredTemplateElementMemberStatement

 Expression: // The following Alternates comprise the

 // EntityTypeStructuredTemplateElementMemberStatement Expression

 Alternate: DesignatedEntityCharacteristicReferenceStatement

 Emit: <DesignatedEntityCharacteristicReferenceStatement>

 Alternate: StructuredTemplateElementTypeReferenceStatement

 Emit: <StructuredTemplateElementTypeReferenceStatement>

Rule: DesignatedEntityCharacteristicReferenceStatement

 Expression: // The following Alternates comprise the

 // DesignatedEntityCharacteristicReferenceStatement Expression

 Alternate: ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression

 Emit: <ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression>

 Alternate: DesignatedEntityNonEntityTypeCharacteristicWildcardReference

 Emit: <DesignatedEntityNonEntityTypeCharacteristicWildcardReference>

Rule: ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression

 Expression: OptionalAnnotation? DesignatedEntityNonEntityTypeCharacteristicReference (

DEREF IDLStructMemberReference)? (KW_AS StructuredTemplateElementMemberName)?

 // Emit the IDL for the DesignatedEntityNonEntityTypeCharacteristicReference's type.

 Emit1: { %THIS% =>

<GenerateExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceIDL> }

 Let:

 C_TYPE_NAME = { %THIS% =>

<GetExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceMemberIDLType> }

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

DEREF IDLStructMemberReference

 Let:

 C_ROLE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.rolename

 Emit2: %C_TYPE_NAME% %C_ROLE_NAME% ";"

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference KW_AS

StructuredTemplateElementMemberName

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

KW_AS StructuredTemplateElementMemberName

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

DEREF IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

468 Open Group Standard (2017)

 Let:

 C_ROLE_NAME = <StructuredTemplateElementMemberName>

 Emit2: %C_TYPE_NAME% %C_ROLE_NAME% ";"

Rule: DesignatedEntityNonEntityTypeCharacteristicWildcardReference

 Expression: (DesignatedEntityTypeReferencePath PERIOD)? ASTERISK

 // A DesignatedEntityNonEntityTypeCharacteristicWildcardReference is a "wildcard

reference"

 // to one or more explicit DesignatedEntityNonEntityTypeCharacteristicReferences.

Each

 // DesignatedEntityNonEntityTypeCharacteristicReference is a

 // face.datamodel.platform.Composition that is 1) composed in the

 // DesignatedEntityTypeReferencePath's DesignatedEntityTypeReference to which the

ASTERISK is

 // applied (i.e. the Composition is a member of

<DesignatedEntityTypeReference>.composition),

 // and 2) is projected by the Template's corresponding Query.

 For each face.datamodel.platform.Composition in

%%<DesignatedEntityTypeReference>%.composition%:

 // Generate a DesignatedEntityNonEntityTypeCharacteristicReference Template

construct for

 // this face.datamodel.platform.Composition.

 Let:

 GENERATED_CHARACTERISTIC_REFERENCE = (%%<DesignatedEntityTypeReference>%.name% ,

"." , %face.datamodel.platform.Composition.rolename%)

 // Emit the generated DesignatedEntityNonEntityTypeCharacteristicReference using

the

 // ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression rule.

 Emit: { %GENERATED_EXPLICIT_CHARACTERISTIC_REFERENCE% =>

<ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression> }

Rule: StructuredTemplateElementTypeReferenceStatement

 // This rule was manufactured to facilitate the binding specification.

 // While it is a production rule in the Template grammar specification,

 // its Expression has been modified here to separate each Alternate of

 // the original Rule in the grammar into a separate Rule.

 Expression: // The following Alternates comprise the

 // StructuredTemplateElementTypeReferenceStatement Expression

 Alternate: StructuredTemplateElementTypeMemberReferenceStatement

 Emit: <StructuredTemplateElementTypeMemberReferenceStatement>

 Alternate: DirectStructuredTemplateElementTypeReferenceStatement

 Emit: <DirectStructuredTemplateElementTypeReferenceStatement>

Rule: StructuredTemplateElementTypeMemberReferenceStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression effectively separates the Alternates of the original

 // StructuredTemplateElementTypeReferenceExpression Rule in the grammar

 // into separate Rules.

 Expression: // The following Alternates comprise the

 // StructuredTemplateElementTypeMemberReferenceStatement Expression

 Alternate: EntityTypeStructuredTemplateElementTypeMemberReferenceStatement

 Emit: <EntityTypeStructuredTemplateElementTypeMemberReferenceStatement>

FACE™ Technical Standard, Edition 3.0 469

 Alternate: EquivalentEntityTypeTemplateMethodMemberReferenceStatement

 Emit: <EquivalentEntityTypeTemplateMethodMemberReferenceStatement>

Rule: EntityTypeStructuredTemplateElementTypeMemberReferenceStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is a combination of the InlineAnnotation Alternate

 // of the StructuredTemplateElementTypeReferenceStatement and the

 // EntityTypeStructuredTemplateElementTypeReference-type Alternate of

 // the StructuredTemplateElementTypeReferenceExpression Rule in the grammar.

 Expression: InlineAnnotation EntityTypeStructuredTemplateElementTypeReference

LEFT_PAREN StructuredTemplateElementTypeReferenceParameterList RIGHT_PAREN

 // Emit each EntityTypeStructuredTemplateElementMember of the

 // StructuredTemplateElementTypeDecl referenced by

 // EntityTypeStructuredTemplateElementTypeReference as members of the enclosing

 // StructuredTemplateElementType.

 Emit: <EntityTypeStructuredTemplateElementMember>+

Rule: EquivalentEntityTypeTemplateMethodMemberReferenceStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is a combination of the InlineAnnotation Alternate

 // of the StructuredTemplateElementTypeReferenceStatement and the

 // EquivalentEntityTypeTemplateMethodReference-type Alternate of

 // the StructuredTemplateElementTypeReferenceExpression Rule in the grammar.

 Expression: InlineAnnotation EquivalentEntityTypeTemplateMethodReference

LEFT_ANGLE_BRACKET StructuredTemplateElementTypeReferenceParameterList

RIGHT_ANGLE_BRACKET

 // Emit each EquivalentEntityTypeTemplateMethodMember of the

 // StructuredTemplateElementTypeDecl referenced by the

 // EquivalentEntityTypeTemplateMethodReference as members of the enclosing

 // StructuredTemplateElementType.

 Emit: { %EquivalentEntityTypeTemplateMethodMember% =>

<InlineEquivalentEntityTypeTemplateMethodMemberStatement> }+

Rule: InlineEquivalentEntityTypeTemplateMethodMemberStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is the EquivalentEntityTypeTemplateMethodMember's Rule

 // in the grammar.

 Expression: EquivalentEntityTypeTemplateElementMemberStatement SEMICOLON

 Let:

 INSTANTIATED_MEMBER_STATEMENT = {

%EquivalentEntityTypeTemplateElementMemberStatement% =>

<GetInstantiatedEquivalentEntityTypeTemplateElementMemberStatement> }

 Emit: { %INSTANTIATED_MEMBER_STATEMENT% =>

<ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression> }

Rule: GetInstantiatedEquivalentEntityTypeTemplateElementMemberStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is the EquivalentEntityTypeTemplateElementMemberStatement

 // Rule's Expression in the grammar.

 // The Expression for the

DesignatedEquivalentEntityNonEntityTypeCharacteristicReference Rule is

470 Open Group Standard (2017)

 // in-lined here as its non-terminals are referenced below.

 Expression: OptionalAnnotation? EquivalentEntityTypeTemplateMethodParameterReference

PERIOD EquivalentEntityTypeTemplateMethodCharacteristicReference (DEREF

IDLStructMemberReference)? (KW_AS StructuredTemplateElementMemberName)?

 // Instantiate the EquivalentEntityTypeTemplateMethodMemberStatement by transforming

it into

 // an ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression

 // type of EntityTypeStructuredTemplateElementMemberStatement by replacing the

 // EquivalentEntityTypeTemplateMethodMember's

 // EquivalentEntityTypeTemplateMethodParameterReference with the

 // DesignatedEntityTypeReference specified for the

 // EquivalentEntityTypeTemplateMethodParameterReference's corresponding

 // EquivalentEntityTypeTemplateMethodParameter in the

 // EquivalentEntityTypeTemplateMethodReference's

 // StructuredTemplateElementTypeReferenceParameterList (which is specified

positionally or

 // assigned via a EntityTypeStructuredTemplateElementDeclaredParameterReference).

 Let:

 EquivalentEntityTypeTemplateMethodParameterReference =

%%<DesignatedEntityTypeReference>%.name%

 // This "instantiated EquivalentEntityTypeTemplateMethodMemberStatement" is now

effectively

 // an ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression.

 Return: THIS

Rule: DirectStructuredTemplateElementTypeReferenceStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression effectively separates the Alternates of the original

 // StructuredTemplateElementTypeReferenceExpression Rule in the grammar

 // into separate Rules.

 Expression: // The following Alternates comprise the

 // DirectStructuredTemplateElementTypeReferenceStatement Expression

 Alternate: DirectEntityTypeStructuredTemplateElementTypeReferenceStatement

 Emit: <DirectEntityTypeStructuredTemplateElementTypeReferenceStatement>

 Alternate: DirectEquivalentEntityTypeTemplateMethodReferenceStatement

 Emit: <DirectEquivalentEntityTypeTemplateMethodReferenceStatement>

Rule: DirectEntityTypeStructuredTemplateElementTypeReferenceStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is a combination of the OptionalAnnotation Alternate

 // of the StructuredTemplateElementTypeReferenceStatement and the

 // EntityTypeStructuredTemplateElementTypeReference-type Alternate of

 // the StructuredTemplateElementTypeReferenceExpression Rule in the grammar.

 // The Expression for the StructuredTemplateElementTypeReferenceParameterList Rule

 // is in-lined here as its non-terminals are referenced in the emit conditional

 // rules below.

 Expression: OptionalAnnotation? EntityTypeStructuredTemplateElementTypeReference

LEFT_PAREN PrimaryStructuredTemplateElementTypeReferenceParameter (COMMA

OptionalStructuredTemplateElementTypeReferenceParameter)* RIGHT_PAREN

StructuredTemplateElementMemberName

 // The C_MULTI and DE_REF conditional rules below refer to Characteristics that

 // join the JoinPathEntityTypeReferences along the EntityTypeReferenceJoinPath

 // from the PrimaryEntityTypeTemplateMethodParameter's EntityTypeReference of

 // %CURRENT_STRUCTURED_TEMPLATE_ELEMENT% to the

FACE™ Technical Standard, Edition 3.0 471

 // PrimaryStructuredTemplateElementTypeReferenceParameter's

 // DesignatedEntityTypeReference. An example EntityTypeReferenceJoinPath is

 // A.B.C, where A, B, and C are JoinPathEntityTypeReferences. Each L.R pair

 // in an EntityTypeReferenceJoinPath represents and is unambiguously traceable to

 // a Entity join in %%CURRENT_TEMPLATE%.boundQuery%. L and R represent the

 // Entitys specified in that join, and the "." represents the Characteristic used

 // to join them. In the example, there are 2 joins represented: the first is A.B

 // and the second is B.C. There are 2 joining Characteristics, one for each join:

 // one that joins A and B, and the other that joins B and C.

 // The C_MULTI condition determines the multiplicity of a joining Characteristic

 // for the subsequent DE_REF conditional rules. In the C_MULTI condition, L

 // represents the Characteristic’s left JoinPathEntityTypeReference (the Entity

 // to the left of a "."), and R represents the Characteristic’s right

 // JoinPathEntityTypeReference (the Entity to the right of that ".").

 C_MULTI Conditional Rule:

 Let:

 JOIN_CHARACTERISTIC = face.datamodel.platform.Characteristic // a "."

 If %JOIN_CHARACTERISTIC% is a Composition or Participant of L, then:

 If %JOIN_CHARACTERISTIC% is not in the EntityTypeReferenceJoinPath between the

MainEntityTypeTemplateMethodDecl and the current UnionTypeDecl or

SupportingEntityTypeTemplateMethodDecl, then:

 Let:

 C_MULTI_UPPER_BOUND = %JOIN_CHARACTERISTIC%.upperBound

 C_MULTI_LOWER_BOUND = %JOIN_CHARACTERISTIC%.lowerBound

 Otherwise:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 If R is a SelectedEntity that is a SelectedEntityReference of a

SelectedEntityCharacteristicReference CharacteristicBasis in

%%CURRENT_TEMPLATE%.boundQuery%, then:

 Let:

 C_MULTI_LOWER_BOUND = 0

 Otherwise: // %JOIN_CHARACTERISTIC% is a Composition or Participant of R:

 If %JOIN_CHARACTERISTIC% is not in the EntityTypeReferenceJoinPath between the

MainEntityTypeTemplateMethodDecl and the current UnionTypeDecl or

SupportingEntityTypeTemplateMethodDecl, then:

 If %JOIN_CHARACTERISTIC% is a Composition, then:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 Otherwise: // %JOIN_CHARACTERISTIC% is a Participant

 Let:

 C_MULTI_UPPER_BOUND = %JOIN_CHARACTERISTIC%.sourceUpperBound

 C_MULTI_LOWER_BOUND = %JOIN_CHARACTERISTIC%.sourceLowerBound

 Otherwise:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 If L is a SelectedEntity that is a SelectedEntityReference of a

SelectedEntityCharacteristicReference CharacteristicBasis in

%%CURRENT_TEMPLATE%.boundQuery%:

472 Open Group Standard (2017)

 Let:

 C_MULTI_LOWER_BOUND = 0

 The following 4 emit conditional rules are used to determine the IDL type for a

DirectEntityTypeStructuredTemplateElementTypeReferenceStatement's type. These rules use

the C_MULTI_LOWER_BOUND and C_MULTI_UPPER_BOUND determined by the C_MULTI conditional

rule above for each joining Characteristic:

 Emit Conditional Rule DE_REF1:

 If C_MULTI_UPPER_BOUND of any of the joining Characteristics is unbounded, then

the type emitted is an unbounded sequence.

 Emit Conditional Rule DE_REF2:

 If DE_REF1 does not hold and C_MULTI_LOWER_BOUND <> C_MULTI_UPPER_BOUND for any

of the joining Characteristics, then the type emitted is a bounded sequence whose bound

is the product of all of the joining Characteristic’s C_MULTI_UPPER_BOUND.

 Let: DE_UPPERBOUND_PRODUCT_VALUE = // the calculated product

 Emit Conditional Rule DE_REF3:

 If DE_REF1 and DE_REF2 do not hold, and C_MULTI_UPPER_BOUND > 1 and

C_MULTI_LOWER_BOUND = C_MULTI_UPPER_BOUND for any of the joining Characteristics, then

the type emitted is an array whose size is the product of all joining Characteristic’s

C_MULTI_UPPER_BOUND.

 Let: DE_UPPERBOUND_PRODUCT_VALUE = // the calculated product

 Emit Conditional Rule DE_REF4:

 If DE_REF1, DE_REF2, and DE_REF3 do not hold, then C_MULTI_UPPER_BOUND = 1 and

C_MULTI_LOWER_BOUND = 1 for all of the joining Characteristics, and the type emitted is

unary.

 Let:

 DE_TYPE_NAME = <EntityTypeStructuredTemplateElementTypeReference>

 DE_ROLE_NAME = <StructuredTemplateElementMemberName>

 Variant: EntityTypeStructuredTemplateElementTypeReference LEFT_PAREN

PrimaryStructuredTemplateElementTypeReferenceParameter (COMMA

OptionalStructuredTemplateElementTypeReferenceParameter)* RIGHT_PAREN

StructuredTemplateElementMemberName

 Condition: If DE_REF1 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %DE_TYPE_NAME% ">"

 MEMBER_TYPE_NAME = ("Seq_" , %DE_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

 Condition: If DE_REF2 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %DE_TYPE_NAME% ","

%C_UPPERBOUND_PRODUCT_VALUE% ">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%DE_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

 Condition: If DE_REF3 holds:

 Let:

 MEMBER_IDL_TYPE = %DE_TYPE_NAME%

 MEMBER_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%DE_TYPE_NAME%)

FACE™ Technical Standard, Edition 3.0 473

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% "["

%C_UPPERBOUND_PRODUCT_VALUE% "]" ";"

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

 Condition: If DE_REF4 holds:

 Let:

 MEMBER_IDL_TYPE = %DE_TYPE_NAME%

 MEMBER_TYPE_NAME = %MEMBER_IDL_TYPE%

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

 Variant: OptionalAnnotation EntityTypeStructuredTemplateElementTypeReference

LEFT_PAREN PrimaryStructuredTemplateElementTypeReferenceParameter (COMMA

OptionalStructuredTemplateElementTypeReferenceParameter)* RIGHT_PAREN

StructuredTemplateElementMemberName

 Condition: If DE_REF1 holds:

 Let:

 IDL_TYPE = "sequence" "<" %DE_TYPE_NAME% ">"

 IDL_TYPE_NAME = ("Seq_" , %DE_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

 Condition: If DE_REF2 holds:

 Let:

 IDL_TYPE = "sequence" "<" %DE_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %DE_TYPE_NAME%

)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

 Condition: If DE_REF3 holds:

 Let:

 IDL_TYPE = %DE_TYPE_NAME%

 IDL_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%DE_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% "[" %C_UPPERBOUND_PRODUCT_VALUE% "]"

";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

 Condition: If DE_REF4 holds:

 Let:

 IDL_TYPE = %DE_TYPE_NAME%

 IDL_TYPE_NAME = %IDL_TYPE%

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

474 Open Group Standard (2017)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Emit2: %MEMBER_TYPE_NAME% %DE_ROLE_NAME% ";"

Rule: DirectEquivalentEntityTypeTemplateMethodReferenceStatement

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is a combination of the OptionalAnnotation? Alternate

 // of the StructuredTemplateElementTypeReferenceStatement and the

 // EquivalentEntityTypeTemplateMethodReference-type Alternate of

 // the StructuredTemplateElementTypeReferenceExpression Rules in the grammar.

 Expression: OptionalAnnotation? EquivalentEntityTypeTemplateMethodReference

LEFT_ANGLE_BRACKET StructuredTemplateElementTypeReferenceParameterList

RIGHT_ANGLE_BRACKET StructuredTemplateElementMemberName

 // Generate IDL for each EquivalentEntityTypeTemplateMethodMember of the

 // StructuredTemplateElementTypeDecl referenced by the

 // EquivalentEntityTypeTemplateMethodReference.

 Emit1: { %EquivalentEntityTypeTemplateMethodMember% =>

<GenerateEquivalentEntityTypeTemplateMethodMemberStatementIDL> }+

 // Instantiate the IDL Template Module. Note that the IDL Template Module instance is

 // specific to the enclosing StructuredTemplateElementType.

 Emit1: "module" (%<EquivalentEntityTypeTemplateMethodReference>% , "_Module")

 Emit1: "<"

 For each EquivalentEntityTypeTemplateMethodMember of the

StructuredTemplateElementTypeDecl referenced by the

EquivalentEntityTypeTemplateMethodReference:

 Let:

 MEMBER_IDLTYPE = { %EquivalentEntityTypeTemplateMethodMember% =>

<GetInstantiatedEquivalentEntityTypeTemplateMethodMemberStatementIDLType> }

 Condition: If %EquivalentEntityTypeTemplateMethodMember% is the first

EquivalentEntityTypeTemplateMethodMember of the StructuredTemplateElementTypeDecl

referenced by the EquivalentEntityTypeTemplateMethodReference:

 Emit1: %MEMBER_IDLTYPE%

 Condition: If %EquivalentEntityTypeTemplateMethodMember% is not the first

EquivalentEntityTypeTemplateMethodMember of the StructuredTemplateElementTypeDecl

referenced by the EquivalentEntityTypeTemplateMethodReference:

 Emit1: "," %MEMBER_IDLTYPE%

 // Close the IDL Template Module instantiation's actual parameter list.

 Emit1: ">"

 // Construct a name for this IDL Template Module instance:

 Let:

 UNDERSCORE_SEPARATED_ENTITY_NAME_LIST = ""

 For each StructuredTemplateElementTypeReferenceParameter in the

StructuredTemplateElementTypeReferenceParameterList:

 // Get the name of the DesignatedEntityTypeReference behind this

 // StructuredTemplateElementTypeReferenceParameter.

 Let:

 PARAMETERS_ENTITY_NAME =

%%<StructuredTemplateElementTypeReferenceParameter>%.name%

 // Append the DesignatedEntityTypeReference's name.

FACE™ Technical Standard, Edition 3.0 475

 UNDERSCORE_SEPARATED_ENTITY_NAME_LIST = (%UNDERSCORE_SEPARATED_ENTITY_NAME_LIST% ,

"_" , %PARAMETERS_ENTITY_NAME%)

 Let:

 IDL_TYPE_NAME = (%CURRENT_STRUCTURED_TEMPLATE_ELEMENT_NAME% ,

%PARAMETER_LIST_ENTITY_NAMES% , "_Resource")

 IDL_TEMPLATE_MODULE_INST_NAME = (%IDL_TYPE_NAME% , "_Module")

 // Finalize the IDL Template Module instantiation.

 Emit1: %IDL_TEMPLATE_MODULE_INST_NAME% ";"

 Emit1: "typedef" (%IDL_TEMPLATE_MODULE_INST_NAME% , "::" ,

%<EquivalentEntityTypeTemplateMethodReference>%) %IDL_TYPE_NAME% ";"

 // Emit the IDL member for this EquivalentEntityTypeTemplateMethodReference type of

 // StructuredTemplateElementTypeReferenceStatement.

 Emit2: %IDL_TYPE_NAME% %<StructuredTemplateElementMemberName>% ";"

Rule: GenerateEquivalentEntityTypeTemplateMethodMemberStatementIDL

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is the EquivalentEntityTypeTemplateMethodMember's Rule

 // in the grammar.

 Expression: EquivalentEntityTypeTemplateElementMemberStatement SEMICOLON

 Let:

 INSTANTIATED_MEMBER_STATEMENT = {

%EquivalentEntityTypeTemplateElementMemberStatement% =>

<GetInstantiatedEquivalentEntityTypeTemplateElementMemberStatement> }

 Emit1: { %INSTANTIATED_MEMBER_STATEMENT% =>

<GenerateExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceIDL> }

Rule: GetInstantiatedEquivalentEntityTypeTemplateMethodMemberStatementIDLType

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is the EquivalentEntityTypeTemplateMethodMember Rule's

 // Expression in the grammar.

 Expression: EquivalentEntityTypeTemplateElementMemberStatement SEMICOLON

 Let:

 INSTANTIATED_MEMBER_STATEMENT = {

%EquivalentEntityTypeTemplateElementMemberStatement% =>

<GetInstantiatedEquivalentEntityTypeTemplateElementMemberStatement> }

 INSTANTIATED_MEMBER_STATEMENT_IDLTYPE = { %INSTANTIATED_MEMBER_STATEMENT% =>

<GetExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceMemberIDLType> }

 Return: %INSTANTIATED_MEMBER_STATEMENT_IDLTYPE%

Rule: GenerateExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceIDL

 // This rule was manufactured to facilitate the binding specification. It is not

 // a production rule in the Template grammar specification. Its Expression is the

 // ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression Rule's

 // Expression in the grammar.

 Expression: OptionalAnnotation? DesignatedEntityNonEntityTypeCharacteristicReference (

DEREF IDLStructMemberReference)? (KW_AS StructuredTemplateElementMemberName)?

 // Behind each ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression

 // is a DesignatedEntityNonEntityTypeCharacteristicReference, which is a reference to

 // a Characteristic composed into a DesignatedEntityTypeReference, which is a

reference

 // to a face.datamodel.platform.Entity (the Entity that composes that Characteristic.

 // A DesignatedEntityNonEntityTypeCharacteristicReference's type is a always

476 Open Group Standard (2017)

 // face.datamodel.platform.IDLType.

 // Emit the IDL for the DesignatedEntityNonEntityTypeCharacteristicReference's type.

 Emit1: { %%<DesignatedEntityNonEntityTypeCharacteristicReference>%.type% =>

<PlatformIDLType> }

 // The IDL type emitted for an

 // ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression may be

 // a complex type based of the

 // DesignatedEntityNonEntityTypeCharacteristicReference's IDL type, such as an

 // array or sequence.

 // The C_MULTI and C_REF conditional rules below refer to Characteristics that

 // join the JoinPathEntityTypeReferences along the EntityTypeReferenceJoinPath

 // from the PrimaryEntityTypeTemplateMethodParameter's EntityTypeReference of

 // %CURRENT_STRUCTURED_TEMPLATE_ELEMENT% to the

 // DesignatedEntityNonEntityTypeCharacteristicReference's composing

 // DesignatedEntityTypeReference. An example EntityTypeReferenceJoinPath is

 // A.B.C, where A, B, and C are JoinPathEntityTypeReferences. Each L.R pair

 // in an EntityTypeReferenceJoinPath represents and is unambiguously traceable to

 // a Entity join in %%CURRENT_TEMPLATE%.boundQuery%. L and R represent the

 // Entitys specified in that join, and the "." represents the Characteristic used

 // to join them. In the example, there are 2 joins represented: the first is A.B

 // and the second is B.C. There are 2 joining Characteristics, one for each join:

 // one that joins A and B, and the other that joins B and C.

 // The C_MULTI condition determines the multiplicity of a joining Characteristic

 // for the subsequent C_REF conditional rules. In the C_MULTI condition, L

 // represents the Characteristic’s left JoinPathEntityTypeReference (the Entity

 // to the left of a "."), and R represents the Characteristic’s right

 // JoinPathEntityTypeReference (the Entity to the right of that ".").

 C_MULTI Conditional Rule:

 Let:

 JOIN_CHARACTERISTIC = face.datamodel.platform.Characteristic // a "."

 If %JOIN_CHARACTERISTIC% is a Composition or Participant of L, then:

 If %JOIN_CHARACTERISTIC% is not in the EntityTypeReferenceJoinPath between the

MainEntityTypeTemplateMethodDecl and the current UnionTypeDecl or

SupportingEntityTypeTemplateMethodDecl, then:

 Let:

 C_MULTI_UPPER_BOUND = %JOIN_CHARACTERISTIC%.upperBound

 C_MULTI_LOWER_BOUND = %JOIN_CHARACTERISTIC%.lowerBound

 Otherwise:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 If R is a SelectedEntity that is a SelectedEntityReference of a

SelectedEntityCharacteristicReference CharacteristicBasis in

%%CURRENT_TEMPLATE%.boundQuery%, then:

 Let:

 C_MULTI_LOWER_BOUND = 0

 Otherwise: // %JOIN_CHARACTERISTIC% is a Composition or Participant of R:

 If %JOIN_CHARACTERISTIC% is not in the EntityTypeReferenceJoinPath between the

MainEntityTypeTemplateMethodDecl and the current UnionTypeDecl or

SupportingEntityTypeTemplateMethodDecl, then:

 If %JOIN_CHARACTERISTIC% is a Composition, then:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

FACE™ Technical Standard, Edition 3.0 477

 Otherwise: // %JOIN_CHARACTERISTIC% is a Participant

 Let:

 C_MULTI_UPPER_BOUND = %JOIN_CHARACTERISTIC%.sourceUpperBound

 C_MULTI_LOWER_BOUND = %JOIN_CHARACTERISTIC%.sourceLowerBound

 Otherwise:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 If L is a SelectedEntity that is a SelectedEntityReference of a

SelectedEntityCharacteristicReference CharacteristicBasis in

%%CURRENT_TEMPLATE%.boundQuery%:

 Let:

 C_MULTI_LOWER_BOUND = 0

 The following 4 emit conditional rules are used to determine the IDL type for a

DesignatedEntityNonEntityTypeCharacteristicReference's type. These rules use the

C_MULTI_LOWER_BOUND and C_MULTI_UPPER_BOUND determined by the C_MULTI conditional rule

above for each joining Characteristic:

 Emit Conditional Rule C_REF1:

 If C_MULTI_UPPER_BOUND of any of the joining Characteristics is unbounded, or the

DesignatedEntityNonEntityTypeCharacteristicReference's upperBound is unbounded, then the

type emitted is an unbounded sequence.

 Emit Conditional Rule C_REF2:

 If C_REF1 does not hold and C_MULTI_LOWER_BOUND <> C_MULTI_UPPER_BOUND for any of

the joining Characteristics, or

%%DesignatedEntityNonEntityTypeCharacteristicReference%.lowerBound% <>

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%, then the type

emitted is a bounded sequence whose bound is the product of all of the joining

Characteristic’s C_MULTI_UPPER_BOUND and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%.

 Let: C_UPPERBOUND_PRODUCT_VALUE = // the calculated product

 Emit Conditional Rule C_REF3:

 If C_REF1 and C_REF2 do not hold, and C_MULTI_UPPER_BOUND > 1 and

C_MULTI_LOWER_BOUND = C_MULTI_UPPER_BOUND for any of the joining Characteristics, or

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound% > 1 and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.lowerBound% =

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%, then the type

emitted is an array whose size is the product of all joining Characteristic’s

C_MULTI_UPPER_BOUND and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%.

 Let: C_UPPERBOUND_PRODUCT_VALUE = // the calculated product

 Emit Conditional Rule C_REF4:

 If C_REF1, C_REF2, and C_REF3 do not hold, then C_MULTI_UPPER_BOUND = 1 and

C_MULTI_LOWER_BOUND = 1 for all of the joining Characteristics, and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound% = 1 and its

%%DesignatedEntityNonEntityTypeCharacteristicReference%.lowerBound% = 1, and the type

emitted is unary.

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference

 Let:

 C_TYPE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.type.name

 C_ROLE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.rolename

 Condition: If C_REF1 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

478 Open Group Standard (2017)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE%

">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% "["

%C_UPPERBOUND_PRODUCT_VALUE% "]" ";"

 Condition: If C_REF4 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = %MEMBER_IDL_TYPE%

 Emit1: // Intentionally blank - emit nothing

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference KW_AS

StructuredTemplateElementMemberName

 Let:

 C_TYPE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.type.name

 C_ROLE_NAME = <StructuredTemplateElementMemberName>

 Condition: If C_REF1 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE%

">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% "["

%C_UPPERBOUND_PRODUCT_VALUE% "]" ";"

 Condition: If C_REF4 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = %MEMBER_IDL_TYPE%

FACE™ Technical Standard, Edition 3.0 479

 Emit1: // Intentionally blank - emit nothing

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

 Let:

 C_TYPE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.type.name

 C_ROLE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.rolename

 Condition: If C_REF1 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%

)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% "[" %C_UPPERBOUND_PRODUCT_VALUE% "]"

";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF4 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = %IDL_TYPE%

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

KW_AS StructuredTemplateElementMemberName

 Let:

 C_TYPE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.type.name

 C_ROLE_NAME = <StructuredTemplateElementMemberName>

 Condition: If C_REF1 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

480 Open Group Standard (2017)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%

)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% "[" %C_UPPERBOUND_PRODUCT_VALUE% "]"

";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF4 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = %IDL_TYPE%

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference

 Let:

 C_TYPE_NAME = %<IDLStructMemberReference>%.type.name

 C_ROLE_NAME = %<IDLStructMemberReference>%.rolename

 Condition: If C_REF1 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE%

">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

FACE™ Technical Standard, Edition 3.0 481

 MEMBER_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% "["

%C_UPPERBOUND_PRODUCT_VALUE% "]" ";"

 Condition: If C_REF4 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = %MEMBER_IDL_TYPE%

 Emit1: // Intentionally blank - emit nothing

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Let:

 C_TYPE_NAME = %<IDLStructMemberReference>%.type.name

 C_ROLE_NAME = <StructuredTemplateElementMemberName>

 Condition: If C_REF1 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 MEMBER_IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE%

">"

 MEMBER_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% "["

%C_UPPERBOUND_PRODUCT_VALUE% "]" ";"

 Emit1: %MEMBER_TYPE_NAME% %C_ROLE_NAME% ";"

 Condition: If C_REF4 holds:

 Let:

 MEMBER_IDL_TYPE = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = %MEMBER_IDL_TYPE%

 Emit1: // Intentionally blank - emit nothing

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

DEREF IDLStructMemberReference

 Let:

 C_TYPE_NAME = %<IDLStructMemberReference>%.type.name

 C_ROLE_NAME = %<IDLStructMemberReference>%.rolename

 Condition: If C_REF1 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

482 Open Group Standard (2017)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%

)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% "[" %C_UPPERBOUND_PRODUCT_VALUE% "]"

";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Emit1: %MEMBER_TYPE_NAME% %C_ROLE_NAME% ";"

 Condition: If C_REF4 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = %IDL_TYPE%

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

DEREF IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Let:

 C_TYPE_NAME = %<IDLStructMemberReference>%.type.name

 C_ROLE_NAME = <StructuredTemplateElementMemberName>

 Condition: If C_REF1 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF2 holds:

 Let:

 IDL_TYPE = "sequence" "<" %C_TYPE_NAME% "," %C_UPPERBOUND_PRODUCT_VALUE% ">"

 IDL_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

FACE™ Technical Standard, Edition 3.0 483

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% ";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF3 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%

)

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %IDL_TYPE% %IDL_TYPE_NAME% "[" %C_UPPERBOUND_PRODUCT_VALUE% "]"

";"

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

 Condition: If C_REF4 holds:

 Let:

 IDL_TYPE = %C_TYPE_NAME%

 IDL_TYPE_NAME = %IDL_TYPE%

 MEMBER_IDL_TYPE = "sequence" "<" %IDL_TYPE_NAME% "," "1" ">"

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Emit1: "typedef" %MEMBER_IDL_TYPE% %MEMBER_TYPE_NAME% ";"

Rule: GetExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceMemberIDLType

 // This rule was manufactured to facilitate the binding specification. It is not

 // a production rule in the Template grammar specification. Its Expression is the

 // ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression Rule's

 // Expression in the grammar.

 Expression: OptionalAnnotation? DesignatedEntityNonEntityTypeCharacteristicReference (

DEREF IDLStructMemberReference)? (KW_AS StructuredTemplateElementMemberName)?

 // The IDL type emitted for an

 // ExplicitDesignatedEntityNonEntityTypeCharacteristicReferenceExpression may be

 // a complex type based of the

 // DesignatedEntityNonEntityTypeCharacteristicReference's IDL type, such as an

 // array or sequence.

 // The C_MULTI and C_REF conditional rules below refer to Characteristics that

 // join the JoinPathEntityTypeReferences along the EntityTypeReferenceJoinPath

 // from the PrimaryEntityTypeTemplateMethodParameter's EntityTypeReference of

 // %CURRENT_STRUCTURED_TEMPLATE_ELEMENT% to the

 // DesignatedEntityNonEntityTypeCharacteristicReference's composing

 // DesignatedEntityTypeReference. An example EntityTypeReferenceJoinPath is

 // A.B.C, where A, B, and C are JoinPathEntityTypeReferences. Each L.R pair

 // in an EntityTypeReferenceJoinPath represents and is unambiguously traceable to

 // a Entity join in %%CURRENT_TEMPLATE%.boundQuery%. L and R represent the

 // Entitys specified in that join, and the "." represents the Characteristic used

 // to join them. In the example, there are 2 joins represented: the first is A.B

 // and the second is B.C. There are 2 joining Characteristics, one for each join:

 // one that joins A and B, and the other that joins B and C.

 // The C_MULTI condition determines the multiplicity of a joining Characteristic

 // for the subsequent C_REF conditional rules. In the C_MULTI condition, L

 // represents the Characteristic’s left JoinPathEntityTypeReference (the Entity

 // to the left of a "."), and R represents the Characteristic’s right

 // JoinPathEntityTypeReference (the Entity to the right of that ".").

 C_MULTI Conditional Rule:

 Let:

 JOIN_CHARACTERISTIC = face.datamodel.platform.Characteristic // a "."

 If %JOIN_CHARACTERISTIC% is a Composition or Participant of L, then:

484 Open Group Standard (2017)

 If %JOIN_CHARACTERISTIC% is not in the EntityTypeReferenceJoinPath between the

MainEntityTypeTemplateMethodDecl and the current UnionTypeDecl or

SupportingEntityTypeTemplateMethodDecl, then:

 Let:

 C_MULTI_UPPER_BOUND = %JOIN_CHARACTERISTIC%.upperBound

 C_MULTI_LOWER_BOUND = %JOIN_CHARACTERISTIC%.lowerBound

 Otherwise:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 If R is a SelectedEntity that is a SelectedEntityReference of a

SelectedEntityCharacteristicReference CharacteristicBasis in

%%CURRENT_TEMPLATE%.boundQuery%, then:

 Let:

 C_MULTI_LOWER_BOUND = 0

 Otherwise: // %JOIN_CHARACTERISTIC% is a Composition or Participant of R:

 If %JOIN_CHARACTERISTIC% is not in the EntityTypeReferenceJoinPath between the

MainEntityTypeTemplateMethodDecl and the current UnionTypeDecl or

SupportingEntityTypeTemplateMethodDecl, then:

 If %JOIN_CHARACTERISTIC% is a Composition, then:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 Otherwise: // %JOIN_CHARACTERISTIC% is a Participant

 Let:

 C_MULTI_UPPER_BOUND = %JOIN_CHARACTERISTIC%.sourceUpperBound

 C_MULTI_LOWER_BOUND = %JOIN_CHARACTERISTIC%.sourceLowerBound

 Otherwise:

 Let:

 C_MULTI_UPPER_BOUND = 1

 C_MULTI_LOWER_BOUND = 1

 If L is a SelectedEntity that is a SelectedEntityReference of a

SelectedEntityCharacteristicReference CharacteristicBasis in

%%CURRENT_TEMPLATE%.boundQuery%:

 Let:

 C_MULTI_LOWER_BOUND = 0

 The following 4 emit conditional rules are used to determine the IDL type for a

DesignatedEntityNonEntityTypeCharacteristicReference's type. These rules use the

C_MULTI_LOWER_BOUND and C_MULTI_UPPER_BOUND determined by the C_MULTI conditional rule

above for each joining Characteristic:

 Emit Conditional Rule C_REF1:

 If C_MULTI_UPPER_BOUND of any of the joining Characteristics is unbounded, or the

DesignatedEntityNonEntityTypeCharacteristicReference's upperBound is unbounded, then the

type emitted is an unbounded sequence.

 Emit Conditional Rule C_REF2:

 If C_REF1 does not hold and C_MULTI_LOWER_BOUND <> C_MULTI_UPPER_BOUND for any of

the joining Characteristics, or

%%DesignatedEntityNonEntityTypeCharacteristicReference%.lowerBound% <>

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%, then the type

emitted is a bounded sequence whose bound is the product of all of the joining

Characteristic’s C_MULTI_UPPER_BOUND and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%.

FACE™ Technical Standard, Edition 3.0 485

 Let: C_UPPERBOUND_PRODUCT_VALUE = // the calculated product

 Emit Conditional Rule C_REF3:

 If C_REF1 and C_REF2 do not hold, and C_MULTI_UPPER_BOUND > 1 and

C_MULTI_LOWER_BOUND = C_MULTI_UPPER_BOUND for any of the joining Characteristics, or

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound% > 1 and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.lowerBound% =

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%, then the type

emitted is an array whose size is the product of all joining Characteristic’s

C_MULTI_UPPER_BOUND and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound%.

 Let: C_UPPERBOUND_PRODUCT_VALUE = // the calculated product

 Emit Conditional Rule C_REF4:

 If C_REF1, C_REF2, and C_REF3 do not hold, then C_MULTI_UPPER_BOUND = 1 and

C_MULTI_LOWER_BOUND = 1 for all of the joining Characteristics, and

%%DesignatedEntityNonEntityTypeCharacteristicReference%.upperBound% = 1 and its

%%DesignatedEntityNonEntityTypeCharacteristicReference%.lowerBound% = 1, and the type

emitted is unary.

 Let:

 C_TYPE_NAME = %<DesignatedEntityNonEntityTypeCharacteristicReference>%.type.name

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference KW_AS

StructuredTemplateElementMemberName

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference

 Variant: DesignatedEntityNonEntityTypeCharacteristicReference DEREF

IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Condition: If C_REF1 holds:

 Let:

 MEMBER_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 Return: %MEMBER_TYPE_NAME%

 Condition: If C_REF2 holds:

 Let:

 MEMBER_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Return: %MEMBER_TYPE_NAME%

 Condition: If C_REF3 holds:

 Let:

 MEMBER_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" ,

%C_TYPE_NAME%)

 Return: %MEMBER_TYPE_NAME%

 Condition: If C_REF4 holds:

 Let:

 MEMBER_TYPE_NAME = %C_TYPE_NAME%

 Return: %MEMBER_TYPE_NAME%

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

KW_AS StructuredTemplateElementMemberName

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

DEREF IDLStructMemberReference

 Variant: OptionalAnnotation DesignatedEntityNonEntityTypeCharacteristicReference

DEREF IDLStructMemberReference KW_AS StructuredTemplateElementMemberName

 Condition: If C_REF1 holds:

486 Open Group Standard (2017)

 Let:

 IDL_TYPE_NAME = ("Seq_" , %C_TYPE_NAME%)

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Return: %MEMBER_TYPE_NAME%

 Condition: If C_REF2 holds:

 Let:

 IDL_TYPE_NAME = ("Seq_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%)

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Return: %MEMBER_TYPE_NAME%

 Condition: If C_REF3 holds:

 Let:

 IDL_TYPE_NAME = ("Array_" , %C_UPPERBOUND_PRODUCT_VALUE% , "_" , %C_TYPE_NAME%

)

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Return: %MEMBER_TYPE_NAME%

 Condition: If C_REF4 holds:

 Let:

 IDL_TYPE_NAME = %C_TYPE_NAME%

 MEMBER_TYPE_NAME = ("Opt_" , %IDL_TYPE_NAME%)

 Return: %MEMBER_TYPE_NAME%

Rule: StructuredTemplateElementTypeReferenceParameter

 Expression: (EntityTypeStructuredTemplateElementDeclaredParameterReference EQUALS)?

DesignatedEntityTypeReferencePath

 Return: <DesignatedEntityTypeReferencePath>

Rule: ExternalTemplateTypeReference

 Expression: IDENTIFIER

 Return: face.datamodel.platform.Template[%IDENTIFIER%]

Rule: ExternalTemplateTypeAlias

 Expression: IDENTIFIER

 Emit1: %IDENTIFIER%

Rule: ExternalStructuredTemplateElementTypeReference

 Expression: IDENTIFIER

 Emit1: %IDENTIFIER%

Rule: ExternalStructuredTemplateElementTypeAlias

 Expression: IDENTIFIER

 Emit1: %IDENTIFIER%

Rule: EntityTypeStructuredTemplateElementTypeReference

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: StructuredTemplateElementMemberName

FACE™ Technical Standard, Edition 3.0 487

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: TemplateElementTypeName

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: EquivalentEntityTypeTemplateMethodReference

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: DesignatedEquivalentEntityNonEntityTypeCharacteristicReference

 Expression: EquivalentEntityTypeTemplateMethodParameterReference PERIOD

EquivalentEntityTypeTemplateMethodCharacteristicReference

 Return: <EquivalentEntityTypeTemplateMethodCharacteristicReference>

Rule: EquivalentEntityTypeTemplateMethodCharacteristicReference

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: DesignatedEntityNonEntityTypeCharacteristicReference

 Alternate: DesignatedEntityTypeReferencePath PERIOD

QueryProjectedNonEntityTypeCharacteristicReference

 Return:

face.datamodel.platform.Composition[%<QueryProjectedNonEntityTypeCharacteristicReference>

%]

 Alternate: QueryProjectedNonEntityTypeCharacteristicReferenceOrAlias

 Return:

face.datamodel.platform.Composition[%<QueryProjectedNonEntityTypeCharacteristicReferenceO

rAlias>%]

Rule: DesignatedEntityEnumerationTypeCharacteristicReference

 Alternate: DesignatedEntityTypeReferencePath PERIOD

QueryProjectedEnumerationTypeCharacteristicReference

 Return:

face.datamodel.platform.Composition[%<QueryProjectedEnumerationTypeCharacteristicReferenc

e>%]

 Alternate: QueryProjectedEnumerationTypeCharacteristicReferenceOrAlias

 Return:

face.datamodel.platform.Composition[%<QueryProjectedEnumerationTypeCharacteristicReferenc

eOrAlias>%]

Rule: DesignatedEntityTypeReferencePath

 Expression: ExplicitEntityTypeReferenceJoinPath? DesignatedEntityTypeReference

 Return: <DesignatedEntityTypeReference>

Rule: DesignatedEntityTypeReference

 Expression: QualifiedEntityTypeReference

 Return: <QualifiedEntityTypeReference>

488 Open Group Standard (2017)

Rule: QualifiedEntityTypeReference

 Expression: EntityTypeReference EntityCharacteristicValueQualifier?

 Return: <EntityTypeReference>

Rule: EntityTypeReference

 Expression: QuerySelectedEntityTypeReferenceOrAlias

 Return: face.datamodel.platform.Entity[%<QuerySelectedEntityTypeReferenceOrAlias>%]

Rule: IDLStructMemberReference

 Expression: IDENTIFIER

 Return: face.datamodel.platform.IDLComposition[%IDENTIFIER%]

Rule: EnumLiteralReferenceExpression

 Expression: LEFT_BRACE EnumerationTypeReference COLON EnumerationLiteralReference

RIGHT_BRACE

 Return: %<EnumerationLiteralReference>%.name

Rule: EnumerationLiteralReference

 Expression: IDENTIFIER

 Return: face.datamodel.logical.EnumerationLabel[%IDENTIFIER%]

Rule: QueryProjectedNonEntityTypeCharacteristicReferenceOrAlias

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: QueryProjectedNonEntityTypeCharacteristicReference

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: QueryProjectedEnumerationTypeCharacteristicReferenceOrAlias

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: QueryProjectedEnumerationTypeCharacteristicReference

 Expression: IDENTIFIER

 Return: IDENTIFIER

Rule: QuerySelectedEntityTypeReferenceOrAlias

 Expression: IDENTIFIER

 Return: IDENTIFIER

// The following Rule specifies the IDL mappings for face.datamodel.platform.IDLType.

Rule: PlatformIDLType

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is not in the Template grammar, but is instead a

 // meta-type in the Data Architecture meta-model.

 Expression: face.datamodel.platform.IDLType

FACE™ Technical Standard, Edition 3.0 489

 Let:

 PLATFORM_IDLTYPE = THIS

 PLATFORM_IDLTYPE_NAME = %PLATFORM_IDLTYPE%.name

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Boolean:

 Emit1: "typedef" "boolean" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Octet:

 Emit1: "typedef" "octet" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Char:

 Emit1: "typedef" "char" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.WChar:

 Emit1: "typedef" "wchar" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.CharArray:

 Emit1: "typedef" "char" %PLATFORM_IDLTYPE_NAME% "[" %%PLATFORM_IDLTYPE%.length% "]"

";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.WCharArray:

 Emit1: "typedef" "wchar" %PLATFORM_IDLTYPE_NAME% "[" %%PLATFORM_IDLTYPE%.length%

"]" ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.String:

 Emit1: "typedef" "string" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.WString:

 Emit1: "typedef" "wstring" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.BoundedString:

 Emit1: "typedef" "string" "<" %%PLATFORM_IDLTYPE%.maxLength% ">"

%PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.BoundedWString:

 Emit1: "typedef" "wstring" "<" %%PLATFORM_IDLTYPE%.maxLength% ">"

%PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Short:

 Emit1: "typedef" "short" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Long:

 Emit1: "typedef" "long" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.LongLong:

 Emit1: "typedef" "long" "long" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.UShort:

 Emit1: "typedef" "unsigned" "short" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.ULong:

 Emit1: "typedef" "unsigned" "long" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.ULongLong:

490 Open Group Standard (2017)

 Emit1: "typedef" "unsigned" "long" "long" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Float:

 Emit1: "typedef" "float" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Double:

 Emit1: "typedef" "double" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.LongDouble:

 Emit1: "typedef" "long" "double" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Fixed:

 Emit1: "typedef" "fixed" "<" %%PLATFORM_IDLTYPE%.digits%,

%%PLATFORM_IDLTYPE%.scale% ">" %PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.IDLSequence:

 Emit1: "typedef" "sequence" "<" "octet" "," %%PLATFORM_IDLTYPE%.maxSize% ">"

%PLATFORM_IDLTYPE_NAME% ";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.IDLArray:

 Emit1: "typedef" "octet" %PLATFORM_IDLTYPE_NAME% "[" %%PLATFORM_IDLTYPE%.size% "]"

";"

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.Enumeration:

 Let:

 VTU = %PLATFORM_IDLTYPE%.realizes.measurementAxis.valueTypeUnit

 Condition: If %%VTU%.constraint% is not the empty set (i.e. is specified):

 // constaint is face.datamodel.logical.EnumerationConstraint

 Emit1: { %%VTU%.constraint% => <LogicalEnumerationConstraint> }

 Condition: If %%VTU%.constraint% is the empty set (i.e. not specified):

 // valueType is a face.datamodel.logical.Enumerated

 Emit1: { %%VTU%.valueType% => <LogicalEnumerated> }

 Condition: If %PLATFORM_IDLTYPE% is a face.datamodel.platform.IDLStruct:

 // Generate IDL types for its composed member’s types

 For each face.datamodel.platform.IDLComposition in

%%PLATFORM_IDLTYPE%.composition%:

 Let:

 MEMBER = face.datamodel.platform.IDLComposition

 Emit1: { %%MEMBER%.type% => <PlatformIDLType> }

 // Now generate an IDL Struct for this IDLStruct

 Emit1: "struct" %PLATFORM_IDLTYPE_NAME% "{"

 // Generate the IDLStruct’s members

 For each face.datamodel.platform.IDLComposition in

%%PLATFORM_IDLTYPE%.composition%:

 Let:

 MEMBER = face.datamodel.platform.IDLComposition

 Emit1: %%MEMBER%.type.name% %%MEMBER%.rolename% ";"

FACE™ Technical Standard, Edition 3.0 491

 Emit1: "}" ";"

Rule: LogicalEnumerated

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is not in the Template grammar, but is instead a

 // meta-type in the Data Architecture meta-model.

 Expression: face.datamodel.logical.Enumerated

 Let:

 ENUM = THIS

 For each face.datamodel.logical.EnumerationLabel in %%ENUM%.label%

 Let:

 LABEL = face.datamodel.logical.EnumerationLabel

 Condition: If %LABEL% is the first EnumerationLabel in %%ENUM%.label%:

 Emit1: %%LABEL%.name%

 Condition: If %LABEL% is not the first EnumerationLabel in %%ENUM%.label%:

 Emit1: "," %%LABEL%.name%

Rule: LogicalEnumerationConstraint

 // This rule was manufactured to facilitate the binding specification.

 // It is not a production rule in the Template grammar specification.

 // Its Expression is not in the Template grammar, but is instead a

 // meta-type in the Data Architecture meta-model.

 Expression: face.datamodel.logical.EnumerationConstraint

 Let:

 CONSTRAINT = THIS

 For each face.datamodel.logical.EnumerationLabel in %%CONSTRAINT%.allowedValue%

 Let:

 LABEL = face.datamodel.logical.EnumerationLabel

 Condition: If %LABEL% is the first EnumerationLabel in %%CONSTRAINT%.allowedValue%:

 Emit1: %%LABEL%.name%

 Condition: If %LABEL% is not the first EnumerationLabel in

%%CONSTRAINT%.allowedValue%:

 Emit1: "," %%LABEL%.name%

492 Open Group Standard (2017)

K Supporting Constructs for IDL to Programming
Language Mappings

K.1 C Programming Language

K.1.1 Basic Type Mapping

//! @file FACE/types.h

//! @brief Definitions of C types for IDL basic types to C mapping

//! @details This file contains editable type definitions for C types that

//! align with the size and range requirements given in the IDL basic types

//! to C mapping. Because C types' sizes and ranges are platform-dependent,

//! implementations are responsible for supplying full type definitions.

#ifndef _FACE_TYPES_H

#define _FACE_TYPES_H

typedef EDITME FACE_short;

typedef EDITME FACE_long;

typedef EDITME FACE_long_long;

typedef EDITME FACE_unsigned_short;

typedef EDITME FACE_unsigned_long;

typedef EDITME FACE_unsigned_long_long;

typedef EDITME FACE_float;

typedef EDITME FACE_double;

typedef EDITME FACE_long_double;

typedef EDITME FACE_char;

typedef EDITME FACE_boolean;

typedef EDITME FACE_octet;

#endif /* _FACE_TYPES_H */

K.1.2 FACE_interface_return Specification

//! @file FACE/interface.h

//! @brief Definition of FACE_interface_return.

#ifndef _FACE_INTERFACE_H

#define _FACE_INTERFACE_H

/** @brief Return codes used to report certain runtime errors for

 FACE Standardized Interfaces. */

typedef enum FACE_interface_return {

 FACE_INTERFACE_NO_ERROR, /**< No error has occurred. */

 FACE_INTERFACE_INSUFFICIENT_MEMORY, /**< (ctor only) An implementation is

 unable to allocate enough memory

 for initialization. */

 FACE_INTERFACE_NULL_THIS, /**< The "this_obj" parameter is a

 NULL pointer */

 FACE_INTERFACE_NULL_PARAM, /**< One or more other parameters is a

 NULL pointer */

} FACE_interface_return;

#endif //_FACE_INTERFACE_H

K.1.3 FACE_sequence Specification

//! @file FACE/sequence.h

//! @brief Interface for operating on a generic sequence of elements.

FACE™ Technical Standard, Edition 3.0 493

#ifndef _FACE_SEQUENCE_H

#define _FACE_SEQUENCE_H

#include <FACE/types.h>

#include <limits.h>

#include <stddef.h>

/**

 * @brief Interface for operating on a generic sequence of elements.

 * @details A FACE_sequence is defined by three characteristics:

 * - length - the current number of elements in the FACE_sequence

 * - element size - the size of each element

 * - bound - the maximum number of elements the FACE_sequence can ever

 * hold. This bound is logical, and is independent from the size

 * of any underlying memory. A FACE_sequence's bound is fixed

 * throughout the lifetime of the FACE_sequence. An "unbounded"

 * FACE_sequence has an infinite bound, represented by

 * FACE_SEQUENCE_UNBOUNDED_SENTINEL.

 * - capacity - the number of elements a FACE_sequence has currently

 * allocated memory for. This may vary by implementation, but

 * length <= capacity <= bound is always true.

 *

 * A "managed" FACE_sequence is responsible for and manages the lifetime of

 * the memory for the data it represents. An "unmanaged" FACE_sequence

 * essentially wraps a pointer to memory whose lifetime is managed

 * elsewhere.

 *

 * A FACE_sequence is "initialized" if it is in a state that could have

 * resulted from successful initialization by one of the "_init" functions.

 * Any other state makes the FACE_sequence "uninitialized".

 *

 * When a memory allocation failure or precondition violation occurs, a

 * FACE_sequence is put into a known "invalid state". In this invalid state:

 * - length, capacity, and bound are 0

 * - FACE_sequence_buffer() will return NULL

 * - FACE_sequence_is_managed() and FACE_sequence_is_bounded() will

 * return FALSE

 * The FACE_sequence_is_valid() function indicates whether or not a

 * FACE_sequence is in this state.

 *

 * Global preconditions:

 * - In every function, if the @p this_obj parameter is NULL, the function

 * does nothing and returns FACE_SEQUENCE_NULL_THIS.

 * - In every _init function, if this_obj is already initialized,

 * FACE_SEQUENCE_PRECONDITION_VIOLATED is returned and the state of

 * this_obj is not modified.

 * - In every non _init function, if this_obj has not been initialized,

 * FACE_SEQUENCE_PRECONDITION_VIOLATED is returned and the state of

 * this_obj is not modified.

 */

typedef struct {

 /* implementation-specific */

} FACE_sequence;

/** @brief Return codes used to report certain runtime errors. */

typedef enum FACE_sequence_return {

 FACE_SEQUENCE_NO_ERROR, /**< No error has occurred. */

 FACE_SEQUENCE_INSUFFICIENT_BOUND, /**< Executing a function would cause

 a FACE_sequence's length to

 exceed its bound. */

 FACE_SEQUENCE_INSUFFICIENT_MEMORY, /**< A FACE_sequence is unable to

 allocate enough memory to perform

 some function. */

 FACE_SEQUENCE_PRECONDITION_VIOLATED, /**< A precondition of some function

 has been violated. */

 FACE_STRING_NULL_THIS, /**< The "this_obj" parameter is a NULL

 pointer */

 FACE_SEQUENCE_NULL_PARAM, /**< One or more other parameters is a

 NULL pointer */

 FACE_SEQUENCE_INVALID_PARAM /**< A FACE_sequence parameter is

494 Open Group Standard (2017)

 invalid. */

} FACE_sequence_return;

/** @brief Value representing the bound of an unbounded FACE_sequence. */

#define FACE_SEQUENCE_UNBOUNDED_SENTINEL ((FACE_unsigned_long) UINT_MAX)

/**

 * @brief Managed unbounded initialization - initializes empty managed

 * unbounded FACE_sequence

 * @details (see #FACE_string_init_managed_unbounded)

 *

 * After initialization, FACE_sequence_buffer() will return NULL.

 *

 * @param this_obj the FACE_sequence to be initialized

 * @param sizeof_T the size of each element in @p this_obj

 */

FACE_sequence_return FACE_sequence_init_managed_unbounded(

 FACE_sequence* this_obj,

 size_t sizeof_T

);

/**

 * @brief Managed bounded initialization - initializes empty managed

 * FACE_sequence of specified bound

 * @details (see #FACE_string_init_managed_bounded)

 *

 * If allocation is successful, FACE_sequence_buffer() will return NULL.

 *

 * @param this_obj the FACE_sequence to be initialized

 * @param sizeof_T the size of each element in @p this_obj

 * @param bound the specified bound for @p this_obj to be initialized with

 */

FACE_sequence_return FACE_sequence_init_managed_bounded(

 FACE_sequence* this_obj,

 size_t sizeof_T,

 FACE_unsigned_long bound

);

/**

 * @brief Managed copy initialization

 * @details (see #FACE_string_init_managed_copy)

 */

FACE_sequence_return FACE_sequence_init_managed_copy(

 FACE_sequence* this_obj,

 FACE_sequence* src

);

/**

 * @brief Managed array initialization

 * @details After initialization, this FACE_sequence manages its own data,

 * which is a copy of the @p length elements of size @p sizeof_T in the

 * array pointed to by @p arr, and the bound of @p this_obj is equal to

 * @p length.

 *

 * Preconditions:

 * - arr != NULL

 * - arr is not empty

 * - sizeof_T != 0

 * - length != 0

 * When calling this function, if any of these preconditions are false,

 * - FACE_SEQUENCE_NULL_PARAM will be returned (if arr is NULL) or

 * FACE_SEQUENCE_PRECONDITION_VIOLATED will be returned (if any other

 * precondition is violated)

 * - @p this_obj is put into the invalid state

 *

 * If no preconditions are violated and memory allocation fails:

 * - FACE_SEQUENCE_INSUFFICIENT_MEMORY will be returned

 * - @p this_obj is put into the invalid state

 *

 * The caller must ensure @p length * @p sizeof_T is not greater than the

 * size of the memory allocated at @p arr. If this condition is violated,

FACE™ Technical Standard, Edition 3.0 495

 * the result is implementation-defined behavior and may result in an

 * attempt to access restricted memory.

 *

 * @param this_obj the FACE_sequence to be initialized

 * @param arr a pointer to the array

 * @param sizeof_T the size of each element in the array

 * @param length the number of elements in the array

 *

 * @retval FACE_SEQUENCE_NULL_THIS if @p this_obj is null

 * @retval FACE_SEQUENCE_PRECONDITION_VIOLATED if @p this_obj is already

 * initialized or any other preconditions are false

 * @retval FACE_SEQUENCE_NULL_PARAM if @p arr is null

 * @retval FACE_SEQUENCE_INSUFFICIENT_MEMORY if memory allocation fails

 * @retval FACE_SEQUENCE_NO_ERROR otherwise.

 */

FACE_sequence_return FACE_sequence_init_managed_data(

 FACE_sequence* this_obj,

 const void * arr,

 size_t sizeof_T,

 FACE_unsigned_long length

);

/**

 * @brief Unmanaged initialization

 * @details (see #FACE_string_init_unmanaged)

 *

 * The caller must ensure @p bound * @p sizeof_T is not greater than the

 * size of the memory allocated at @p src. If this condition is violated,

 * the result is implementation-defined behavior and may result in an

 * attempt to access restricted memory.

 *

 * Preconditions:

 * - src != NULL

 * - length <= bound

 * - bound != 0 (no empty unmanaged sequences)

 * - bound != UNBOUNDED_SENTINEL (no unbounded unmanaged sequences)

 * - sizeof_T != 0

 * When calling this function, if any of these preconditions are false,

 * - FACE_SEQUENCE_NULL_PARAM will be returned (if src is NULL) or

 * - FACE_SEQUENCE_PRECONDITION_VIOLATED will be returned (if any other

 * preconditions are violated)

 * - @p this_obj is put into the invalid state

 *

 * @param this_obj a pointer to the FACE_sequence to be initialized

 * @param src pointer to externally managed memory

 * @param length the number of elements in the memory pointed to by @p src

 * @param sizeof_T the size of each element in the memory pointed to by

 * @p src

 * @param bound the number of elements the externally managed memory can

 * hold.

 * Also serves as a capacity.

 */

FACE_sequence_return FACE_sequence_init_unmanaged(

 FACE_sequence* this_obj,

 void * src,

 size_t sizeof_T,

 FACE_unsigned_long length,

 FACE_unsigned_long bound

);

/**

 * @brief Frees any data managed by @p this_obj.

 * @details (see #FACE_string_free)

 */

FACE_sequence_return FACE_sequence_free(FACE_sequence* this_obj);

/**

 * @brief Clears @p this_obj's data.

 * @details (see #FACE_string_clear)

 */

FACE_sequence_return FACE_sequence_clear(FACE_sequence* this_obj);

496 Open Group Standard (2017)

/**

 * @brief Adds a copy of @p src's data to the @p this_obj's data

 * @details (see #FACE_string_append)

 */

FACE_sequence_return FACE_sequence_append(

 FACE_sequence* this_obj,

 const FACE_sequence* src

);

/**

 * @brief Gets the element at a given index.

 * @details (see #FACE_sequence_at)

 *

 * @retval NULL if @p this_obj is null, not initialized, or if index is out

 * of range

 * @retval a const pointer to the element at the given index otherwise.

 */

const void * FACE_sequence_at(

 const FACE_sequence* this_obj,

 FACE_unsigned_long index

);

/**

 * @brief Returns pointer to @p this_obj's underlying data

 * @details To avoid accessing restricted memory, the caller should avoid

 * dereferencing memory beyond buffer + length*(the size of each element).

 *

 * @retval NULL if @p this_obj is null or not initialized

 * @retval a pointer to contiguous memory for @p this_obj's data otherwise

 */

const void * FACE_sequence_buffer(const FACE_sequence* this_obj);

/**

 * @brief Gets the length of @p this_obj.

 * @details (see #FACE_string_length)

 */

FACE_sequence_return FACE_sequence_length(

 const FACE_sequence* this_obj,

 FACE_unsigned_long* length

);

/**

 * @brief Gets the capacity of @p this_obj.

 * @details (see #FACE_string_capacity)

 */

FACE_sequence_return FACE_sequence_capacity(

 const FACE_sequence* this_obj,

 FACE_unsigned_long* capacity

);

/**

 * @brief Gets the bound of @p this_obj.

 * @details (see #FACE_string_bound)

 */

FACE_sequence_return FACE_sequence_bound(

 const FACE_sequence* this_obj,

 FACE_unsigned_long* bound

);

/**

 * @brief Gets whether or not @p this_obj is managed.

 * @details (see #FACE_string_is_managed)

 */

FACE_sequence_return FACE_sequence_is_managed(

 const FACE_sequence* this_obj,

 FACE_boolean* is_managed

);

/**

 * @brief Gets whether or not @p this_obj is bounded.

FACE™ Technical Standard, Edition 3.0 497

 * @details (see #FACE_string_is_bounded)

 */

FACE_sequence_return FACE_sequence_is_bounded(

 const FACE_sequence* this_obj,

 FACE_boolean* is_bounded

);

/**

 * @brief Gets whether or not @p this_obj is in the invalid state.

 * @details (see #FACE_string_is_valid)

 */

FACE_sequence_return FACE_sequence_is_valid(

 const FACE_sequence* this_obj,

 FACE_boolean* is_valid

);

#endif /* _FACE_SEQUENCE_H */

K.1.4 FACE_string Specification

//! @file FACE/string.h

//! @brief Interface for operating on a sequence of characters.

#ifndef _FACE_STRING_H

#define _FACE_STRING_H

#include <FACE/types.h>

#include <limits.h>

/**

 * @brief Interface for operating on a sequence of characters.

 * @details A FACE_string is defined by three characteristics:

 * - length - the current number of characters (excluding NUL)

 * in the FACE_string

 * - bound - the maximum number of characters (excluding NUL)

 * the FACE_string can ever hold. This bound is logical, and is

 * independent from the size of any underlying memory.

 * A FACE_string's bound is fixed throughout the lifetime of the

 * FACE_string. An "unbounded" FACE_string has an infinite bound,

 * represented by FACE_STRING_UNBOUNDED_SENTINEL.

 * - capacity - the number of characters (excluding NUL)

 * a FACE_string has currently allocated memory for. This may

 * vary by implementation, but length <= capacity <= bound is

 * always true.

 *

 * A "managed" FACE_string is responsible for and manages the lifetime of

 * the memory for the data it represents. An "unmanaged" FACE_string

 * essentially wraps a pointer to memory whose lifetime is managed

 * elsewhere.

 *

 * A FACE_string is "initialized" if it is in a state that could have

 * resulted from successful initialization by one of the "_init" functions.

 * Any other state makes the FACE_string "uninitialized".

 *

 * When a memory allocation failure or precondition violation occurs, a

 * FACE_string is put into a known "invalid state". In this invalid state:

 * - length, capacity, and bound are 0

 * - FACE_string_buffer() will return NULL

 * - FACE_string_is_managed() and FACE_string_is_bounded() will return

 * FALSE

 * The FACE_string_is_valid() function indicates whether or not a

 * FACE_string is in this state.

 *

 * Global preconditions:

 * - In every function, if the @p this_obj parameter is NULL, the function

 * does nothing and returns FACE_STRING_NULL_THIS.

 * - In every _init function, if this_obj is already initialized,

 * FACE_STRING_PRECONDITION_VIOLATED is returned and the state of this_obj

 * is not modified.

 * - In every non _init function, if this_obj has not been initialized,

498 Open Group Standard (2017)

 * FACE_STRING_PRECONDITION_VIOLATED is returned and the state of this_obj

 * is not modified.

 */

typedef struct {

 /* implementation-specific */

} FACE_string;

/** @brief Return codes used to report certain runtime errors. */

typedef enum FACE_string_return {

 FACE_STRING_NO_ERROR, /**< No error has occurred. */

 FACE_STRING_INSUFFICIENT_BOUND, /**< Executing a function would cause a

 FACE_string's length to exceed its

 bound. */

 FACE_STRING_INSUFFICIENT_MEMORY, /**< A FACE_string is unable to

 allocate enough memory to perform

 some function. */

 FACE_STRING_PRECONDITION_VIOLATED, /**< A precondition of some function

 has been violated. */

 FACE_STRING_NULL_THIS, /**< The "this_obj" parameter is a NULL

 pointer */

 FACE_STRING_NULL_PARAM, /**< One or more other parameters is a

 NULL pointer */

 FACE_STRING_INVALID_PARAM /**< A FACE_string parameter is

 invalid. */

} FACE_string_return;

/** @brief Value representing the bound of an unbounded FACE_string. */

#define FACE_STRING_UNBOUNDED_SENTINEL ((FACE_unsigned_long) UINT_MAX)

/**

 * @brief Managed unbounded initialization - initializes empty managed

 * unbounded FACE_string

 * @details No memory is allocated. After initialization,

 * - length will be 0

 * - capacity will be 0

 * - bound will be FACE_STRING_UNBOUNDED_SENTINEL

 * - FACE_string_buffer() will get the empty string

 *

 * @param this_obj the FACE_string to be initialized.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is already

 * initialized

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_init_managed_unbounded(

 FACE_string* this_obj

);

/**

 * @brief Managed bounded initialization - initializes empty managed

 * FACE_string of specified bound

 * @details Memory may or may not be allocated.

 *

 * Preconditions:

 * - bound != 0

 * - bound != FACE_STRING_UNBOUNDED_SENTINEL

 * When calling this function, if any of these preconditions are false,

 * - FACE_STRING_PRECONDITION_VIOLATED will be returned

 * - @p this_obj is put into the invalid state

 *

 * While the implementation does not have to allocate memory equal in

 * size to the requested bound, memory allocation may still fail. If no

 * preconditions are violated and memory allocation fails:

 * - FACE_STRING_INSUFFICIENT_MEMORY will be returned

 * - @p this_obj is put into the invalid state

 *

 * Otherwise:

 * - length will be 0

 * - capacity will be the current capacity

 * - bound will be the specified bound

FACE™ Technical Standard, Edition 3.0 499

 * - FACE_string_buffer() will get the empty string

 *

 * @param this_obj the FACE_string to be initialized

 * @param bound the specified bound for the @p this_obj to be initialized

 * with

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is already

 * initialized or if any other preconditions are false

 * @retval FACE_STRING_INSUFFICIENT_MEMORY if memory allocation fails

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_init_managed_bounded(

 FACE_string* this_obj,

 FACE_unsigned_long bound

);

/**

 * @brief Managed copy initialization

 * @details After initialization, @p this_obj manages its own data, which is

 * a copy of @p src's data, and has the same bound as @p src.

 *

 * Preconditions:

 * - @p src != NULL

 * - @p src is initialized

 * When calling this function, if any of these preconditions are false,

 * - FACE_STRING_NULL_PARAM will be returned (if src is NULL) or

 * FACE_STRING_PRECONDITION_VIOLATED will be returned (if src is not

 * initialized)

 * - @p this_obj is put into the invalid state

 *

 * If no preconditions are violated and memory allocation fails:

 * - FACE_STRING_INSUFFICIENT_MEMORY will be returned

 * - @p this_obj is put into the invalid state

 *

 * @param this_obj the FACE_string to be initialized

 * @param src the FACE_string to initialize @p this_obj with

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is already

 * initialized or if @p src is not initialized

 * @retval FACE_STRING_NULL_PARAM if @p src is null

 * @retval FACE_STRING_INVALID_PARAM if @p src is in the invalid state

 * @retval FACE_STRING_INSUFFICIENT_MEMORY if memory allocation fails

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_init_managed_copy(

 FACE_string* this_obj,

 FACE_string* src

);

/**

 * @brief Managed C-string initialization

 * @details After initialization, @p this_obj manages its own data, which is

 * a copy of @p cstr, and the bound of @p this_obj is equal to @p cstr's

 * length.

 *

 * Preconditions:

 * - cstr != NULL

 * - cstr is not empty

 * When calling this function, if any of these preconditions are false,

 * - FACE_STRING_NULL_PARAM will be returned (if cstr is NULL) or

 * FACE_STRING_PRECONDITION_VIOLATED will be returned (if cstr is not

 * empty)

 * - @p this_obj is put into the invalid state

 *

 * If no preconditions are violated and memory allocation fails:

 * - FACE_STRING_INSUFFICIENT_MEMORY will be returned

 * - @p this_obj is put into the invalid state

 *

 * @param this_obj the FACE_string to be initialized

500 Open Group Standard (2017)

 * @param cstr a NUL-terminated string to initialize @p this_obj's data with

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is already

 * initialized or if @p cstr is empty

 * @retval FACE_STRING_NULL_PARAM if @p cstr is null

 * @retval FACE_STRING_INSUFFICIENT_MEMORY if memory allocation fails

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_init_managed_cstring(

 FACE_string* this_obj,

 const char * cstr

);

/**

 * @brief Unmanaged initialization

 * @details After initialization, @p this_obj does not manage its own data,

 * but instead serves as a wrapper to the data pointed to by @p src.

 *

 * The caller must ensure @p bound (plus space for NUL)

 * is not greater than the size of the memory allocated at @p src.

 * If this condition is violated, the result is implementation-defined

 * behavior and may result in an attempt to access restricted memory.

 *

 * The capacity of @p this_obj will be equal to its bound, because the

 * externally managed memory has a fixed size, which is both a bound and a

 * capacity.

 *

 * Preconditions:

 * - src != NULL

 * - length <= bound

 * - bound != 0 (no empty unmanaged strings)

 * - bound != UNBOUNDED_SENTINEL (no unbounded unmanaged strings)

 * When calling this function, if any of these preconditions are false,

 * - FACE_STRING_NULL_PARAM will be returned (if src is NULL) or

 * - FACE_STRING_PRECONDITION_VIOLATED will be returned (if any other

 * preconditions are violated)

 * - @p this_obj is put into the invalid state

 *

 * Otherwise:

 * - FACE_STRING_NO_ERROR will be returned

 * - length will be the specified length

 * - capacity will return the specified capacity (bound)

 * - bound() will return the specified bound

 * - FACE_string_buffer() will return a pointer to the externally managed

 * memory

 *

 * @param this_obj a pointer to the FACE_string to be initialized

 * @param src pointer to externally managed memory

 * @param length the number of characters (excluding the NUL character) in

 * the memory pointed to by @p src

 * @param bound the number of characters (excluding the NUL character)

 * the externally managed memory can hold. Also serves as a capacity.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is already

 * initialized or any other preconditions are false

 * @retval FACE_STRING_NULL_PARAM if @p src is null

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_init_unmanaged(

 FACE_string* this_obj,

 char* src,

 FACE_unsigned_long length,

 FACE_unsigned_long bound

);

/**

 * @brief Frees any data managed by @p this_obj.

 * @details If any preconditions are violated, @p this_obj's state remains

 * unchanged.

FACE™ Technical Standard, Edition 3.0 501

 *

 * Preconditions:

 * - @p this_obj is managed

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized or any other preconditions are false

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_free(FACE_string* this_obj);

/**

 * @brief Clears @p this_obj's data.

 * @details If any preconditions are violated, @p this_obj's state remains

 * unchanged.

 *

 * Otherwise, all data is cleared, and @p this_obj's length will be set

 * to 0. Memory allocation remains unchanged.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized or any other preconditions are false

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_clear(FACE_string* this_obj);

/**

 * @brief Adds a copy of @p src's data to the @p this_obj's data

 * @details This is the only FACE_string function that may reallocate

 * managed memory. If append is successful, the length of this String

 * changes accordingly; capacity may or may not be changed.

 * If append is unsuccessful, @p this_obj's state remains unchanged.

 *

 * Preconditions:

 * - @p src != NULL

 * - @p src is initialized

 * When calling this function, if any of these preconditions are false,

 * - FACE_STRING_NULL_PARAM will be returned (if src is NULL) or

 * FACE_STRING_PRECONDITION_VIOLATED will be returned (if any other

 * preconditions are violated)

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized or if @p src is not initialized

 * @retval FACE_STRING_NULL_PARAM if @p src is null

 * @retval FACE_STRING_INSUFFICIENT_BOUND if append would exceed logical

 * bound

 * @retval FACE_STRING_INSUFFICIENT_MEMORY if append exceeds available

 * memory

 * @retval FACE_STRING_NO_ERROR otherwise

 */

FACE_string_return FACE_string_append(

 FACE_string* this_obj,

 const FACE_string* src

);

/**

 * @brief Gets the character at a given index.

 * @details FACE_strings use a zero-based index.

 *

 * @param this_obj a const pointer to the FACE_string being indexed.

 * @param index The index of the element to be retrieved.

 *

 * @retval NULL if @p this_obj is null or not initialized

 * @retval '\0' if index is out of range

 * @retval a const pointer to the character at the given index otherwise

 */

const char * FACE_string_at(

 const FACE_string* this_obj,

 FACE_unsigned_long index

);

502 Open Group Standard (2017)

/**

 * @brief Returns C-string representation of @p this_obj's data

 *

 * @retval NULL if @p this_obj is null or not initialized

 * @retval a pointer to a NUL-terminated (C-style) string equivalent

 * to @p this_obj's underlying string data otherwise

 */

const char * FACE_string_buffer(const FACE_string* this_obj);

/**

 * @brief Gets the length of @p this_obj.

 *

 * @param this_obj a const pointer to the FACE_string to get the length of

 * @param length A pointer where the length will be stored.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized

 * @retval FACE_STRING_NULL_PARAM if @p length is null

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_length(

 const FACE_string* this_obj,

 FACE_unsigned_long* length

);

/**

 * @brief Gets the capacity of @p this_obj.

 *

 * @param this_obj a const pointer to the FACE_string to get the capacity of

 * @param capacity A pointer where the capacity will be stored.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized

 * @retval FACE_STRING_NULL_PARAM if @p capacity is null

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_capacity(

 const FACE_string* this_obj,

 FACE_unsigned_long* capacity

);

/**

 * @brief Gets the bound of @p this_obj.

 *

 * @param this_obj a const pointer to the FACE_string to get the capacity of

 * @param bound A pointer where the bound will be stored.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized

 * @retval FACE_STRING_NULL_PARAM if @p bound is null

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_bound(

 const FACE_string* this_obj,

 FACE_unsigned_long* bound

);

/**

 * @brief Gets whether or not @p this_obj is managed.

 *

 * @param this_obj a const pointer to the FACE_string to check

 * @param is_managed A pointer where the result will be stored.

 * @p is_managed will be 1 if @p this_obj manages its own memory, and 0

 * otherwise.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

FACE™ Technical Standard, Edition 3.0 503

 * initialized

 * @retval FACE_STRING_NULL_PARAM if @p is_managed is null

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_is_managed(

 const FACE_string* this_obj,

 FACE_boolean* is_managed

);

/**

 * @brief Gets whether or not @p this_obj is bounded.

 *

 * @param this_obj a const pointer to the FACE_string to check

 * @param is_bounded A pointer where the result will be stored.

 * @p is_bounded will be 1 if @p this_obj is bounded, and 0

 * otherwise.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized

 * @retval FACE_STRING_NULL_PARAM if @p is_bounded is null

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_is_bounded(

 const FACE_string* this_obj,

 FACE_boolean* is_bounded

);

/**

 * @brief Gets whether or not @p this_obj is in the invalid state.

 * @details (see FACE_string details)

 *

 * @param this_obj a const pointer to the FACE_string to check

 * @param is_valid A pointer where the result will be stored. @p is_valid

 * will be 0 if @p this_obj is in the invalid state, and 1 otherwise.

 *

 * @retval FACE_STRING_NULL_THIS if @p this_obj is null

 * @retval FACE_STRING_PRECONDITION_VIOLATED if @p this_obj is not

 * initialized

 * @retval FACE_STRING_NULL_PARAM if @p is_valid is null

 * @retval FACE_STRING_NO_ERROR otherwise.

 */

FACE_string_return FACE_string_is_valid(

 const FACE_string* this_obj,

 FACE_boolean* is_valid

);

#endif /* _FACE_STRING_H */

K.1.5 FACE_fixed Specification

//! @file FACE/fixed.h

//! @brief Interface for a generic fixed type

#ifndef _FACE_FIXED_H

#define _FACE_FIXED_H

#include <FACE/types.h>

/**

 * @brief The maximum number of digits in a fixed-point number

 * (enforced by IDL).

 */

#define FACE_FIXED_DIGITS_MAX ((FACE_short) 31)

/**

 * @brief Data structure representing generic fixed type.

 */

typedef struct {

 /* implementation-specific */

504 Open Group Standard (2017)

} FACE_fixed;

/**

 * @brief Return codes for FACE_fixed functions

 *

 */

typedef enum {

 FACE_FIXED_NO_ERROR, /**< No error has occurred. */

 FACE_FIXED_NULL_THIS, /**< The "this_obj" parameter is a NULL pointer */

 FACE_FIXED_NULL_PARAM, /**< One or more other parameters is a NULL

 pointer */

 FACE_FIXED_INVALID_PARAM, /**< One or more fixed-point number parameters

 are uninitialized or in an inconsistent

 state. */

 FACE_FIXED_TOO_LARGE /**< A value is too large to fit in a

 fixed-point number. */

} FACE_fixed_return;

/**

 * @brief Initializes a fixed-point number with specified digits and scale.

 * @details After initialization, the value of @p this_obj is zero.

 *

 * @param this_obj A pointer to the fixed-point number

 * @param digits Total number of digits

 * @param scale Number of significant fractional digits

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_INVALID_PARAM if any of the conditions in

 * FACE_fixed_valid are violated

 * @retval FACE_FIXED_NO_ERROR Operation was successful.

 */

FACE_fixed_return FACE_fixed_init(FACE_fixed* this_obj,

 FACE_unsigned_short digits,

 FACE_unsigned_short scale

);

/**

 * @brief Gets the total number of digits of a fixed-point number.

 *

 * @param this_obj A const pointer to the fixed-point number.

 * @param digits Pointer to digits; is set if call successful.

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p digits is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is invalid.

 * @retval FACE_FIXED_NO_ERROR Operation was successful.

 */

FACE_fixed_return FACE_fixed_digits(FACE_fixed* this_obj,

 FACE_unsigned_short* digits);

/**

 * @brief Gets the scale (number of significant fractional digits) of a

 * fixed-point number.

 *

 * @param this_obj A const pointer to the fixed-point number.

 * @param scale Pointer to scale; is set if call successful.

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p scale is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is invalid.

 * @retval FACE_FIXED_NO_ERROR Operation was successful.

 */

FACE_fixed_return FACE_fixed_scale(FACE_fixed* this_obj,

 FACE_unsigned_short* scale);

/**

 * @brief Checks that the contents of a fixed-point number are consistent.

 * @details A fixed-point number is consistent if:

 * - digits does not exceed FACE_FIXED_DIGITS_MAX.

 * - scale does not exceed digits.

 *

FACE™ Technical Standard, Edition 3.0 505

 * @param this_obj a pointer to the fixed-point number.

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_INVALID_PARAM if any of the above conditions are

 * violated.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

FACE_fixed_return FACE_fixed_valid(FACE_fixed* this_obj);

/**

 * @brief Makes a copy of a fixed-point number.

 * @param this_obj a pointer to the destination fixed-point number

 * @param src a pointer to the source fixed-point number

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p src is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is an invalid fixed-point

 * number.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

FACE_fixed_return FACE_fixed_dup(FACE_fixed* this_obj,

 const FACE_fixed* src

);

/**

 * @name Conversion Initializers

 * @anchor Conversion_Initializers

 * @brief Initializes a fixed-point number by converting from another

 * representation.

 *

 * @param this_obj a pointer to the fixed-point number

 * @param val the value to convert from

 *

 * @retval FACE_FIXED_NULL_PARAM if this_obj is null.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

///@{

FACE_fixed_return FACE_fixed_init_short(

 FACE_fixed* this_obj,

 const FACE_short val

);

FACE_fixed_return FACE_fixed_init_long(

 FACE_fixed* this_obj,

 const FACE_long val

);

FACE_fixed_return FACE_fixed_init_long_long(

 FACE_fixed* this_obj,

 const FACE_long_long val

);

FACE_fixed_return FACE_fixed_init_unsigned_short(

 FACE_fixed* this_obj,

 const FACE_unsigned_short val

);

FACE_fixed_return FACE_fixed_init_unsigned_long(

 FACE_fixed* this_obj,

 const FACE_unsigned_long val

);

FACE_fixed_return FACE_fixed_init_unsigned_long_long(

 FACE_fixed* this_obj,

 const FACE_unsigned_long_long val

);

FACE_fixed_return FACE_fixed_init_short(

 FACE_fixed* this_obj,

 const FACE_short val

);

FACE_fixed_return FACE_fixed_init_float(

 FACE_fixed* this_obj,

 const FACE_float val

);

FACE_fixed_return FACE_fixed_init_double(

 FACE_fixed* this_obj,

506 Open Group Standard (2017)

 const FACE_double val

);

FACE_fixed_return FACE_fixed_init_long_double(

 FACE_fixed* this_obj,

 const FACE_long_double val

);

/**

 * @brief Initializes a fixed-point number with a string representation of a

 * fixed-point literal.

 * @details (see \ref Conversion_Initializers)

 * A valid fixed-point literal string contains at least 1 and no more

 * than FACE_FIXED_DIGITS_MAX decimal digits, an optional decimal point, an

 * optional leading +/-, and an optional trailing d/D. The string must be

 * non-empty and null-terminated.

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p val is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p val is an invalid fixed-point

 * literal

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

FACE_fixed_return FACE_fixed_init_str(FACE_fixed* this_obj,

 const FACE_char* val);

///@}

/** @name Conversions */

///@{

/**

 * @brief Converts a fixed-point number to an integer number.

 * @details Digits to the right of the decimal point are truncated.

 *

 * @param this_obj a pointer to the fixed-point number source of the

 * conversion

 * @param dst a pointer to the destination of the conversion

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p dst is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is an invalid fixed-point

 * number.

 * @retval FACE_FIXED_TOO_LARGE if the magnitude of the fixed-point value

 * does not fit in the destination of the conversion.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

FACE_fixed_return FACE_fixed_convert_integer(const FACE_fixed* this_obj,

 FACE_long_long* dst);

/**

 * @brief Converts a fixed-point number to a floating-point number.

 *

 * @param this_obj a pointer to the fixed-point number source of the

 * conversion

 * @param dst a pointer to the destination of the conversion

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p dst is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is an invalid fixed-point

 * number.

 * @retval FACE_FIXED_TOO_LARGE if the magnitude of the fixed-point value

 * does not fit in the destination of the conversion.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

FACE_fixed_return FACE_fixed_convert_floating(const FACE_fixed* this_obj,

 FACE_long_double* dst);

/**

 * @brief Converts a fixed-point number to a string representation of a

 * fixed-point literal.

 * @details The string starts with a '-' if negative and nothing if

 * positive, and always ends with a 'd'. Leading zeros are dropped, but

FACE™ Technical Standard, Edition 3.0 507

 * trailing fractional zeros are preserved. For example, a fixed-point

 * number with digits=4 and scale=2 with the value 1.1 is converted to

 * “1.10d”.) (See #FACE_fixed_init_str for more details on valid string

 * representations of fixed point literals.)

 *

 * @param this_obj a pointer to the fixed-point number source of the

 * conversion @param dst a pointer to the destination of the conversion

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p dst is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is an invalid fixed-point

 * number.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

FACE_fixed_return FACE_fixed_convert_str(const FACE_fixed* this_obj,

 FACE_char* dst);

///@}

/**

 * @name Precision Modifiers

 * @brief Converts a fixed value to a new value with a specified scale.

 * @details If the value currently has more digits on the right than the new

 * scale, the @p round function rounds away from values halfway or more the

 * to the next absolute value for the new scale. If the value currently has

 * fewer or equal digits on the right relative to the new scale, both

 * functions return the value unmodified. The truncate function always

 * truncates the value towards zero. For example:

 *

 * f1: 0.1

 * Round with scale 0 => 0

 * Trunc with scale 0 => 0

 * f2: 0.05

 * Round with scale 1 => 0.1

 * Trunc with scale 1 => 0.0

 * f3: -0.005

 * Round with scale 1 => -0.01

 * Trunc with scale 1 => 0.00

 *

 * @param this_obj a pointer to the source fixed-point number

 * @param result a pointer to the result

 * @param scale the new scale

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p result is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is an invalid fixed-point

 * number or if @p scale would cause @p result to be an invalid

 * fixed-point number.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

///@{

FACE_fixed_return FACE_fixed_round(const FACE_fixed* this_obj,

 FACE_fixed* result,

 const FACE_unsigned_short scale

);

FACE_fixed_return FACE_fixed_truncate(const FACE_fixed* this_obj,

 FACE_fixed* result,

 const FACE_unsigned_short scale

);

///@}

/**

 * @name Arithmetic Operations (Binary)

 * @brief Performs an arithmetic operation on two fixed-point numbers.

 * @details These functions calculate a result exactly using double

 * precision arithmetic and truncating the result to fit into the smallest

 * valid fixed-point number that can represent the result.

 *

 * The following table summarizes the type resulting from an operation on

 * two fixed point numbers:

508 Open Group Standard (2017)

 * - one with _digits=d1 and _scale=s1 (fixed<d1, s1>)

 * - another with _digits=d2 and _scale=s2 (fixed<d2, s2>).

 * (s_inf denotes an arbitrary number of decimal places.)

 *

 * Operation | Result (fixed<d, s>)

 * --------- | ------

 * + | fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

 * - | fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

 * * | fixed<d1+d2, s1+s2>

 * / | fixed<(d1-s1+s2) + s_inf, s_inf>

 * remainder | fixed<max(s1,s2), max(s1,s2)>

 *

 * If the actual result is more than FACE_FIXED_DIGITS_MAX significant

 * digits, the result is retained as:

 * fixed<d,s> => fixed<FACE_FIXED_DIGITS_MAX, FACE_FIXED_DIGITS_MAX-d+s>.

 *

 * Any of the three parameters may be equal (i.e. point to the same

 * fixed-point number in memory); local temporary copies ensure the result

 * is as expected.

 *

 * @param result a pointer the result of the operation.

 * @param operand1 a pointer to the first operand.

 * @param operand2 a pointer to the second operand.

 * @retval FACE_FIXED_NULL_PARAM if any parameter is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p operand1 or @p operand2 is an

 * invalid fixed-point number.

 * @retval FACE_FIXED_TOO_LARGE if the magnitude of the actual result does

 * not fit in a valid fixed-point number.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

///@{

/** @brief Calculates the sum of two fixed-point numbers. */

FACE_fixed_return FACE_fixed_add(FACE_fixed* result,

 const FACE_fixed* operand1,

 const FACE_fixed* operand2

);

/** @brief Calculates the difference of two fixed-point numbers. */

FACE_fixed_return FACE_fixed_subtract(FACE_fixed* result,

 const FACE_fixed* operand1,

 const FACE_fixed* operand2

);

/** @brief Calculates the product of two fixed-point numbers. */

FACE_fixed_return FACE_fixed_multiply(FACE_fixed* result,

 const FACE_fixed* operand1,

 const FACE_fixed* operand2

);

/** @brief Calculates the quotient of two fixed-point numbers. */

FACE_fixed_return FACE_fixed_divide(FACE_fixed* result,

 const FACE_fixed* operand1,

 const FACE_fixed* operand2

);

/**

 * @brief Calculates the remainder after division of two fixed-point

 * numbers.

 */

FACE_fixed_return FACE_fixed_remainder(FACE_fixed* result,

 const FACE_fixed* operand1,

 const FACE_fixed* operand2);

///@}

/**

 * @name Arithmetic Operations (In-place)

 * @brief Performs an arithmetic operation on a fixed-point number.

 *

 * @param this_obj a pointer to the fixed-point number.

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is an invalid fixed-point

 * number.

FACE™ Technical Standard, Edition 3.0 509

 * @retval FACE_FIXED_TOO_LARGE if the magnitude of the operation result

 * does not fit in a valid fixed-point number.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

///@{

/** @brief Increments a fixed-point number by 1. */

FACE_fixed_return FACE_fixed_inc(FACE_fixed* this_obj);

/** @brief Decrements a fixed-point number by 1. */

FACE_fixed_return FACE_fixed_dec(FACE_fixed* this_obj);

/** @brief Makes a fixed-point number positive. */

FACE_fixed_return FACE_fixed_pos(FACE_fixed* this_obj);

/** @brief Makes a fixed-point number negative. */

FACE_fixed_return FACE_fixed_neg(FACE_fixed* this_obj);

///@}

/**

 * @brief Indicates whether or not a fixed-point value is 0.

 * @details @p result will be set to 0 if the value is 0, and 1 otherwise

 *

 * @param this_obj a pointer to the fixed-point number.

 * @param result a pointer to the result

 *

 * @retval FACE_FIXED_NULL_THIS if @p this_obj is null.

 * @retval FACE_FIXED_NULL_PARAM if @p result is null.

 * @retval FACE_FIXED_INVALID_PARAM if @p this_obj is an invalid fixed-point

 * number.

 * @retval FACE_FIXED_NO_ERROR otherwise.

 */

FACE_fixed_return FACE_fixed_not(const FACE_fixed* this_obj,

 FACE_boolean* result);

/** @name Comparison Operations

 * @brief Performs comparisons of fixed-point numbers.

 * @details @p return_code will be:

 * - FACE_FIXED_NULL_PARAM if any parameter is null.

 * - FACE_FIXED_INVALID_PARAM if @p lhs or @p rhs is an invalid fixed-point

 * number.

 * - FACE_FIXED_NO_ERROR otherwise.

 *

 * @param lhs the left-hand side of the comparison.

 * @param rhs the right-hand side of the comparison.

 * @param return_code pointer to a return code resulting from the function's

 * invocation.

 */

///@{

/** @brief Returns 1 if lhs greater than rhs; 0 otherwise. */

FACE_boolean FACE_fixed_gt(const FACE_fixed* lhs,

 const FACE_fixed* rhs,

 FACE_fixed_return* return_code

);

/** @brief Returns 1 if lhs less than rhs; 0 otherwise. */

FACE_boolean FACE_fixed_lt(const FACE_fixed* lhs,

 const FACE_fixed* rhs,

 FACE_fixed_return* return_code

);

/** @brief Returns 1 if lhs greater than or equal to rhs; 0 otherwise. */

FACE_boolean FACE_fixed_gteq(const FACE_fixed* lhs,

 const FACE_fixed* rhs,

 FACE_fixed_return* return_code

);

/** @brief Returns 1 if lhs less than or equal to rhs; 0 otherwise. */

FACE_boolean FACE_fixed_lteq(const FACE_fixed* lhs,

 const FACE_fixed* rhs,

 FACE_fixed_return* return_code

);

/** @brief Returns 1 if lhs is equal to rhs; 0 otherwise. */

FACE_boolean FACE_fixed_eq(const FACE_fixed* lhs,

 const FACE_fixed* rhs,

 FACE_fixed_return* return_code

);

/** @brief Returns 1 if lhs is not equal to rhs; 0 otherwise. */

510 Open Group Standard (2017)

FACE_boolean FACE_fixed_neq(const FACE_fixed* lhs,

 const FACE_fixed* rhs,

 FACE_fixed_return* return_code);

///@}

#endif /* _FACE_FIXED_H */

K.2 C++ Programming Language

K.2.1 Basic Type Mapping

//! @file FACE/types.hpp

//! @brief Definitions of C++ types for IDL basic types to C++ mapping

//! @details This file contains editable type definitions for C++ types that

//! align with the size and range requirements given in the IDL basic types

//! to C++ mapping. Because C++ types' sizes and ranges are

//! platform-dependent, implementations are responsible for supplying full

//! type definitions.

#ifndef _FACE_TYPES_HPP

#define _FACE_TYPES_HPP

namespace FACE

{

 typedef EDITME Short;

 typedef EDITME Long;

 typedef EDITME LongLong;

 typedef EDITME UnsignedShort;

 typedef EDITME UnsignedLong;

 typedef EDITME UnsignedLongLong;

 typedef EDITME Float;

 typedef EDITME Double;

 typedef EDITME LongDouble;

 typedef EDITME Char;

 typedef EDITME Boolean;

 typedef EDITME Octet;

}

#endif /* _FACE_TYPES_HPP */

K.2.2 FACE::Sequence Specification

//! @file FACE/Sequence.hpp

//! @brief Template class representing a sequence of elements.

//! @details Because template classes must be implemented in header files,

//! this class specification includes empty-bodied definitions for its

//! methods.

#ifndef _FACE_SEQUENCE_HPP

#define _FACE_SEQUENCE_HPP

#include <FACE/types.hpp>

#include <limits.h>

namespace FACE

{

 /**

 * @brief Class representing a sequence of elements of type T

 * @details A FACE::Sequence is defined by three characteristics:

 * - length - the current number of elements in the Sequence

 * - bound - the maximum number of elements the Sequence can ever hold.

 * This bound is logical, and is independent from the size of

 * any underlying memory. A Sequence's bound is fixed

 * throughout the lifetime of the Sequence. An "unbounded"

 * sequence has an infinite bound, represented by

 * FACE::Sequence::UNBOUNDED_SENTINEL.

 * - capacity - the number of elements the Sequence has currently

FACE™ Technical Standard, Edition 3.0 511

 * allocated memory for. This may vary by implementation,

 * but length <= capacity <= bound is always true.

 * A "managed" Sequence is responsible for and manages the lifetime of the

 * memory for the data it represents. An "unmanaged" Sequence essentially

 * wraps a pointer to memory whose lifetime is managed elsewhere.

 *

 * In general, Sequence method behavior is identical to String method

 * behavior, except where otherwise noted. FACE::Sequence<T>::RETURN_CODE

 * is used in place of FACE::String::RETURN_CODE.

 *

 * This class does not throw exceptions, but precondition violations and

 * memory allocation failures can occur in constructors and other methods

 * that cannot return a value. In these situations, a Sequence object is

 * put into a known "invalid state", used to indicate that an object has

 * been constructed but is not valid and should not be used. In this

 * invalid state:

 * - length(), bound(), capacity() will return 0

 * - buffer() will return NULL

 * - is_managed() and is_bounded() will return FALSE

 * The is_valid() method indicates whether or not an object is in this

 * state.

 *

 * @tparam the element type

 */

 template <typename T>

 class Sequence {

 public:

 /** @brief Return codes used to report certain runtime errors. */

 enum RETURN_CODE {

 NO_ERROR, /**< No error has occurred. */

 INSUFFICIENT_BOUND, /**< Executing a function would cause a

 Sequence's length to exceed its bound. */

 INSUFFICIENT_MEMORY, /**< A Sequence is unable to allocate enough

 memory to perform some function. */

 PRECONDITION_VIOLATED /**< A precondition of some function has been

 violated. */

 };

 /** @brief Constant representing the bound of an unbounded Sequence. */

 static const unsigned int UNBOUNDED_SENTINEL = UINT_MAX;

 /**

 * @brief Default constructor - creates empty Sequence with bound zero

 * @details (see #FACE::String Default constructor)

 *

 * After construction, the Sequence will be empty.

 */

 Sequence()

 { /* insert definition */ }

 /**

 * @brief Managed constructor - creates empty Sequence of specified

 * bound

 * @details (see #FACE::String Managed constructor)

 *

 * If allocation is successful, the Sequence will be empty.

 */

 Sequence(FACE::UnsignedLong bound, RETURN_CODE& return_code)

 { /* insert definition */ }

 /**

 * @brief Managed copy constructor

 * @details (see #FACE::String Managed copy constructor)

 */

 Sequence(const Sequence& seq)

 { /* insert definition */ }

 /**

 * @brief Managed assignment operator

 * @details (see #FACE::String::operator=)

 */

512 Open Group Standard (2017)

 Sequence& operator=(const Sequence& seq)

 { /* insert definition */ }

 /**

 * @brief Managed C-style array constructor

 * @details After construction, this Sequence manages its own data,

 * which is a copy of the @p length elements pointed to by @p arr, and

 * bound() will return @p length.

 *

 * Preconditions:

 * - arr != NULL

 * When calling this function, if any of these preconditions are false,

 * - return_code will be set to PRECONDITION_VIOLATED

 * - this String is put into the invalid state

 *

 * If no preconditions are violated and memory allocation fails:

 * - return_code will be set to INSUFFICIENT_MEMORY

 * - this String is put into the invalid state

 *

 * The caller must ensure @p length * sizeof(T) is not greater than the

 * size of the memory allocated at @p arr. If this condition is

 * violated, the result is undefined behavior and may result in an

 * attempt to access restricted memory.

 *

 * @param arr A pointer to the C-style array

 * @param length The number of elements in the array

 * @param return_code (see details)

 */

 Sequence(const T * arr,

 FACE::UnsignedLong length,

 RETURN_CODE& return_code)

 { /* insert definition */ }

 /**

 * @brief Unmanaged constructor

 * @details (see #FACE::String::String)

 *

 * The caller must ensure @p bound + sizeof(T) is not greater than the

 * size of the memory allocated at @p seq. If this condition is

 * violated, the result is undefined behavior and may result in an

 * attempt to access restricted memory.

 *

 * @param seq pointer to externally managed memory

 * @param length the number of elements in the memory pointed to by

 * @p seq @param bound the number of elements the externally

 * managed memory can hold. Also serves as a capacity.

 * @param return_code (see details)

 */

 Sequence(T * seq,

 FACE::UnsignedLong length,

 FACE::UnsignedLong bound,

 RETURN_CODE& return_code)

 { /* insert definition */ }

 /**

 * @brief Frees any data managed by this Sequence.

 */

 ~Sequence()

 { /* insert definition */ }

 /**

 * @brief Clears this String's data.

 * @details (see #FACE::String::clear)

 */

 void clear()

 { /* insert definition */ }

 /**

 * @brief Adds a copy of @p seq's data to the current data.

 * @details (see #FACE::String::append)

 */

FACE™ Technical Standard, Edition 3.0 513

 RETURN_CODE append(const Sequence& seq)

 { /* insert definition */ }

 /**

 * @brief Returns a reference to the element at a given index.

 * @details (see #FACE::String::operator[])

 *

 * If @p index is out of range, the behavior is implementation-defined.

 */

 ///@{

 T& operator[](FACE::UnsignedLong index)

 { /* insert definition */ }

 const T& operator[](FACE::UnsignedLong index) const

 { /* insert definition */ }

 ///@}

 /**

 * @brief Returns pointer to contiguous memory for underlying data

 * @details To avoid accessing restricted memory, the caller should

 * avoid dereferencing memory beyond buffer() + length() * sizeof(T).

 */

 ///@{

 T * buffer()

 { /* insert definition */ }

 const T * buffer() const

 { /* insert definition */ }

 ///@}

 /** @brief Returns the length of this Sequence */

 FACE::UnsignedLong length() const

 { /* insert definition */ }

 /** @brief Returns the capacity of this Sequence */

 FACE::UnsignedLong capacity() const

 { /* insert definition */ }

 /** @brief Returns the bound of this Sequence */

 FACE::UnsignedLong bound() const

 { /* insert definition */ }

 /**

 * @brief Returns whether or not this Sequence is managed.

 * @details (see #FACE::String::is_managed)

 */

 FACE::Boolean is_managed() const

 { /* insert definition */ }

 /**

 * @brief Returns whether or not this Sequence is bounded.

 * @details (see #FACE::String::is_bounded)

 */

 FACE::Boolean is_bounded() const

 { /* insert definition */ }

 /**

 * @brief Returns whether or not this Sequence is in the invalid state.

 * @details (see class details)

 */

 FACE::Boolean is_valid() const

 { /* insert definition */ }

 private:

 /* implementation-specific */

 };

}

#endif /* _FACE_SEQUENCE_HPP */

514 Open Group Standard (2017)

K.2.3 FACE::String Specification

//! @file FACE/String.hpp

//! @brief Class representing a sequence of strings.

#ifndef _FACE_STRING_HPP

#define _FACE_STRING_HPP

#include <FACE/types.hpp>

#include <limits.h>

namespace FACE

{

 /**

 * @brief Class representing a sequence of characters.

 * @details A FACE::String is defined by three characteristics:

 * - length - the current number of characters (excluding NUL)

 * in the String

 * - bound - the maximum number of characters (excluding NUL)

 * the String can ever hold. This bound is logical, and is

 * independent from the size of any underlying memory.

 * A String's bound is fixed throughout the lifetime of the

 * String. An "unbounded" String has an infinite bound,

 * represented by FACE::String::UNBOUNDED_SENTINEL.

 * - capacity - the number of characters (excluding NUL)

 * a String has currently allocated memory for. This may

 * vary by implementation, but length <= capacity <= bound

 * is always true.

 *

 * A "managed" String is responsible for and manages the lifetime of the

 * memory for the data it represents. An "unmanaged" String essentially

 * wraps a pointer to memory whose lifetime is managed elsewhere.

 *

 * This class does not throw exceptions, but precondition violations and

 * memory allocation failures can occur in constructors and other methods

 * that cannot return a value. In these situations, a String object is put

 * into a known "invalid state", used to indicate that an object has been

 * constructed but is not valid and should not be used. In this invalid

 * state:

 * - length(), bound(), capacity() will return 0

 * - buffer() will return NULL

 * - is_managed() and is_bounded() will return FALSE

 * The is_valid() method indicates whether or not an object is in this

 * state.

 */

 class String {

 public:

 /** @brief Return codes used to report certain runtime errors. */

 enum RETURN_CODE {

 NO_ERROR, /**< No error has occurred. */

 INSUFFICIENT_BOUND, /**< Executing a function would cause a String's

 length to exceed its bound. */

 INSUFFICIENT_MEMORY, /**< A String is unable to allocate enough

 memory to perform some function. */

 PRECONDITION_VIOLATED /**< A precondition of some function has been

 violated. */

 };

 /** @brief Constant representing the bound of an unbounded String. */

 static const unsigned int UNBOUNDED_SENTINEL = UINT_MAX;

 /**

 * @brief Default constructor - creates empty managed unbounded String

 * @details No memory is allocated. After construction,

 * - length() will return 0

 * - capacity() will return 0

 * - bound() will return UNBOUNDED_SENTINEL

 * - buffer() will return the empty string

 */

 String();

FACE™ Technical Standard, Edition 3.0 515

 /**

 * @brief Managed constructor - creates empty managed bounded String

 * of specified bound

 * @details Memory may or may not be allocated.

 *

 * Preconditions:

 * - bound != 0

 * - bound != UNBOUNDED_SENTINEL

 * When calling this function, if any of these preconditions are false,

 * - return_code will be set to PRECONDITION_VIOLATED

 * - this String is put into the invalid state

 *

 * While the implementation does not have to allocate memory equal in

 * size to the requested bound, memory allocation may still fail. If no

 * preconditions are violated and memory allocation fails:

 * - return_code will be set to INSUFFICIENT_MEMORY

 * - this String is put into the invalid state

 *

 * Otherwise:

 * - return_code will be set to NO_ERROR

 * - length() will return 0

 * - capacity() will return the current capacity

 * - bound() will return the specified bound

 * - buffer() will return the empty string

 */

 String(FACE::UnsignedLong bound, RETURN_CODE& return_code);

 /**

 * @brief Managed copy constructor

 * @details After construction, this String manages its own data, which

 * is a copy of @p str's data, and has the same bound as @p str.

 * If sufficient memory cannot be allocated, this String is put into the

 * invalid state.

 */

 String(const String& str);

 /**

 * @brief Managed assignment operator

 * @details After assignment, this String's data is a copy of @p str's

 * data, and bound() will return @p str's bound. After assignment,

 * this String's data is managed.

 * If sufficient memory cannot be allocated, this String is put into the

 * invalid state.

 *

 * @return a reference to this String

 */

 String& operator=(const String& str);

 /**

 * @brief Managed C-string constructor

 * @details After successful construction, this String manages its own

 * data, which is a copy of @p str, and bound() will return @p str's

 * length.

 *

 * Preconditions:

 * - str != NULL

 * When calling this function, if any of these preconditions are false,

 * - return_code will be set to PRECONDITION_VIOLATED

 * - this String is put into the invalid state

 *

 * If no preconditions are violated and memory allocation fails:

 * - return_code will be set to INSUFFICIENT_MEMORY

 * - this String is put into the invalid state

 *

 * @param str A NUL-terminated string.

 * @param return_code (see details)

 */

 String(const char *str, RETURN_CODE& return_code);

 /**

 * @brief Unmanaged constructor

516 Open Group Standard (2017)

 * @details After construction, this String does not manage its own

 * data, but instead serves as a wrapper to the data pointed to by

 * @p str.

 *

 * The caller must ensure @p bound (plus space for NUL)

 * is not greater than the size of the memory allocated at @p str.

 * If this condition is violated, the result is implementation-defined

 * behavior and may result in an attempt to access restricted memory.

 *

 * The capacity of this String is equal to its bound, because the

 * externally managed memory has a fixed size, which is both a bound and

 * a capacity.

 *

 * Preconditions:

 * - str != NULL

 * - length <= bound

 * - bound != 0 (no empty unmanaged strings)

 * - bound != UNBOUNDED_SENTINEL (no unbounded unmanaged strings)

 * When calling this function, if any of these preconditions are false:

 * - return_code will be set to PRECONDITION_VIOLATED

 * - this String is put into the invalid state

 *

 * Otherwise:

 * - return_code will be set to NO_ERROR

 * - length() will return the specified length

 * - capacity() will return the specified capacity (bound)

 * - bound() will return the specified bound

 * - buffer() will return a pointer to the externally managed memory

 *

 * @param str pointer to externally managed memory

 * @param length the number of characters (excluding the NUL character)

 * in the memory pointed to by @p str

 * @param bound the number of characters (excluding the NUL character)

 * the externally managed memory can hold. Also serves as a

 * capacity.

 * @param return_code (see details)

 */

 String(char * str,

 FACE::UnsignedLong length,

 FACE::UnsignedLong bound,

 RETURN_CODE& return_code);

 /**

 * @brief Frees any data managed by this String.

 */

 ~String();

 /**

 * @brief Clears this String's data.

 * @details All data is cleared, and this String's length will be set

 * to 0. Memory allocation remains unchanged.

 */

 void clear();

 /**

 * @brief Adds a copy of @p str's data to the current data

 * @details This is the only String function that may reallocate

 * managed memory. If append is successful, the length of this String

 * changes accordingly; capacity may or may not be changed.

 * If append is unsuccessful, the state of this String is unchanged.

 *

 * @retval INSUFFICIENT_BOUND if append would exceed logical bound

 * @retval INSUFFICIENT_MEMORY if append exceeds available memory

 * @retval NO_ERROR otherwise

 */

 RETURN_CODE append(const String& str);

 /**

 * @brief Returns a reference to the character at a given index.

 * @details If @p index is out of range, '\0' is returned.

 * Strings use a zero-based index.

FACE™ Technical Standard, Edition 3.0 517

 *

 * @param index The index of the element to be retrieved

 * @return a reference to the desired element.

 */

 ///@{

 char& operator[](FACE::UnsignedLong index);

 const char& operator[](FACE::UnsignedLong index) const;

 ///@}

 /**

 * @brief Returns C-string representation of string data

 * @details Returns a pointer to a NUL-terminated (C-style) string

 * equivalent to this String's underlying string data.

 */

 ///@{

 char * buffer();

 const char * buffer() const;

 ///@}

 /** @brief Returns the length of this String */

 FACE::UnsignedLong length() const;

 /** @brief Returns the capacity of this String */

 FACE::UnsignedLong capacity() const;

 /** @brief Returns the bound of this String */

 FACE::UnsignedLong bound() const;

 /**

 * @brief Returns whether or not this String is managed.

 *

 * @retval TRUE if this String manages its own memory

 * @retval FALSE otherwise

 */

 FACE::Boolean is_managed() const;

 /**

 * @brief Returns whether or not this String is bounded.

 * @details Equivalent to bound() != UNBOUNDED_SENTINEL

 * Unmanaged strings are always bounded.

 */

 FACE::Boolean is_bounded() const;

 /**

 * @brief Returns whether or not this String is in the invalid state.

 * @details (see class details)

 */

 FACE::Boolean is_valid() const;

 private:

 /* implementation-specific */

 };

}

#endif /* _FACE_STRING_HPP */

K.2.4 FACE::Fixed Specification

//! @file FACE/Fixed.hpp

//! @brief Class representing a generic fixed type

#ifndef _FACE_FIXED_HPP

#define _FACE_FIXED_HPP

#include <FACE/types.hpp>

namespace FACE

{

/**

518 Open Group Standard (2017)

 * @brief Class representing an IDL fixed type.

 */

class Fixed

{

public:

 /**

 * @brief The maximum number of digits in a fixed-point number

 * (enforced by IDL).

 */

 static const FACE::Short FACE_FIXED_DIGITS_MAX = (FACE::Short)31;

 /**

 * @brief Constructs a fixed point number with a specified digits and

 * scale.

 *

 * @param digits the total number of digits

 * @param scale the total number of significant fractional digits

 */

 Fixed(FACE::UnsignedLong digits, FACE::UnsignedLong scale);

 /**

 * @brief Copy constructor - creates a copy of a fixed type, maintaining

 * its digits, scale, and value.

 */

 Fixed(const Fixed& fx);

 /**

 * @brief Assignment operator - assigns the digits, scale, and value of

 * one fixed type to another.

 */

 Fixed& operator=(const Fixed& fx);

 /**

 * @brief Destructor - performs any necessary implementation-specific

 * cleanup.

 */

 ~Fixed();

 /**

 * @name Constructors (Conversion)

 * @anchor Constructors

 * @brief Constructs a fixed-point number by converting from another

 * representation.

 *

 * @param val the value to convert from

 */

 ///@{

 explicit Fixed(FACE::Short val = 0);

 explicit Fixed(FACE::UnsignedShort val);

 explicit Fixed(FACE::Long val);

 explicit Fixed(FACE::UnsignedLong val);

 explicit Fixed(FACE::LongLong val);

 explicit Fixed(FACE::UnsignedLongLong val);

 explicit Fixed(FACE::Double val);

 explicit Fixed(FACE::LongDouble val);

 /**

 * @brief Constructs a fixed-point number with a string representation of

 * a fixed-point literal.

 * @details (see \ref Constructors)

 * A valid fixed-point literal string contains at least 1 and no more

 * than FACE_FIXED_DIGITS_MAX decimal digits, an optional decimal point,

 * an optional leading +/-, and an optional trailing d/D. An invalid

 * fixed-point literal string results in implementation-defined behavior.

 */

 explicit Fixed(const FACE::Char* val);

 ///@}

 /** @name Conversions */

 ///@{

 /**

FACE™ Technical Standard, Edition 3.0 519

 * @brief Converts a fixed-point number to an integer number.

 * @details Digits to the right of the decimal point are truncated.

 * If the magnitude of the fixed-point value does not fit, the result is

 * implementation-defined.

 */

 operator FACE::LongLong() const;

 /**

 * @brief Converts a fixed-point number to a floating-point number.

 * @details If the magnitude of the fixed-point value does not fit, the

 * result is implementation-defined.

 */

 operator FACE::LongDouble() const;

 /**

 * @brief Converts a fixed-point number to a string representation of a

 * fixed-point literal.

 * @details The string starts with a '-' if negative and nothing if

 * positive, and always ends with a 'd'. Leading zeros are dropped, but

 * trailing fractional zeros are preserved. For example, a fixed-point

 * number with digits=4 and scale=2 with the value 1.1 is converted to

 * “1.10d”.) (See \ref Constructors for more details on valid string

 * representations of fixed point literals.)

 */

 operator FACE::Char*() const;

 ///@}

 /**

 * @name Precision Modifiers

 * @brief Converts a fixed value to a new value with a specified scale.

 * @details If the value currently has more digits on the right than the

 * new scale, the @p round function rounds away from values halfway or

 * more the to the next absolute value for the new scale. If the value

 * currently has fewer or equal digits on the right relative to the new

 * scale, both functions return the value unmodified. The truncate

 * function always truncates the value towards zero. For example:

 *

 * f1: 0.1

 * Round with scale 0 => 0

 * Trunc with scale 0 => 0

 * f2: 0.05

 * Round with scale 1 => 0.1

 * Trunc with scale 1 => 0.0

 * f3: -0.005

 * Round with scale 1 => -0.01

 * Trunc with scale 1 => 0.00

 *

 * If the specified scale would result in an invalid fixed-point number,

 * the result is implementation-defined.

 */

 ///@{

 Fixed round(FACE::UnsignedShort scale) const;

 Fixed truncate(FACE::UnsignedShort scale) const;

 ///@}

 /**

 * @name Arithmetic Operations (In-place)

 * @brief Performs an arithmetic operation on a fixed-point number.

 * If the magnitude of the fixed-point value does not fit, the result is

 * implementation-defined.

 */

 ///@{

 /** @brief Prefix increment */

 Fixed& operator++();

 /** @brief Postfix increment */

 Fixed operator++(int);

 /** @brief Prefix decrement */

 Fixed& operator--();

 /** @brief Postfix decrement */

 Fixed operator--(int);

 ///@}

520 Open Group Standard (2017)

 /**

 * @name Arithmetic Operations (Binary)

 * @brief Performs an arithmetic operation on two fixed-point numbers.

 * @details These functions calculate a result exactly using double

 * precision arithmetic and truncating the result to fit into the smallest

 * valid fixed-point number that can represent the result.

 *

 * The following table summarizes the type resulting from an operation on

 * two fixed point numbers:

 * - one with _digits=d1 and _scale=s1 (fixed<d1, s1>)

 * - another with _digits=d2 and _scale=s2 (fixed<d2, s2>).

 * (s_inf denotes an arbitrary number of decimal places.)

 *

 * Operation | Result (fixed<d, s>)

 * --------- | ------

 * + | fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

 * - | fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

 * * | fixed<d1+d2, s1+s2>

 * / | fixed<(d1-s1+s2) + s_inf, s_inf>

 * remainder | fixed<max(s1,s2), max(s1,s2)>

 *

 * If the actual result is more than FACE_FIXED_DIGITS_MAX significant

 * digits, the result is retained as:

 * fixed<d,s> => fixed<FACE_FIXED_DIGITS_MAX, FACE_FIXED_DIGITS_MAX-d+s>.

 *

 * Any of the three parameters may be equal (i.e. point to the same

 * fixed-point number in memory); local temporary copies ensure the result

 * is as expected.

 *

 * If the magnitude of the result does not fit in a valid fixed-point

 * number, the result is implementation-defined.

 */

 ///@{

 /** @brief Calculates the in-place sum of two fixed-point numbers. */

 Fixed& operator += (const Fixed& rhs);

 /**

 * @brief Calculates the in-place difference of two fixed-point numbers.

 */

 Fixed& operator -= (const Fixed& rhs);

 /** @brief Calculates the in-place product of two fixed-point numbers. */

 Fixed& operator *= (const Fixed& rhs);

 /** @brief Calculates the in-place quotient of two fixed-point numbers. */

 Fixed& operator /= (const Fixed& rhs);

 /**

 * @brief Calculates the remainder after division of two

 * fixed-point numbers.

 */

 Fixed& operator % (const Fixed& rhs);

 ///@}

 /**

 * @name Comparison Operations

 * @brief Performs comparisons of fixed-point numbers.

 *

 * @param rhs the right-hand side of the comparison.

 */

 ///@{

 /** @brief Returns 1 if lhs greater than rhs; 0 otherwise. */

 FACE::Boolean operator > (const Fixed& rhs) const;

 /** @brief Returns 1 if lhs less than rhs; 0 otherwise. */

 FACE::Boolean operator < (const Fixed& rhs) const;

 /** @brief Returns 1 if lhs greater than or equal to rhs; 0 otherwise. */

 FACE::Boolean operator >= (const Fixed& rhs) const;

 /** @brief Returns 1 if lhs less than or equal to rhs; 0 otherwise. */

 FACE::Boolean operator <= (const Fixed& rhs) const;

 /** @brief Returns 1 if lhs is equal to rhs; 0 otherwise. */

 FACE::Boolean operator == (const Fixed& rhs) const;

 /** @brief Returns 1 if lhs is not equal to rhs; 0 otherwise. */

 FACE::Boolean operator != (const Fixed& rhs) const;

 ///@}

FACE™ Technical Standard, Edition 3.0 521

 /** @brief Calculates the absolute value of a fixed-point number. */

 Fixed operator+() const;

 /**

 * @brief Calculates the absolute value of a fixed-point number,

 * multiplied by -1.

 */

 Fixed operator-() const;

 /** @brief Returns false if value is 0; true otherwise. */

 FACE::Boolean operator!() const;

 /**

 * @brief Returns the smallest digits value that can hold the complete

 * fixed-point value.

 */

 FACE::UnsignedShort digits() const;

 /**

 * @brief Returns the smallest scale value that can hold the complete

 * fixed-point value.

 */

 FACE::UnsignedShort scale() const;

};

}

#endif /* _FACE_FIXED_HPP */

K.3 Ada Programming Language

K.3.1 Sequence Packages

The packages FACE.Sequences, FACE.Sequences.Bounded, and FACE.Sequences.Unbounded

provide definitions of sequence types and interfaces to their operations. Implementations are

responsible for providing the bodies of these packages. The constructs defined in the

FACE.Sequences package mimic constructs in the Ada.Strings package, as does

FACE.Sequences.Bounded mimic Ada.Strings.Bounded and FACE.Sequences.Unbounded

mimic Ada.Strings.Unbounded, with the following modifications and clarifications:

 The Element generic formal parameter is the type of each element in the sequence

 Any reference to “string” in the Ada.Strings package specification can be read as

“sequence”; any reference to “character” can be read as “element”

The behavior of each subprogram in the FACE.Sequences packages mimics the behavior of the

subprogram with the same name and signature in the Ada.Strings package, with the following

modifications and clarifications:

 All references to a Truncation value of Error are considered to be FACE.Sequences.Right

 For all subprograms that propagate Index_Error under some conditions, Constraint_Error

is propagated under those conditions instead

 Comparison operators (“=”, “<”, “>”, “<=”, and “>=”) are an element-by-element

comparison

 Get_Element – this function mimics the behavior of the Element function

522 Open Group Standard (2017)

 Delete – if From <= Through, the deleted elements are replaced with implementation-

defined values representing a null element

 FACE.Sequences.Bounded."*" – if the result would exceed the sequence’s bound,

truncation occurs by dropping elements from the right

 FACE.Sequences.Unbounded.Copy – this function allocates a new Sequence and copies

the value of Source to the new Sequence

(This supports definitions of the Sequence type where the Ada assignment (:=) operation

would only perform a shallow copy.)

 FACE.Sequences.Unbounded.Is_Null – this function returns True if the sequence is

uninitialized, and False otherwise

 FACE.Sequences.Unbounded.Free – this procedure does not necessarily perform an

unchecked de-allocation

In general, FACE.Sequences.Unbounded functions that return a Sequence always return a newly

allocated Sequence. Procedures that modify (mode is “in out”) a parameter that is a Sequence

attempt to use the space, if any, that is pre-allocated and available to be used before allocating

new space. Allocation can occur if the allocated space for the Sequence is too small to hold a

new Sequence, but also if this space is too large, so that the reduced space requirement of the

used portion is considered a waste of memory.

Note: Ada.Strings is only referenced here as a means of specification, and is not intended to

imply the use of that package.

K.3.1.1 FACE.Sequences Specification

package FACE.Sequences is

 type Truncation is (Left, Right);

 type Direction is (Forward, Backward);

end FACE.Sequences;

K.3.1.2 FACE.Sequences.Bounded Specification

generic

 type Element is private;

package FACE.Sequences.Bounded is

 type Sequence (Max_Length : Positive) is private;

 function Length (Source : in Sequence) return Natural;

 pragma Inline (Length);

 --

 -- Conversion, Concatenation, and Selection Functions --

 --

 function Append

 (Left, Right : in Sequence;

 Drop : in Truncation := FACE.Sequences.Right)

 return Sequence;

 function Append

 (Left : in Sequence;

 Right : in Element;

 Drop : in Truncation := FACE.Sequences.Right)

 return Sequence;

FACE™ Technical Standard, Edition 3.0 523

 function Append

 (Left : in Element;

 Right : in Sequence;

 Drop : in Truncation := FACE.Sequences.Right)

 return Sequence;

 procedure Append

 (Source : in out Sequence;

 New_Item : in Sequence;

 Drop : in Truncation := FACE.Sequences.Right);

 procedure Append

 (Source : in out Sequence;

 New_Item : in Element;

 Drop : in Truncation := FACE.Sequences.Right);

 function "&"

 (Left, Right : in Sequence)

 return Sequence;

 function "&"

 (Left : in Sequence;

 Right : in Element)

 return Sequence;

 function "&"

 (Left : in Element;

 Right : in Sequence)

 return Sequence;

 function Get_Element

 (Source : in Sequence;

 Index : in Positive)

 return Element;

 procedure Replace_Element

 (Source : in out Sequence;

 Index : in Positive;

 By : in Element);

 function "=" (Left, Right : in Sequence) return Boolean;

 -- Sequence transformation subprograms --

 function Delete

 (Source : in Sequence;

 From : in Positive;

 Through : in Positive)

 return Sequence;

 procedure Delete

 (Source : in out Sequence;

 From : in Positive;

 Through : in Positive);

 -- Sequence selector subprograms --

 function Head

 (Source : in Sequence;

 Count : in Natural;

 Pad : in Element;

 Drop : in Truncation := FACE.Sequences.Right)

 return Sequence;

 procedure Head

 (Source : in out Sequence;

524 Open Group Standard (2017)

 Count : in Natural;

 Pad : in Element;

 Drop : in Truncation := FACE.Sequences.Right);

 function Tail

 (Source : in Sequence;

 Count : in Natural;

 Pad : in Element;

 Drop : in Truncation := FACE.Sequences.Right)

 return Sequence;

 procedure Tail

 (Source : in out Sequence;

 Count : in Natural;

 Pad : in Element;

 Drop : in Truncation := FACE.Sequences.Right);

 -- Sequence constructor subprograms --

 function "*"

 (Left : in Natural;

 Right : in Element)

 return Sequence;

 function "*"

 (Left : in Natural;

 Right : in Sequence)

 return Sequence;

 function Replicate

 (Count : in Natural;

 Item : in Element;

 Drop : in Truncation := FACE.Sequences.Right)

 return Sequence;

 function Replicate

 (Count : in Natural;

 Item : in Sequence;

 Drop : in Truncation := FACE.Sequences.Right)

 return Sequence;

private

 -- implementation-defined

end FACE.Sequences.Bounded;

K.3.1.3 FACE.Sequences.Unbounded Specification

generic

 type Element is private;

package FACE.Sequences.Unbounded is

 subtype Index_Range is Positive;

 subtype Length_Range is Natural;

 type Sequence is private;

 Null_Sequence : constant Sequence;

 function Length (Source : in Sequence) return Length_Range;

 pragma Inline (Length);

 --

 -- Conversion, Concatenation, and Selection Functions --

 --

 function Copy

 (Source : in Sequence)

 return Sequence;

FACE™ Technical Standard, Edition 3.0 525

 function To_Sequence

 (Length : in Length_Range)

 return Sequence;

 procedure Append

 (Source : in out Sequence;

 New_Item : in Sequence);

 procedure Append

 (Source : in out Sequence;

 New_Item : in Element);

 function "&"

 (Left, Right : in Sequence)

 return Sequence;

 function "&"

 (Left : in Sequence;

 Right : in Element)

 return Sequence;

 function "&"

 (Left : in Element;

 Right : in Sequence)

 return Sequence;

 function Get_Element

 (Source : in Sequence;

 Index : in Index_Range)

 return Element;

 procedure Replace_Element

 (Source : in out Sequence;

 Index : in Index_Range;

 By : in Element);

 function "="

 (Left, Right : in Sequence) return Boolean;

 function Is_Null (Source : in Sequence) return Boolean;

 -- Sequence transformation subprograms --

 function Delete

 (Source : in Sequence;

 From : in Index_Range;

 Through : in Index_Range)

 return Sequence;

 procedure Delete

 (Source : in out Sequence;

 From : in Index_Range;

 Through : in Index_Range);

 -- Sequence selector subprograms --

 function Head

 (Source : in Sequence;

 Count : in Length_Range;

 Pad : in Element)

 return Sequence;

 procedure Head

 (Source : in out Sequence;

 Count : in Length_Range;

 Pad : in Element);

526 Open Group Standard (2017)

 function Tail

 (Source : in Sequence;

 Count : in Length_Range;

 Pad : in Element)

 return Sequence;

 procedure Tail

 (Source : in out Sequence;

 Count : in Length_Range;

 Pad : in Element);

 -- Sequence constructor subprograms --

 function "*"

 (Left : in Length_Range;

 Right : in Element)

 return Sequence;

 function "*"

 (Left : in Length_Range;

 Right : in Sequence)

 return Sequence;

private

 -- implementation-defined

end FACE.Sequences.Unbounded;

K.4 Java Programming Language

K.4.1 us.opengroup.FACE.Holder<T> Specification

package us.opengroup.FACE;

/**

 * @brief Class facilitating in and inout parameter passing of immutable types.

 * @param <T> The immutable type.

 */

public class Holder<T>{

 /** @brief Attribute containing the immutable type to be assigned a value. */

 public T value;

 /** @brief Default constructor */

 public Holder() {}

 /**

 * @brief Value constructor

 * @details Constructs a Holder of type T and initializes member attribute

 * value with the parameter passed in.

 */

 public Holder(T initial) {value = initial;}

}

K.4.2 us.opengroup.FACE.BAD_PARAM Specification

package us.opengroup.FACE;

/** @brief Exception thrown when a parameter violates the IDL semantics. */

public class BAD_PARAM extends Exception

{

 /** @brief Constructs a BAD_PARAM exception with a default reason. */

 public BAD_PARAM()

 {

 super("");

 }

FACE™ Technical Standard, Edition 3.0 527

 /** @brief Constructs a BAD_PARAM exception with the specified reason. */

 public BAD_PARAM(String reason)

 {

 super(reason);

 }

}

K.4.3 us.opengroup.FACE.DATA_CONVERSION Specification

package us.opengroup.FACE;

/** @brief Exception thrown when a parameter’s data violates the IDL definition of the

data type when converted. */

public class DATA_CONVERSION extends Exception

{

 /** @brief Constructs a DATA_CONVERSION exception with a default reason. */

 public DATA_CONVERSION()

 {

 super("");

 }

 /** @brief Constructs a DATA_CONVERSION exception with the specified reason. */

 public DATA_CONVERSION(String reason)

 {

 super(reason);

 }

}

528 Open Group Standard (2017)

L Glossary

The following terms and phrases are defined both with respect to present day computer and

software engineering as well as their specific meaning within the FACE Technical Standard.

Application Programming

Interface

A particular set of rules and specifications a software program can

follow to access and make use of the services and resources provided

by another particular software component implementing that

Application Programming Interface. It serves as an interface between

different software components and facilitates their interaction, similar

to the way the user interface facilitates interaction between humans

and computers.

Architecture Fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its

design and evolution (ISO/IEC/IEEE 42010).

Blocking Communication method where control is returned to the invoking

process when the operation is completed.

Board Support Package Operating system-specific implementation support code for a given

device.

Centralized Configuration A software component that manages the initialization parameters of

the individual software components or software configuration items.

Checkpoint Data Data used for backup of the state of a UoC to allow for redundancy

and reversion.

Common Operating

Environment

A reference architecture and set of software standards enabling

portability and interoperability of software components across

disparate computing environments to allow for rapid capability

insertion.

Component Framework A set of software deliverables providing a programming language-

specific set of Application Programming Interfaces supporting

programming in a component paradigm and often providing services

which are useful to a wide range of software components.

Component State

Persistence

A PCS, PSSS, or TSS UoC internal state saved to a Data Store.

Computing Platform The combination of hardware and operating system, network, and

device drivers supporting software components. Typically refers to a

processing hardware within a Weapons Replaceable Assembly, or

Line Replaceable Unit, along with its associated software

infrastructure.

Conformance Verification

Matrix

Requirements traceability spreadsheet assigning verification methods

and conformance evidence recommendations for each conformance

requirement within the FACE Technical Standard.

FACE™ Technical Standard, Edition 3.0 529

Conformant With respect to the FACE Technical Standard, this term applies when

software components and/or a computing architecture, environment,

or platform meets all of the stated requirements.

Data Architecture A set of related models, specifications, and governance policies with

the primary purpose of providing an interoperable means of data

exchange.

Data Marshalling The process of transforming the representation of a data message

structure to a format suitable for storage, transmission, or

consumption by the destination.

Data Model An abstraction that describes real-world elements, their properties,

and their relationships in order to establish a common understanding

for communication between components.

Data Model Language A language specified as an EMOF metamodel and OCL constraints

used to capture data element syntax and semantics.

Data Store Any persistent storage medium (e.g., file system, flash, novram, solid

state media, etc.).

Data Transformation Conversion and data mapping of the source data structure(s) to the

Message’s data structure(s) that can be understood by the

destinations.

Destination Message

Definition Universally

Unique Identifier

A reference to a specific Platform View of the USM. The Platform

View defines the structure of the destination message. The

UoPDstEndPoint of the Integration Model associates the Data Model

Platform View as the destination message. The Destination Message

Definition UUID is a reference to a specific Data Model Platform

View defining the structure of the destination message. The

UoPDstEndPoint of the Integration Model associates the Data Model

Platform View as the destination message.

Device Driver A software component that controls a device and sometimes

reformats data for transfer to and from the device.

Discovery A static or dynamic method, process, or mechanism of locating a

software module or software component. Discovery may take place

during any of the phases of software generation, including but not

limited to source code generation, compile, link, run-time, or

execution.

Domain-Specific Data

Model

A Data Model designed to the FACE Data Architecture

Requirements. It captures domain-specific semantics.

Endpoints The allowable origin and destination for routed data.

Execution Time The time post-initialization where a software component is loaded in

memory and in a running state (i.e., in the run-time state).

FACE Conformance Test

Suite

A test suite that accepts the Unit of Conformance and produces a

pass/fail with respect to all Conformance Requirements covered by

the test suite plus a detailed report of the test results.

FACE Infrastructure An instantion of a FACE aligned OSS, IOS, and TSS that can host

FACE confomant PCS and PSS software.

530 Open Group Standard (2017)

FACE Interfaces Standardized interfaces providing connections between software

components of the FACE architectural segments.

Framework A software abstraction which provides common technical

functionality to support the business-specific software. A software

framework is a reusable software execution environment that

facilitates development of software components, products, and

solutions. Software frameworks may include support programs,

compilers, code libraries, tool sets, and APIs to ease development of

a project or solution.

Framework Component The domain-specific software that is executed within the framework.

Framework Container The software component that provides the single point of presence

for the framework interfaces to the framework software component

as a run-time execution environment.

Header Metadata about a message to identify its source, instance, or provide

a timestamp.

I/O Device Refers to the hardware chipset which provides access to a bus,

network, or I/O network (e.g., Serial, Fiber, Ethernet, MIL-STD-

1553, ARINC 429, Discretes, Analogs).

I/O Service A collection of software components that provides a unified view of

an IO Interface to all PSSS software components using that interface.

I/O Services Segment Segment where normalization of vendor-supplied interface hardware

device drivers occurs.

Library Previously compiled software grouped by operations or functions

that can be linked into another software component.

Memory Management The act of managing computer memory. Involves the allocation and

de-allocation of memory resources during run-time based on software

component needs.

Message Association UID Uniquely identifies each instance of the Message Association entity.

Message Instance UID Uniquely identifies each instance of the Message Instance entity.

Message Routing Name A human-readable description of the message route. Each Message

Routing Name is unique.

Message Routing UID Uniquely identifies each instance of the Message Routing entity.

Message Source UID A reference, through the unique identifier, to a source of Message

Instances.

Message Timestamp The timestamp describing when the message was written by the

software component to the message interface.

Message UID N References the Message Instance UID of the associated instance of a

Message Instance entity, where N is the associated instance.

Non-Blocking Communication method where control is returned to the invoking

process even though the function being invoked has not completed.

Operating System

Segment

Segment where foundational system services used by all other

segments and vendor-supplied code reside.

FACE™ Technical Standard, Edition 3.0 531

Paradigm Translation The transformations necessary to interface software components

using different patterns with each other.

Partition An operating system allocation of computing platform and processor

resources, including time and memory/address space, to a software

component or portion of a software component.

Platform Refers to one of three related things with respect to the FACE

Technical Standard: Device (comprised of sensors, Weapon

Replaceable Assembly, and Line Replaceable Unit), Aircraft (to

include one or more computing platforms), and Computing

(comprised of electronic circuitry and software).

Platform-Specific

Common Services

Sub-segment comprised of higher-level services including Logging

Services, Centralized Configuration Services, DPM Services,

Streaming Media, and System-Level HMFM.

Platform-Specific Device

Services

Sub-segment where management of data and translation between

platform-unique ICDs and the FACE Data Model occurs.

Platform-Specific

Graphics Services

Sub-segment that abstracts the interface specifics of a graphics

device driver from software components within the FACE Reference

Architecture.

Platform-Specific

Services Segment

Segment comprised of sub-segments including Platform-Specific

Common Services, Platform-Specific Device Services, and Platform-

Specific Graphics Services.

Portable Components

Segment

Segment where software components providing capabilities and/or

business logic reside.

POSIX Partition A partition that uses the POSIX API.

Primitive Marshalling Specific data marshalling functions for each FACE Data Model

primitive type (e.g., short, long, float, etc.) made available by a

Transport Protocol Module for TSS message serialization functions

to use.

Private Data Data used only locally by a software component. Private Data is

isolated to a software component and does not traverse software

component boundaries. Private Data does not represent the internal

state of a software component, but rather represents derived data able

to be cached externally for performance or other implementation

reasons. See Checkpoint Data.

Process In the context of an operating system, originates from the POSIX

Standard (in ARINC 653, the term “process” is equivalent to the

POSIX term “thread”).

Programming Language

Run-Time

A set of software deliverables constituting a software layer that

provides a software programming language API and the capability to

execute programs written to that API.

Protocol Paradigm

Translation

The transformations necessary to convert transport protocols from

one transport protocol to another transport protocol (e.g., queuing

ports to sockets, TCP to UDP).

532 Open Group Standard (2017)

Publish/Subscribe A message pattern in which a computing process does not require

knowledge or presence of other computing processes in order to

produce data for use by those other computing processes.

QoS Attribute Values The specific values of the QoS parameter which are defined by the

QoS Definition entity as referenced by the QoS UID.

QoS Attributes Used to define QoS policies. Considered a key, value pair, the

attributes of a policy such as “Reliable Delivery” may have attributes

of “kind” and “max_blocking_time”. Different policies can be

created such as reliable, secure, or high bandwidth, etc. to align to

requirements supported by the underlying transport technologies.

QoS Key A unique name for the QoS property, capability, or feature. Examples

of QoS Keys might be “Reliable Delivery” or “Priority”.

QoS Policy A human-readable name of the policy represented by the QoS

Attributes.

QoS UID Uniquely identifies a QoS Policy.

Quality of Service A set of quality requirements for the collective behavior of one or

more data exchange objects. QoS comprises requirements for the

attributes of a data exchange connection.

Reference Architecture An authoritative source of information about a specific subject area

that guides and constrains the instantiations of multiple architectures

and solutions.

Request/Reply Also known as request-response, a message exchange pattern in

which a requestor sends a request message to a replier system which

receives and processes the request, ultimately returning a message in

reply.

Reuse The ability for source code, components, or modules to be used again

to add new functionalities with slight or no modification.

Route Configuration Data Specifies the values for a particular transport path. Derived from the

Integration Model TransportChannel (DM).

Route Definition UID A reference to a specific Route instance that specifies a particular

data transport path. The ViewTransporter (DM) of the Integration

Model associates messages with routes. The Route Definition UID

uniquely identifies each instance of routes.

Security Transformation Transformation of data to meet system-level security controls.

Security Transformation

Boundary

A boundary between a software component’s function and the

Security Transformation algorithm. This boundary may exist at a

FACE Interface, or internal to a UoC that contains its own Security

Transformation.

Segment A logical grouping of components and/or services within a boundary

whereby elements within are allowed to vary based on system needs

and the interface to elements outside the segment boundary adheres

to the FACE Reference Architecture.

FACE™ Technical Standard, Edition 3.0 533

Service A software utility providing capability to software components or

other services.

Shared Data Model An instance of a Data Model whose purpose is to define commonly

used items and to serve as a basis for all other data models.

Alignment with the required elements in the Shared Data Model

(SDM) is necessary for conformance of any other data model. The

Shared Data Model is governed by a CCB.

Single Instance A messaging technique used to eliminate message data duplication

and to increase message transport efficiency.

Software Component A functionally or logically distinct part of a system, distinguished for

the purpose of convenience in designing and specifying a complex

system as an assembly of subordinate elements (ISO/IEC

24765:2010).

Software Configuration

Item

An aggregation of software designated for configuration management

and treated as a single entity in the configuration management

process (ISO/IEC 24765:2010). This entity satisfies an end use

function and can be uniquely identified at a given reference point

(ISO/IEC 12207:2008 §4.7).

Source Message

Definition UUID

A reference to a specific Platform View of the USM. The Platform

View defines the structure of the message source. The

UoPSrcEndPoint (DM) of the Integration Model associates the Data

Model Platform View as the source message.The Source Message

Definition UUID is a reference to a specific USM Platform View

defining the structure of the message source. The UoPSrcEndPoint of

the Integration Model associates the USM Platform View as the

source message.

Space Partitioning An allocation of computing platform and processor resources to

achieve memory/address separation of software components.

Thread A schedulable execution sequence within a software component (the

ARINC 653 Standard uses the term “process” when referring to

thread behavior).

Time Partitioning An allocation of computing platform and processor resources to

achieve temporal separation of software components.

Transformation Map UID A unique identifier associated with each Conversion Map instance.

Transformation Type Identifies whether the transformation is a ViewAggregation,

ViewSplitter, ViewTransformation, or ViewFilter. Each

transformation type has its own unique entry and is used by itself or

in combination with any other transformations to match the

destination’s Message definition.

Transformation UUID A unique identifier associated with the conversion instance used to

change an instance of the Message parameter from one definition to

another definition.

Transport Services

Segment

Segment which abstracts transport mechanisms and data access from

software components facilitating integration into disparate

architectures and platforms using different transports.

534 Open Group Standard (2017)

TS Domains All of the UoCs that constitute a system utilizing a single

implementation of TSS UoCs and integrated by the same integrator.

TS to TS Interoperability The ability to exchange and use information between TS Domains

without re-engineering the TSS UoCs in either TSS Domain.

Configuration and/or access to additional TSS capabilities may be

required.

Unit of Conformance A DSDM, or a software component designed to meet the

requirements for an individual FACE segment. Units of

Conformance must be verified as conformant to the FACE Technical

Standard to be certified.

Unit of Conformance

Package

A collection of Units of Conformance combined to create a singular

software logical entity which may be placed in the Registry. The

Units of Conformance that make up a Unit of Conformance Package

may be from different FACE segments.

Unit of Portability Another term for a UoC. Use of the term Unit of Portability

highlights the portable and reusable attributes of a software

component or DSDM developed to the FACE Technical Standard.

UoP Supplied Data

Model

A data model provided by a software supplier that documents the

data exchanged by a UoC via the TS Interface.

Verification Authority An entity officially sanctioned by the Steering Committee to conduct

or witness For-the-Record Verification testing using an approved

version of the Conformance Test Suite and assess the Verification

Evidence provided by the software supplier in support of the FACE

Conformance Program. The Verification Authority may be an

independent third-party entity or a designated internal, independent

entity of the software supplier.

FACE™ Technical Standard, Edition 3.0 535

M Acronyms

Acronym Description

2D Two-Dimensional

3D Three-Dimensional

AMRDEC Aviation and Missile Research, Development, and Engineering Center

ANSI American National Standards Institute

API Application Programming Interface

ARINC Aeronautical Radio Inc.

ARP Aerospace Recommended Practice

BAE British Aerospace

BBC Backup Bus Controller

BC Bus Controller

BM Bus Monitor

BSP Board Support Package

CALIPSO Common Architecture Label Internet Protocol Version 6 Security Option

CCB Configuration Control Board

CDM Conceptual Data Model

CDS Cockpit Display System

CMC Canadian Marconi Company

COE Common Operating Environment

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf

CPI Critical Program Information

CPU Central Processing Unit

CSP Component State Persistence

DDS Data Distribution Service

DF Definition File

DITS Digital Information Transfer System

536 Open Group Standard (2017)

Acronym Description

DO Document

DoD Department of Defense

DPM Device Protocol Mediation

DSDM Domain-Specific Data Model

EGL Embedded Graphics Library

EMOF Essential Meta-Object Facility

ES Embedded Systems

FACE Future Airborne Capability Environment

FM Fault Management

FTP File Transfer Protocol

FSC Framework Support Capability

GPS Global Positioning System

GPU Graphics Processing Unit

GUID Globally Unique Identifier

HM Health Monitor

HMFM Health Monitoring and Fault Management

HMI Human Machine Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I/O Input/Output

ICD Interface Control Document

ID Identification

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IOS Input/Output Services

IP Internet Protocol

IPC Inter-Process Communication

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

FACE™ Technical Standard, Edition 3.0 537

Acronym Description

ISO/IEC International Organization for Standardization/International Electrotechnical

Commission

IT Information Technology

LCM Life Cycle Management

Java EE Java Enterprise Edition

Java SE Java Standard Edition

LDM Logical Data Model

MCDU Multi-purpose Control Display Unit

MIL-STD Military Standard

MISRA Motor Industry Software Reliability Association

MOF Meta-Object Facility

MPEG Moving Picture Experts Group

MSG Message

NAVAIR Naval Air Systems Command

NIST National Institute of Standards and Technology

NSA National Security Agency

OCL Object Constraint Language

OFP Operation Flight Program

OMG Object Management Group

OpenGL Open Graphics Language

OS Operating System

OSGi Open Services Gateway initiative

PCS Portable Components Segment

PDM Platform Data Model

POSIX Portable Operating System Interface

PSCS Platform-Specific Common Services

PSDS Platform-Specific Device Services

PSGS Platform-Specific Graphics Services

PSSS Platform-Specific Services Segment

QoS Quality of Service

538 Open Group Standard (2017)

Acronym Description

RFC Request for Comments

RMF Risk Management Framework

RS Recommended Standard

RT Run-Time (Language)

RT Remote Terminal

RTI Real Time Innovations

RTSC Real Time Safety-Critical

SFTP Secure File Transfer Protocol

SW Software

SA Subaddress

SC Safety-Critical

SDM Shared Data Model

SMPTE Society of Motion Picture and Television Engineers

SNMP Simple Network Management Protocol

STL Standard Template Libraries

TCP Transmission Control Protocol

TPM Transport Protocol Module

TS Transport Services

TSS Transport Services Segment

TWG Technical Working Group

UA User Application

UDP User Datagram Protocol

UoC Unit of Conformance

UoP Unit of Portability

U.S. United States

USM Unit of Portability Supplied Model

UUID Universally Unique Identifier

W3C World Wide Web Consortium

XMI Extensible Markup Language Metadata Interchange

XML Extensible Markup Language

FACE™ Technical Standard, Edition 3.0 539

Acronym Description

XSD Extensible Markup Language Schema Definition

540 Open Group Standard (2017)

Index

Ada mapping 141

Backus-Naur 389, 397

basis entity .. 84

BSP ... 25

C mapping .. 114

C++ mapping 129

C99 ... 114

CDM ... 8

Centralized Configuration Service 57

centralized logging 55

Component Frameworks 10, 44

Component-Oriented Support Interfaces 7

Conceptual Data Model 84

Configurations Services API 299

constant expression............................. 114

constants ... 113

Data Architecture 83

Data Model Language 317

data selection specification 397

device drivers 46

Domain-Specific Data Model 87

DPM ... 56

DSDM .. 8

EMOF ... 8

EMOF XMI .. 317

exceptions ... 113

FACE Computing Environment Interface

 ... 2

FACE Conformance Program 2

FACE Data Architecture 7

FACE Data Model Language 8, 83

FACE Data Model Language Bindings 85

FACE Interface 6

FACE Reference Architecture 1, 16

FACE SDM Governance Plan 8

FACE segment 4

FACE Shared Data Model 86

FSC ... 74

General Purpose Profile 11

Graphics Display Management Services

 ... 104

Graphics Rendering Services 104

Graphics Services 96, 308

graphics standards 97

HMFM .. 22, 31

HMFM Services API 294

IDL ... 112

IDL compiler 113

IEEE Std 1003.1-2008 166

Injectable Interface 7, 315

Integration Model 85

IOS Interface 7, 49, 219

IOSS ... 5, 46

Java EE 7 .. 43

Java mapping...................................... 151

Java SE 8 .. 43

LCM Services 110, 247

LCM Services Interfaces 7

LDM ... 8

Life Cycle Management Services 110

localized logging 56

logging services 55

Logical Data Model.............................. 84

native type 129, 141, 151, 161

networking standards 215

OCL.. 8

OSS .. 5, 17

OSS Interface 6, 24

OSS Profiles ... 11

OSS requirements 17

PCS .. 6

PDM ... 8

Platform Data Model 85

Portable Components Segment 88

POSIX .. 166

Programming Language Run-Time 32

programming languages 10

PSCS .. 6

PSDS .. 6

PSGS .. 6

PSSS ... 50

PSSS Graphics 97

Query and Template language................ 8

query language grammar 389

safety considerations 165

Safety Profile.. 11

SDM ... 8

security ... 162

Security Profile 11

SQL .. 389

streaming media 56

System Level Health Monitor 58

template modules 113

Transport Services Interface................... 7

Transport Services Interfaces 77

TS Interface .. 255

TSS ... 6, 58

UoC .. 12, 92

FACE™ Technical Standard, Edition 3.0 541

UoC Package .. 12

UoP ... 12

UoP Data Model 85

XMI .. 8

XML ... 8

